
High-Performance High-Order Simulation of Wave and
Plasma Phenomena

by

Andreas Klöckner

Dipl.-Math. techn., Universität Karlsruhe (TH); Karlsruhe, Germany, 2005

M.S., Brown University; Providence, RI, 2006

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in The Division of Applied Mathematics at Brown University

PROVIDENCE, RHODE ISLAND

May 2010

c© Copyright 2010 by Andreas Klöckner

This dissertation by Andreas Klöckner is accepted in its present form

by The Division of Applied Mathematics as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date

Jan Sickmann Hesthaven, Ph.D., Advisor

Recommended to the Graduate Council

Date

Johnny Guzmán, Ph.D., Reader

Date

Chi-Wang Shu, Ph.D., Reader

Approved by the Graduate Council

Date

Sheila Bonde, Dean of the Graduate School

iii

Vitae

Biographical Information

Birth August 5th, 1977
Konstanz, Germany

Education

2005 – 2010 Ph.D. in Applied Mathematics (in progress)
Division of Applied Mathematics, Brown University, Providence,
RI
Advisor: Jan Hesthaven

2005 Diplom degree in Applied Mathematics (Technomathematik)
Institut für Angewandte Mathematik, Universität Karlsruhe, Ger-
many
Advisor: Willy Dörfler

2001 – 2002 Exchange Student, Department of Mathematics
University of North Carolina at Charlotte, Charlotte, NC

2000 Vordiplom in Computer Science, Universität Karlsruhe, Germany

Experience

6/2006 – 9/2006 J. Wallace Givens Research Associate
Mathematics and Computer Science Div., Argonne Nat’l
Laboratory, Illinois
Worked on high-order unstructured electromagnetic simulation
of particle accelerators (with Paul Fischer, Misun Min, and col-
leagues at ANL’s Advanced Photon Source).

iv

2/2005 – 7/2005 Research Associate (Wissenschaftlicher Mitarbeiter)
Institut für Angewandte Mathematik, Universität Karlsruhe,
Germany
Worked on various extensions of my thesis research (with Willy
Dörfler).

5/2002 – 11/2002 Research Intern
DaimlerChrysler Research & Technology, Palo Alto, CA
Worked on driver stress detection, precision GPS, and software
infrastructure (with Stefan Schrödl).

Publications

2010 Viscous Shock Capturing with an Explicitly Time-Stepped
Discontinuous Galerkin Method.
AK, T. Warburton, J.S. Hesthaven. In preparation.

2009 PyCUDA: GPU Run-Time Code Generation for
High-Performance Computing.
AK, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
Submitted, available at http://arxiv.org/abs/0911.
3456.

2009 Nodal Discontinuous Galerkin Methods on Graphics Processors.
AK, T. Warburton, J. Bridge, J.S. Hesthaven. Journal of Compu-
tational Physics, Volume 228, Issue 21, 20 November 2009.

2009 Deterministic Numerical Schemes for the Boltzmann Equation.
A. Narayan, AK. Brown University Scientific Computing Technni-
cal Report 2009-39.

2005 On the Computation of Maximally Localized Wannier Functions.
Diplom Thesis, Universität Karlsruhe, Germany.

v

http://arxiv.org/abs/0911.3456
http://arxiv.org/abs/0911.3456

Acknowledgments

First and foremost, the support of my advisor Jan Hesthaven has been the cornerstone

of my working life in the past five years. He was a source of questions, of answers, of

inspiration, he encouraged me to be bold in the scientific questions I pursue, all while

giving me great freedom in following my interests. He has also patiently put up with the

things that turned out not to be so smart in hindsight. Beyond science, he has been a role

model and a tremendous influence on my life as a whole. I consider myself lucky to have

had him as a mentor.

Over the years, I have worked very closely with Tim Warburton at Rice University on

many of the topics that this thesis discusses. His generosity, help, and insight have benefited

me in many ways.

Both of the above, along with Chi-Wang Shu and Johnny Guzmán have graciously

agreed to serve on my PhD committee, spent time thinking about my work, and provided

invaluable feedback.

Throughout my graduate studies, I have had the honor of working on various projects

with a large and diverse group of people. Their insights, commentary and encouragement,

shared in many conversations, were and continue to be a great asset to my scientific life.

The graduate student and postdoc community at Brown’s Division of Applied Mathe-

matics is a great crowd in which to grow up academically. Many of you have become my

vi

friends, and I hope we will be able to stay close even as life scatters us across the globe.

Nvidia Corporation have been very generous with equipment and travel support and

were instrumental in initiating, furthering and publicizing the GPU-based part of my

research.

Many contributors around the world have created the open-source software and tools

on which my work has crucially depended. This notably includes the communities that

have formed around my various projects.

Parts of this thesis are based on two publications, [Klöckner et al., 2009b] and [Klöckner

et al., 2009a]. My coauthors have contributed considerably to both articles through their

ideas, suggestions, and feedback.

Last, but by no means least, my parents Bina and Heinrich Klöckner have, throughout

my entire life, given me their unconditional support, advice, and love.

Thank you, all of you.

Some of the computational meshes used in this work were generated using Triangle

[Shewchuk, 1996] and TetGen [Si and Gaertner, 2005]. The surface mesh for Figure 5.10

originates in the FlightGear flight simulator and was processed using Blender and MeshLab,

a tool developed with the support of the Epoch European Network of Excellence.

vii

Abstract of “High-Performance High-Order Simulation of Wave and Plasma Phenomena”
by Andreas Klöckner, Ph.D., Brown University, May 2010

This thesis presents results aiming to enhance and broaden the applicability of the discon-

tinuous Galerkin (“DG”) method in a variety of ways. DG was chosen as a foundation for

this work because it yields high-order finite element discretizations with very favorable

numerical properties for the treatment of hyperbolic conservation laws.

In a first part, I examine progress that can be made on implementation aspects of DG.

In adapting the method to mass-market massively parallel computation hardware in the

form of graphics processors (“GPUs”), I obtain an increase in computation performance per

unit of cost by more than an order of magnitude over conventional processor architectures.

Key to this advance is a recipe that adapts DG to a variety of hardware through automated

self-tuning. I discuss new parallel programming tools supporting GPU run-time code

generation which are instrumental in the DG self-tuning process and contribute to its

reaching application floating point throughput greater than 200 GFlops/s on a single

GPU and greater than 3 TFlops/s on a 16-GPU cluster in simulations of electromagnetics

problems in three dimensions. I further briefly discuss the solver infrastructure that makes

this possible.

In the second part of the thesis, I introduce a number of new numerical methods whose

motivation is partly rooted in the opportunity created by GPU-DG: First, I construct and

examine a novel GPU-capable shock detector, which, when used to control an artificial

viscosity, helps stabilize DG computations in gas dynamics and a number of other fields.

Second, I describe my pursuit of a method that allows the simulation of rarefied plasmas

using a DG discretization of the electromagnetic field. Finally, I introduce new explicit

multi-rate time integrators for ordinary differential equations with multiple time scales,

with a focus on applicability to DG discretizations of time-dependent problems.

Contents

Vitae iv

Acknowledgments vi

1 Introduction 1
1.1 About this Thesis . 2
1.2 The Scientific Method and the Computational Experiment 3
1.3 An Argument for Hybrid Codes . 5
1.4 Assembling a Set of Tools . 6
1.5 Reproducibility for Results in this Thesis 7

2 Preliminaries 10
2.1 The Discontinuous Galerkin Method . 11

2.1.1 Implementing DG . 14
2.2 GPU Hardware: A Brief Introduction . 15

2.2.1 Specifics of Nvidia hardware . 18

3 A Code-Generating Discontinuous Galerkin Solver 21
3.1 On the Design of a Discontinuous Galerkin PDE Solver 22
3.2 A Language for Discontinuous Galerkin Methods 26

3.2.1 Fluxes and Flux-Local Binding 30
3.2.2 Common Subexpression Elimination 31
3.2.3 An Example . 32
3.2.4 Discussion . 34

3.3 The Processing Pipeline . 35
3.3.1 Type Inference and Operator Specialization 35
3.3.2 Optimizations . 36
3.3.3 Target-Specific Rewriting . 37

3.4 The Virtual Machine . 38
3.4.1 The Compilation Step . 38
3.4.2 The Execution Model . 40

viii

3.5 Conclusions . 42

4 Code Generation on Graphics Processors 45
4.1 Introduction . 46
4.2 GPU Software Creation . 50
4.3 Problems Solved by GPU Run-Time Code Generation 51

4.3.1 Automated Tuning . 52
4.3.2 The Cost of Flexibility . 53
4.3.3 High-Performance Abstractions 54
4.3.4 GPUs and the Need for Flexibility 56

4.4 PyCUDA: A Scripting-Based Approach to GPU RTCG 57
4.4.1 Abstractions in PyCUDA . 61
4.4.2 Code Generation with PyCUDA 63
4.4.3 PyOpenCL: OpenCL and GPU RTCG 66

4.5 Successful Applications . 66
4.6 Conclusions . 68

5 Discontinuous Galerkin Methods on Graphics Processors 70
5.1 Introduction . 71
5.2 DG on the GPU: Design . 74
5.3 DG on the GPU: Implementation . 78

5.3.1 How to read this Section . 78
5.3.2 Flux Lifting . 79
5.3.3 Flux Extraction . 82
5.3.4 Element-Local Differentiation 89

5.4 Experimental Results . 94
5.4.1 Further Results: Double Precision, Distributed Computation . . . 105

5.5 Conclusions . 109

6 Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method 111
6.1 Introduction . 112
6.2 Basic Design Considerations . 116
6.3 Applications and Equations . 120

6.3.1 Advection Equation . 120
6.3.2 Second-Order Wave Equation 121
6.3.3 Burgers’ Equation . 122
6.3.4 Euler’s Equations of Gas Dynamics 123

6.4 A Smoothness-Estimating Detector for the Selective Application of Artifi-
cial Viscosity . 124
6.4.1 Detection Methods in the Literature 124
6.4.2 Estimating Solution Smoothness 127
6.4.3 Ambiguities in Two and More Dimensions 140

6.5 From Smoothness to Viscosity . 142
6.5.1 Scaling the Viscosity . 142
6.5.2 Smoothing the Viscosity . 146

ix

6.6 Experience with and Evaluation of the Scheme 149
6.6.1 Advection: Basic Functionality, Interaction with Time Discretization150
6.6.2 Waves: Shock Spreading and Spurious Coupling 153
6.6.3 Burgers’ Equation . 157
6.6.4 Euler’s Equations in One Dimension 158
6.6.5 Initial Experience in Two Dimensions 164

6.7 Conclusions and Future Work . 165

7 The Vlasov-Maxwell System and DG 167
7.1 Introduction . 168

7.1.1 Boundary Conditions . 170
7.2 Discretizing the Electromagnetic Field 171
7.3 Discretizing the Density . 172

7.3.1 The Eulerian approach . 172
7.3.2 Particles and the Lagrangian approach 173
7.3.3 Rationale and Strategy for High-Order Unstructured PIC 175

7.4 A Brief, Incomplete Survey of Prior Work 177
7.5 Ensuring “Charge Conservation” . 180

7.5.1 Divergence Cleaning by Helmholtz Projection 182
7.5.2 Hyperbolic Divergence Cleaning 183

7.6 Time Discretization . 185
7.6.1 Multi-rate Time-Stepping for PIC 187

7.7 Deposition methods for DG-PIC . 188
7.7.1 Element-wise Deposition . 189
7.7.2 Advective Deposition . 196
7.7.3 Cartesian Deposition . 199

7.8 Particle Pushing in DG-PIC . 205
7.8.1 Interpolatory Pushing . 205
7.8.2 Mean-based pushing . 207

7.9 Numerical Evaluation . 211
7.9.1 Gaussian Electron Beams . 213
7.9.2 Kapchinsky-Vladimirsky Beam Physics 221

7.10 A Moderate-Scale Application . 227
7.11 Conclusions and Future Work . 229

8 Multi-rate Time Stepping: Methods and Applications 231
8.1 Introduction . 232
8.2 The Setting for Multi-Rate Multi-Step Methods 233
8.3 Design Choices in Multi-Rate Multi-Step Methods 236
8.4 Notation and Building Blocks . 240
8.5 Accuracy and Stability . 246
8.6 Applications . 264

8.6.1 Domain Decomposition in the Treatment of Conservation Laws by
Discontinuous Galerkin Methods 264

8.6.2 Velocity-Space Decomposition in Eulerian Vlasov-Maxwell Schemes266

x

8.6.3 Multi-Rate Time Stepping for Particle-in-Cell Methods 267
8.7 Conclusions . 267

9 Conclusions 269

xi

List of Tables

1.1 Versions of outside hardware and software that had a direct influence on my
results. 9

1.2 Precise versions of my own software that I have used to obtain the results herein. 9

5.1 Typographical conventions for different types of GPU storage. 79
5.2 L2 errors and empirical orders of convergence (EOC) of a GPU solver. 96
5.3 Empirically optimal method parameters for GPU-DG. 102

6.1 L1 error and convergence data for the Sod problem of the Euler equations of
gas dynamics. 161

7.1 Problem parameters for the Kapchinsky-Vladimirsky beam physics test of
Section 7.9.2. 223

8.1 Scheme reduction for unmixed dependencies. 246
8.2 Maximal stable time steps for single-rate Adams-Bashforth methods on the

2× 2 test system. 254
8.3 Minimal, average, and maximal stable time steps ∆t data across MRAB meth-

ods at sub-step ratio k = 2, for inner (matched) and outer (mismatched) re-
gions. 260

8.4 Minimal, average, and maximal stable time steps ∆t data across MRAB meth-
ods, for sub-step ratios k = 3 and k = 4. 261

xii

List of Figures

2.1 Construction of the Lifting Matrix Lk. 13
2.2 Decomposition of a DG operator into subtasks. 14

3.1 Tree representation of expressions. 26
3.2 An example of the construction of an operator template in hedge. 32
3.3 Data flow graph for the second-order wave operator. 42
3.4 Data flow graph for the compressible Navier-Stokes operator. 43

4.1 Operating principle of GPU code generation. 49
4.2 Work flow of PyCUDA GPU program compilation. 59
4.3 Examples of the use of PyCUDA. 60
4.4 The use of PyCUDA’s element-wise operation code generator. 62
4.5 Different methods of Run-Time Code Generation (RTCG) with PyCUDA. . . 64

5.1 Matching DG granularities to GPU alignment boundaries. 76
5.2 Implementation aspects of flux lifting. 79
5.3 Computation layouts for matrix multiplication with fields in shared memory. . 82
5.4 Row-wise segmentation of a microblocked matrix-matrix product. 91
5.5 Local matrices and memory banks. 93
5.6 Performance characteristics of DG on Nvidia graphics hardware. 98
5.7 Performance characteristics of DG on Nvidia graphics hardware, continued. . 99
5.8 Performance characteristics of DG on Nvidia graphics hardware, continued. . 100
5.9 Performance characteristics of DG on Nvidia graphics hardware, continued. . 103
5.10 A electromagnetic scattering problem solved on the GPU using the methods

described in the text. 105
5.11 Performance of Maxwell-GPU-DG in double precision and on a parallel ma-

chine. 106
5.12 Parallel scaling for distributed-memory Maxwell-GPU-DG. 107

6.1 Stability regions of various DUMKA3 time integrators and the LSRK4 method.
. 118

6.2 Viscosity activation map for the sensor of Persson and Peraire [2006]. 126
6.3 Modal portrait for an approximant of a (discontinuous) Heaviside jump func-

tion. 130
6.4 Modal portrait for an approximant of a C0 non-differentiable “kink” function. 132
6.5 Modal portrait for an approximant of a C1 truncated polynomial. 133

xiii

6.6 Modal portrait for a function consisting of only the highest representable Leg-
endre mode φNp−1 in an expansion of length 10. 134

6.7 Modal portrait for the function cos(3 + sin(1.3x)), as an example of a very
smooth function. 135

6.8 Modal portrait for the function sin(πx), as an example of a smooth, odd func-
tion. 136

6.9 Modal portrait of the constant 1, perturbed by white noise of magnitude 10−3. 138
6.10 Modal portrait for an approximant of a (discontinuous) jump function, offset

from the center of the element. 139
6.11 Modal adjacency ordering for skyline pessimization in the case of a triangle

(i.e. a “2D simplex”). 141
6.12 Viscosity activation map for the sensor of Section 6.4.2. 143
6.13 The viscosity parameter ν(x) before and after smoothing. 147
6.14 Spatial shock capturing behavior of the artificial viscosity scheme on an ad-

vection equation. 150
6.15 Interaction of the shock-capturing artificial viscosity with the time discretization.151
6.16 Empirical order of convergence for the wave equation with discontinuous ini-

tial conditions. 154
6.17 Spatial pointwise error for the wave equation. 155
6.18 Space-time plot of the solution of Burgers’ equation in 1D. 157
6.19 Sod’s problem with artificial viscosity: solution and x-t convergence. 159
6.20 Element-scale oscillation exhibited by the artificial viscosity scheme. 160
6.21 Solutions of classical test problems for the Euler equations using the artificial

viscosity scheme. 163
6.22 Solution of the one-dimensional Burgers equation on a two-dimensional com-

putational domain at polynomial degree N = 5 on K ≈ 600 triangles. . . . 164

7.1 Aspects of FDTD-PIC. 177
7.2 A three-dimensional view of the polynomial particle shape function of (7.9)

with α = 2. 180
7.3 Data flow graph for DG-PIC. 186
7.4 Overview of particle-field coupling. 188
7.5 Element-wise deposition. 190
7.6 Various ways of implementing element-wise deposition. 195
7.7 The stages of advective deposition from the point of view of one particle. . . . 197
7.8 Matching Cartesian and unstructured mesh resolution. 200
7.9 Stages of grid-based deposition. 201
7.10 Stages of mean-based pushing. 209
7.11 Spatial setting of the Gaussian electron beam test case. 214
7.12 Divergence error in the 2D Gaussian beam test. 215
7.13 Deposited charge in the 2D Gaussian beam test. 216
7.14 Energy conservation in the 2D Gaussian beam test. 218
7.15 A closer look at the performance of advective deposition. 219
7.16 Conservation of momentum in the 2D Gaussian beam test. 219
7.17 Kapchinsky-Vladimirsky Beam Physics Test. 221
7.18 Conservation-based measures of solution quality for K-V Beam Physics. . . . 225
7.19 Physics-based measures of solution quality for K-V Beam Physics. 226
7.20 Application of DGTD-PIC to an experimental injector cavity. 228

8.1 The temporal setting of multi-rate time stepping. 232
8.2 Functional principle of extrapolatory multi-step methods. 236
8.3 Decision tree for the design of multi-rate multi-step schemes. 237

xiv

8.4 Color key for the right-hand sides involved in the multi-rate multi-step scheme
of the system (8.1). 241

8.5 Graphical representation of the “F” multi-rate multi-step scheme. 247
8.6 Graphical representation of the “Sq” multi-rate multi-step scheme. 248
8.7 Graphical representation of the “Srsf” multi-rate multi-step scheme. 249
8.8 Interpretation of and first stability results on the MRAB test system (8.5). . . 255
8.9 Eigenvalue dependency of the stable time step for multi-rate AB methods. . . 256
8.10 Sub-step ratio dependency of the stable time step for multi-rate AB methods. . 258
8.11 Method dependency of the stable time step for multi-rate AB methods. 259

xv

List of Algorithms

5.1 Flux Lifting, field-in-shared. 83
5.2 Simple Greedy Partition. 86
5.3 Flux Extraction. 88
5.4 Local Differentiation with a segmented matrix in shared memory. 92
7.1 Maintenance of information on element membership of each particle’s center

point. 193
7.2 Recursive procedure for element finding by mesh connectivity. 194
7.3 Element-wise deposition by Cartesian node binning. 196
7.4 Update procedure for advective deposition. 198
7.5 Cartesian Deposition: Computation of Cartesian-to-nodal map, accomplished

during pre-processing. 202
7.6 Cartesian Deposition: Grid-based deposition and nodal unstructured remapping.203
7.7 Conditioning fix for grid Vandermonde matrix Gk. 204
8.1 Explicit k-step time stepping method. 235

xvi

CHAPTER ONE

Introduction

1

2

1.1 About this Thesis

The aim of this thesis is to present results that enhance and broaden the applicability of the

discontinuous Galerkin method (“DG”, cf. Section 2.1) in a variety of ways.

Roughly the first third of this thesis (Chapters 3 through 5) concerns itself with im-

plementation aspects of DG. Chapter 3 describes how the method can be implemented in

a way that combines the often opposing goals of using established software engineering

practice while achieving high performance, and Chapter 5 explains how computation perfor-

mance can be increased by an order of magnitude or more through the use of mass-market

massively parallel computation hardware. In support of this latter advance, some parallel

programming tools are introduced that were created specifically to support it, but have

found a much broader use in the scientific community (Chapter 4).

The latter two thirds of the thesis (Chapters 6 through 8) introduce a number of new

numerical methods focused on certain application problems. All of these methods were

designed to be used in conjunction with DG, and some are general enough to be used in a

broader context. Chapter 6 focuses on the treatment of shock-laden flows. I construct and

examine a novel shock detection method, which, in conjunction with an artificial viscosity,

helps stabilize DG computations in gas dynamics and a number of other fields. Chapter 7

describes my pursuit of a method that allows the simulation of rarefied plasmas using a DG

discretization of the electromagnetic field. Lastly, Chapter 8 introduces new methods for

ordinary differential equations with multiple time scales and is applicable, among other

things, to DG discretizations of time-dependent problems.

3

1.2 The Scientific Method and the Computational

Experiment

In the second part of this thesis, new knowledge is gained by examining the behavior of

newly-introduced methods in purposefully chosen computational experiments. In applied

mathematics, such experiments are often maligned for being poorly specified, difficult or

impossible to reproduce, and for these reasons of questionable value.

Unlike (for example) physics or chemistry, applied mathematics does not have a mature

culture of experimentation, let alone a fully accepted experimental branch. Before the

advent of computers, experiments in mathematics were often impractically tedious to

conduct, and therefore mathematical culture has grown mainly around theoretical results.

But now that the possibility exists, the field would–in my opinion–do well to mimic the

other sciences and embrace experimentation as one of its accepted methods. It should do so

in the interest of capturing knowledge that might otherwise not be available, but it should

also do so carefully.

Applied mathematicians conduct computational experiments in large quantities every

day. Regrettably however, most of these experiments are ad-hoc, and poor (if any) records

are kept about them. A part of this problem is that physicists and chemists are routinely

trained in the task of thorough, well-documented, reproducible experimentation, while

applied mathematicians are not.

In a recent paper, LeVeque [2009] addresses this issue and notes that scientific results

obtained by experimentation are first and foremost expected to be reproducible. This

has long been demanded of published research. Yet, scientific computing, while often

experimental, seems to have been strangely exempt from this requirement. Based on

4

LeVeque’s recommendations, I would like to suggest the following guidelines that I have

tried to follow in my work on this thesis:

Availability in source code form. Computer programs used to obtain results in published

research should be available for other researchers to inspect and, if possible, execute.

Computational experiments are influenced by numerous small details to which the

written word describing the experiment seldom does justice. Therefore, the ability to

inspect the code that produced the result is key to finding details which the original

authors may have deemed irrelevant, but which might turn out to be crucial in

deciding about success or failure. Compared to inspection, exact duplication by

re-running the experiment is a desirable, but secondary, goal.

Unlike in the physical sciences, experimental setups in computational science can

be transported and duplicated easily if some care is invested. So far, this is a large

missed opportunity. Ideally, the same distribution channels that so far convey the

research article describing the results should also convey the code and data used to

obtain them.

Readability. The ability to inspect code of course diminishes in value if that code is

sufficiently inscrutable. Along with wide distribution of code, an understanding

needs to grow that code is a valid expression of the ideas that it contains. The more

apparent these ideas are from the code, the better. Or, in other words, codes should

be written mostly to be read, not so much to be executed.

Reduced dependencies on for-pay software. While one will never be able to fully cap-

ture the multitude of details influencing a computation, steps can be taken to minimize

factors that are beyond the experimenter’s control. By its definition, commercial

software is controlled by an outside interest wishing to derive monetary gain. One

way of achieving this is by creating a lock-in situation in which the software becomes

5

irreplaceable to the user. Quite obviously, this is at odds with reproducibility and

wide availability. Fortunately, a sufficiently rich ecosystem of software unencum-

bered by commercial interests has been emerging, whose use for my purposes I will

briefly explore in Section 1.4.

1.3 An Argument for Hybrid Codes

Scientific codes are–by design–experimental in nature. This results in a fundamental

difference between scientific and other types of software. The former explores uncharted

ground, and therefore has a higher probability of resulting in failure. Assuming that

everything is already being done to minimize the probability of that event, another measure

to reduce expected loss is to minimize time and effort spent on the experimental code in

the first place, at the expense of other qualities, such as computational speed, readability, or

maintainability.

I would argue that of those three properties, it is wisest to sacrifice computational speed.

The popularity of environments such as Matlab, which is aimed at easing experimentation,

confirms this assertion. Speed should be sacrificed because of those three properties, it

is easiest to recover later. A prototype of a proposed method can usually very quickly be

created in scripting-type languages such as Matlab or Python. One of the core advantages

of these languages is the seamless use of high-level abstractions. (The reader may think of

Matlab’s arrays and vector indexing as an example of such an abstraction.) In particular,

this use of abstractions is one of the ways in which these languages avoid sacrificing

code readability for fast development time. Other factors further contribute to the rapid

experimentation, such as the lack of a separate compilation step. In summary, their design

makes these languages productive experimentation grounds.

6

Once a proposed computational method has proven its worth, speed becomes a concern.

It is clearly desirable to respond to this demand in an evolutionary manner, i.e. without

rewriting large amounts of computer code. This desire is furthered by the common observa-

tion that often only one small part of the program is responsible for most of its run time.

This observation naturally leads to hybrid code–code that mixes a scripting-type language

with a compiled language to regain performance. This idea is far from new and is enabled,

for example, by Matlab’s MEX facility. The downfall of such hybrid systems is, most often,

their complexity. I would next like to introduce an assembly of open tools which removes

much of the burden of hybrid development. Some of these tools have existed for years,

whereas others were created specifically for this thesis.

1.4 Assembling a Set of Tools

In bringing together a tool set for hybrid development, I was guided by three main factors:

maintenance, quality, and suitability. These criteria are first applied to the choice of the

high- and the low-level language. At the high level, I chose Python [van Rossum et al.,

1994], whose ecosystem has grown to provide many essential capabilities such as array

computations (through a package called “numpy” [Oliphant, 2006]), parallel computation

[Dalcı́n et al., 2005, 2008] and plotting. As the compiled, “low-level” language, C++ is a

standard, safe choice.

The next decision to be made involves how the two languages are to be connected. I

have decided in favor of the library “Boost.Python” [Abrahams et al., 2003], which was

created as contract work for Lawrence Berkeley National Laboratory’s Computational

Crystallography Initiative in 2003. Boost.Python is part of a larger assembly of peer-

reviewed, high-quality libraries called “Boost C++”, which also contains Boost.UBlas, a

7

package for linear algebra in C++. Because its use does not add further dependencies, it

was expedient to use UBlas for my C++-based linear algebra needs. PyUblas, a package

created for this thesis, creates a bridge between numpy and UBlas, completing the “glue

layer”.

Further needs of a hybrid discontinuous Galerkin solver include simplicial mesh gen-

eration and visualization. The former is provided by a package called “MeshPy”, which

connects Python to the simplicial mesh generators Triangle [Shewchuk, 1996], TetGen [Si

and Gaertner, 2005] and Gmsh [Geuzaine and Remacle, 2009]. For the latter, a package

called “Pylo” enables Python codes to write “Silo” visualization data files for use with the

VisIt large scale visualization program [Childs et al., 2005]. I have created both packages

for the work in this thesis. In addition, I have created the packages PyCUDA, PyOpenCL,

and CodePy that enable crucial run-time code generation capabilities. These packages will

be described in more detail in Chapter 4. Lastly, this infrastructure is then put to use by the

DG solver “hedge” whose basic design and use is surveyed in Chapter 3. To achieve the

above goal of availability, I have released all of my software under open-source licenses,

making it free to download, use, modify, and redistribute, in addition to opening it up to

user inspection.

1.5 Reproducibility for Results in this Thesis

To ensure that my results are reproducible, I will use this section to specify both the

computational environment in which I have conducted my experiments and the precise

versions of the software that I have used. First, Table 1.1 gives a comprehensive summary

of third-party components which performed operations that led to results shown in this

work. If multiple version numbers of a component are given, no significant change in the

8

results was observed across all specified versions.

Next, as I have already indicated, all my code is freely available. It may be downloaded

from my version control repositories from the address

http://git.tiker.net/trees/NAME.git

where the name of the component as seen in Table 1.2 should be substituted for NAME.

Observe that these URLs are designed for automated download of revision history by the

“git” version control system. A more human-friendly interface to the code is found under

the URL

http://git.tiker.net/NAME.git

where the user may directly view my source code without having to download it. Table

1.2 contains unique version specifiers, to be used in conjunction with git, of my software

which produced the results of this thesis.

9

Dependency Versions
Processor Intel Xeon E5472, Intel Core 2 Quad Q6600, both in

x86-64 mode
GNU C library 2.3.4, 2.10.2
GNU C Compiler 4.3.3, 4.4.1
libgmp 4.2.4, 4.3.2
libmpfr 2.3.2, 2.4.2
Boost C++ library 1.38, 1.42
LAPACK 3.1.1 lite
ATLAS 3.8.3
SQLite 3.6.11, 3.6.23
Python 2.6.1, 2.5.4
numpy 1.3.0, 1.2.1
CUDA/nvcc 2.3, 3.0

Table 1.1. Versions of outside hardware and software that had a direct influence on my results.

Submodule git Version ID
pytools d232ecb87daff9eacee8fc5d9a6e02850f8398d5
pymbolic 1bc6017e8b2fa575ae1366ef9d2386c1187c00e6
pyublas 46f2ea542b54341fec1fdb0d54b2bcdfe90417cc
meshpy bd9fa47082b8b1f8b18959de8ceb64d4c0f47d3b
pylo fb7582aab1f7093d81b6ee297c1b2331c15649b9
codepy 9a880ece091d3f26d4aaed014001a7a370d04f22
pycuda b235481e82edf92016d21a8954ac048a2860c4a1
pyopencl fb115c21cdffea8ee8cd25ecba863d1829601059
pymetis 0d9c6467ff03e2c580a3be127129082ad4bbe6f2
hedge 782cc5a4ffedbacba3140054b2172263076a6230
pyrticle edf4d7a95004232e0c5bfb3de8c202b27b955589
thesis-experiments dc55619a4b0f4738810d66a9ba276236a7aa7e41

Table 1.2. Precise versions of my own software that I have used to obtain the results herein.
Version numbers are given as SHA1 version hash IDs for the “git” version control system.

http://git.tiker.net/pytools.git
http://git.tiker.net/pymbolic.git
http://git.tiker.net/pyublas.git
http://git.tiker.net/meshpy.git
http://git.tiker.net/pylo.git
http://git.tiker.net/codepy.git
http://git.tiker.net/pycuda.git
http://git.tiker.net/pyopencl.git
http://git.tiker.net/pymetis.git
http://git.tiker.net/hedge.git
http://git.tiker.net/pyrticle.git
http://git.tiker.net/thesis-experiments.git

CHAPTER TWO

Preliminaries

10

11

To facilitate better understanding of later chapters, and to fix notation and terminology, this

chapter summarizes a few preliminaries that underlie the subsequent material. Nothing in

this chapter is original. Readers familiar with the subject may browse though the section

headings and skip material that is familiar to them, referring back when specific terminology

or notation needs to be clarified.

2.1 The Discontinuous Galerkin Method

Discontinuous Galerkin (DG) methods [Cockburn et al., 1990, Hesthaven and Warburton,

2007, Lesaint and Raviart, 1974, Reed and Hill, 1973] are, at first glance, a rather curious

combination of ideas from Finite-Volume and Spectral Element methods. Up close, they are

very much high-order methods by design. But instead of perpetuating the order increase like

conventional global methods, at a certain level of detail, they switch over to a decomposition

into computational elements and couple these elements using Finite-Volume-like surface

Riemann solvers. This hybrid, dual-layer design allows DG to combine advantages from

both of its ancestors. But it adds a third advantage: By adding a movable boundary between

its two halves, it gives implementers an added degree of flexibility when bringing it onto

computing hardware.

By their design and origins, DG methods are particularly suited to approximating the

solution of a hyperbolic system of conservation laws

ut +∇ · F (u) = 0 (2.1)

on a domain Ω =
⊎K
k=1 Dk ⊂ Rd consisting of disjoint, face-conforming tetrahedra Dk

12

with boundary conditions

u|Γi(x, t) = gi(u(x, t), x, t), i = 1, . . . , b,

at inflow boundaries
⊎

Γi ⊆ ∂Ω. As stated, I will assume the flux function F to be linear. I

find a weak form of (2.1) on each element Dk:

0 =

∫
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

∫
Dk

utϕ− F (u) · ∇ϕ dx+

∫
∂Dk

(n̂ · F)∗ϕ dSx,

where ϕ is a test function, and (n̂ ·F)∗ is a suitably chosen numerical flux in the unit normal

direction n̂. Following [Hesthaven and Warburton, 2007], I find a ‘strong’-DG form of this

system as

0 =

∫
Dk

utϕ+ [∇ · F (u)]ϕ dx−
∫
∂Dk

[n̂ · F − (n̂ · F)∗]ϕ dSx. (2.2)

I seek to find a numerical vector solution uk := uN |Dk from the space P n
N(Dk) of local

polynomials of maximum total degree N on each element. I choose the scalar test func-

tion ϕ ∈ PN(Dk) from the same space and represent both by expansion in a basis of

Np := dimPN(Dk) Lagrange polynomials li with respect to a set of interpolation nodes

[Warburton, 2006]. I define the mass, stiffness, differentiation, and face mass matrices

Mk
ij :=

∫
Dk

lilj dx, (2.3a)

Sk,∂νij :=

∫
Dk

li∂xν lj dx, (2.3b)

Dk,∂ν := (Mk)−1Sk,∂ν , (2.3c)

Mk,A
ij :=

∫
A⊂∂Dk

lilj dSx. (2.3d)

13

Mk,A1

Mk,A2

Mk,A3

Mk,A4

(Mk)−1 ·=Lk Np

Nfp

Figure 2.1. Construction of the Lifting Matrix Lk.

Using these matrices, I rewrite (2.2) as

0 = Mk∂tu
k +

∑
ν

Sk,∂ν [F (uk)]−
∑

F⊂∂Dk

Mk,A[n̂ · F − (n̂ · F)∗],

∂tu
k = −

∑
ν

Dk,∂ν [F (uk)] + Lk[n̂ · F − (n̂ · F)∗]|A⊂∂Dk . (2.4)

The matrix Lk used in (2.4) deserves a little more explanation. It acts on vectors of the

shape [uk|A1 , . . . , u
k|A4]T , where uk|Ai is the vector of facial degrees of freedom on face i.

For these vectors, Lk combines the effect of applying each face’s mass matrix, embedding

the resulting facial values back into a volume vector, and applying the inverse volume mass

matrix. Since it “lifts” facial contributions to volume contributions, it is called the lifting

matrix. Its construction is shown in Figure 2.1.

It deserves explicit mention at this point that the left multiplication by the inverse of the

mass matrix that yields the explicit semidiscrete scheme (2.4) is an element-wise operation

and therefore feasible without global communication. This strongly distinguishes DG

from other finite element methods. It enables the use of explicit (e.g., Runge-Kutta) time

stepping and greatly simplifies parallel implementation efforts (cf. Chapter 5).

14

uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂tu
k

Figure 2.2. Decomposition of a DG operator into subtasks. Element-local operations are
highlighted with a bold outline.

2.1.1 Implementing DG

DG decomposes very naturally into four stages, as visualized in Figure 2.2. This clean

decomposition of tasks stems from the fact that the discrete DG operator (2.4) has two

additive terms, one involving an element volume integral, the other an element surface

integral. The surface integral term then decomposes further into a ‘gather’ stage that

computes the term

[n̂ · F (u−N)− (n̂ · F)∗(u−N , u
+
N)]|A⊂∂Dk , (2.5)

and a subsequent lifting stage. The notation u−N indicates the value of uN on the face A of

element Dk, u+
N the value of uN on the face opposite to A.

As is apparent from the use of a Lagrange basis, I employ a nodal version of DG,

in which the stored degrees of freedom (“DOFs”) represent the values of uN at a set of

interpolation nodes. This representation allows us to find the facial values used in (2.5) by

picking the facial nodes from the volume field. (This contrasts with a modal implementation

in which DOFs represent expansion coefficients in a non-Lagrange basis. Finding the facial

information to compute (2.5) requires a different approach in these schemes.)

Observe that most of DG’s stages are element-local in the sense that they do not

use information from neighboring elements. Moreover, these local operations are often

efficiently represented by a dense matrix-vector multiplication on each element.

15

It is worth noting that since simplicial elements only require affine transformations

Ψk from reference to global element, the global matrices can easily be expressed in terms

of reference matrices that are the same for each element, combined with scaling or linear

combination, for example

Mk
ij =

∣∣∣∣det
dΨk

dr

∣∣∣∣︸ ︷︷ ︸
Jk:=

∫
I

lilj dx︸ ︷︷ ︸
Mij :=

, (2.6a)

Sk,∂νij = Jk
∑
µ

∂Ψν

∂rµ

∫
I

li∂rµlj dx︸ ︷︷ ︸
S∂µij :=

, (2.6b)

where I = Ψ−1
k (Dk) is a reference element. I define the remaining reference matrices D,

MA, and L in an analogous fashion.

2.2 GPU Hardware: A Brief Introduction

One of the most significant problems that modern processor design needs to address is the

slowness of memory. While there have been significant advances in latency and access

speed to affordable, large-scale, off-chip random access memory, these advances have in

no way kept pace with the progress made in the throughput of processor cores. Variants of

Moore’s Law predicted this latter progress to be exponential in nature, and so far reality

has kept pace with prediction. This pace was not matched by the development of dynamic

RAM (DRAM), the presently dominant technology for such memory. Therefore, the time

between the issuing of a memory request by a core and the subsequent response from

off-chip memory can be very long, measured in processor time scales.

One of the main differentiators between processor types is how they deal with the

16

problem of the slowness of memory. The two types of processors that presently have mass-

market relevance are CPUs and GPUs, which are defined by the target workloads for which

they are designed. For CPUs, the set of design workloads typically includes web browsers,

word processors and a diverse collection of other desktop programs–characterized by high

complexity and marginal potential for parallelization. GPUs, on the other hand, are aimed

at applying uniform, moderately complex floating point operations to large volumes of data

(i.e. “stream processing” [Venkatasubramanian, 2003]). It is obvious that the latter promise

to be the kind more suited to a large range of scientific computing tasks.

In the early days of GPU programming, the programmer had to repurpose marginally

programmable fixed-function graphics hardware for computing purposes by a variety of

methods [Owens et al., 2007]. With today’s generation of GPUs, this is not true any more.

Instead, GPUs should be viewed as general-purpose floating point processors that are

designed for a different type of target workload than current CPUs, and “GPU” becomes

just a convenient moniker for this type of technology.

Returning to the subject of memory slowness, one should consider that while bandwidth

can be increased to some extent by widening and improving the memory interface, latency

cannot, as it is a fundamental property of the type of memory. Obviously, the design

workloads for CPUs are very vulnerable to memory delays, and therefore CPU designers

tend to take extreme measures to mitigate their effects. Three types of strategies are

particularly popular here: First, include large amounts of fast cache memory on the chip to

avoid having to wait for off-chip memory at all. Second, engage in many forms of prediction

and speculation to make sure that required data is already present on-chip when it is needed.

And finally, reorder the instruction stream to lessen the impact of memory-related stalls.

It is apparent that the hardware implementation of all these strategies can easily occupy

large amounts of silicon. In contrast, the target workloads for a GPU are much less

17

vulnerable to memory-related stalls. Since GPUs aim to apply similar operations to large

amounts of data, exact ordering is less important. This allows the use of a much larger

number of execution contexts, each of which may occupy a functional (e.g. floating-point

or integer) unit whenever it has data available. While the management of large numbers

of contexts is nontrivial in itself, the associated management logic is less expensive to

implement than the CPU’s strategies, freeing a GPU to dedicate much more chip space to

functional units, further increasing parallelism.

This abundance of functional units confronts GPU designers with yet another interesting

challenge. Context management logic grows strongly superlinearly with the number of

contexts it manages. One set of central logic that would manage the execution of all contexts

on all functional units on the chip would be prohibitively large. This, together with physical

limits of on-chip signal propagation speed, strongly suggests dividing up the available chip

are into individual sub-processors, each of which manages a more limited set of execution

contexts. It is the same thinking that drives heavyweight CPUs towards integrating multiple

cores on a single die. Likewise, modern GPUs contain tens of management subdomains,

each of which may manage hundreds of execution contexts. (These subdomains are called

‘compute units’ by OpenCL, ‘multiprocessors’ by Nvidia, and simply ‘cores’ by others.

Execution contexts are called ‘threads’ by Nvidia and ‘work items’ by OpenCL.) To further

improve the functional-unit-to-control-logic ratio and reach the cited width of hundreds of

contexts per subdomain, most GPUs are built as relatively wide SIMD (Single Instruction

Multiple Data) vector machines.

The chip→unit→context hierarchy has a twofold effect on GPU software: First, each

unit is typically designed to operate independently of its siblings, limiting communication

to contexts executing on the same unit. Second, programs must explicitly specify how

to use each level of parallelism, typically by providing a suitable decomposition of an

index space. Together with the remaining possibility of sequential execution, this poses the

18

problem of loop slicing. Given a sequential description of the algorithm as a set of nested

loops, loop slicing refers to the combined process of

• identifying loop axes that can serve as parallelization indices,

• assigning loop axes to available parallelization axes, such as compute units, execution

context numbers within a unit, and SIMD lanes,

• interchanging loop orders to achieve a more beneficial order of memory accesses,

and lastly,

• finding size restrictions on each loop axis, and splitting axes as necessary.

Observe that each of the above steps may depend on the outcome of all the others, resulting

in a complicated joint optimization problem. The purpose of Chapter 4 is to explore these

(and other) software challenges and propose solutions for some of them.

2.2.1 Specifics of Nvidia hardware

On the Nvidia hardware [Lindholm et al., 2008] targeted in some of this work (especially

Chapter 5), up to 30 independent, parallel multiprocessors form the highest level of the

processing hierarchy. Each of these multiprocessors is capable of maintaining several

hundred threads in flight at any given time, giving rise to the lower level.

One such multiprocessor consists of eight functional units controlled by a single

instruction decode unit. Each of the functional units, in turn, is capable of executing one

basic single-precision floating-point or integer operation per clock cycle. The instruction

decode unit feeding the eight functional units is capable of issuing one instruction every

19

four clock cycles, and therefore the smallest scheduling unit on this hardware is what

Nvidia calls a warp, a set of 32 threads. The architecture is distinguished from conventional

single-instruction-multiple-data (SIMD) hardware by allowing threads within a warp to take

different branches, although in this case each branch is executed in sequence. To emphasize

the difference, Nvidia calls this a single-instruction-multiple-thread (SIMT) architecture.

Up to 16 of these warps are now aggregated into a logical unit called a thread block and

sent to execute on a single multiprocessor. Threads in a block share a piece of execution

hardware, and are hence able to take advantage of communication facilities present in

a multiprocessor, namely, a memory fence that may optionally serve as a barrier, and

16KiB1 of banked2 shared memory. The shared memory has 16 banks, such that half a

warp accesses shared memory simultaneously. If all 16 threads access different banks, or

if all 16 read the same memory location (a broadcast), the access proceeds at full speed.

Otherwise, the whole warp waits as maximal subsets of non-conflicting accesses are carried

out sequentially.

A potentially very large number of thread blocks is then aggregated into a grid and

forms the unit in which the controlling host processor submits work to the GPU. There is

no guaranteed ordering between thread blocks in a grid, and no communication is allowed

between them. Only after successful completion of a grid submission, the work of all thread

blocks is guaranteed to be visible. In that sense, grid submission serves as a synchronization

point.

Indices within a thread block and within a grid are available to the program at run time

and are permitted to be multi-dimensional to avoid expensive integer divisions. I will refer

1“KiB” stands for Kilobyte binary or Kibibyte and represents 1024 = 210 bytes. [The International
Electrotechnical Commission, 2000]

2“Banking” is one technique of designing memory for parallel access. It refers to a partitioning into banks,
in which each such bank receives its own addressing logic and data bus. As a result, only addresses in distinct
banks can be accessed simultaneously. Banking is a typical feature of parallel on-chip memory.

20

to these indices by the symbols tx, ty, tz, and bx, by.

All threads have read-write access to the GPU’s on-board (‘global’) memory. A single

access to this off-chip memory has a latency of several hundred clock cycles. To hide this

latency, a multiprocessor will schedule other warps if available and ready. A few things

influence how many threads can be started: Each thread requires a number of registers.

Also, the work of a group of threads often involves a certain amount of shared memory.

More threads may therefore also consume more shared memory. Since both the register

file and the amount of shared memory is finite, their use may lead to artificial limits on

the number of threads in a block. If there are very few threads in a block and there isn’t

space for many blocks on the same multiprocessor, the device may fail to find warps it

can run while waiting for memory transactions. This decreases global memory bandwidth

utilization. Another aspect influencing the available bandwidth to global memory is the

pattern in which access occurs. Taking 32-bit accesses as an example, loads and stores

to global memory achieve the highest bandwidth if, within a warp, thread i accesses

memory location b+π(i), where b is a 16-aligned base address and π is a mapping obeying

bπ(i)/16c = bi/16c. Note that for global fetches only, these restrictions can be alleviated

somewhat through the use of texture units.

A final bit of perspective: While graphics hardware achieves an order of magnitude

larger bandwidth to its global memory than conventional CPUs do to their main memory,

its floating point capacity eclipses this already large bandwidth by yet another order of

magnitude. If one visualizes both compute and memory bandwidth as physical “pipes”

with a certain diameter, the challenge in designing algorithms for this architecture lies in

keeping each pipe flowing at capacity while using a minimum of buffer space.

CHAPTER THREE

A Code-Generating Discontinuous

Galerkin Solver

21

22

3.1 On the Design of a Discontinuous Galerkin PDE

Solver

The purpose of this chapter is to explain the make-up of the software that forms the tool

foundation of many of the later chapters in this thesis. Aside from this supporting role, I

believe the way in which this discontinuous Galerkin solver, called “hedge”, is built, is

interesting in its own right, and I will use this chapter to describe some (in my opinion)

interesting decisions in its design.

Software design is more craft than science, involving personal preference and taste as

much as it does a strict set of rules. It is not unlike mathematical notation–its results can be

obscure or transparent, expedient or cumbersome, well-aligned or misaligned with the way

its users think. Like mathematical notation, software is a tool. Users are enthusiastic about

end results, not tools. Therefore, software design rightfully is not a core interest to many

people, and it is generally only noticed when it has gone wrong.

Unlike most of the other chapters, this chapter is not scientific content, but instead a

narrative compiling a few tricks and design decisions I have found helpful. I provide it in

the hope that it may be useful to some–the rest may safely skip forward as nothing in later

chapters depends on this information.

Every design starts with a number of goals. In the case of hedge, these were the

following:

Split jobs by aptitude. Humans are good at creativity, but terrible at tedious tasks, and

computers the other way around. This should serve as a guideline on how tasks

should be split. A different way of expressing this is: If a task is so simple and so

23

unambiguous that a computer can carry it out, it probably should do so. Conversely,

if a task requires choices or creativity, a computer should not attempt the task.

Be concise. The shortest, least redundant way to specify desired behavior is usually the

best one.

No frameworks. Good tools are built from small parts that work well together. The word

“framework” is often used when the design has gone awry and the small parts have

become so entangled and interdependent that it does not make sense to use them in

isolation.

I will not attempt to rigorously derive the design of hedge from these principles, but instead

describe the design, and in doing so, refer back to these goals as necessary.

As justified in Section 1.3, hedge is a hybrid code, mostly written in Python [van

Rossum et al., 1994], a high-level scripting-type language. It decomposes into a number of

modules:

• Operator Template Specification and Processing (module hedge.optemplate)

• Geometry handling (module hedge.mesh)

• Pre-built templates for e.g., waves, Poisson, gas dynamics (module hedge.models)

• Visualization (module hedge.visualization)

• Global DG discretizations (module hedge.discretization)

• Element-local discretizations (module hedge.discretization.local)

• Time Integrators (module hedge.timestep)

24

Useful as they all may be, all but the first of these modules follow established practice in

finite element software literature. The only part of how hedge is built that is non-standard

and therefore worth describing in detail is the way in which DG operators are described

and processed. To fix terminology, the term operator template (or just template) refers to

the collection of operations that yield a discretization of an application problem–e.g. a

discretization of Maxwell’s equations. This terminology was chosen to avoid confusion

with the term ‘operator’, which is used for the smaller parts from which the template is built,

for example an element-local differentiation “operator” or a flux evaluation “operator”.

This (somewhat obscure) terminology is also used within hedge’s code. It has nothing to

do with and should not be confused with the C++ term ‘template’.

One comment on these modules before I move on: To serve the goals of “no frame-

works” and “be concise”, most of these modules only intersect in user code and know

nothing about each other, making, e.g. time discretization entirely independent of spatial

discretization. (As an example of the consequences that such separation may have: this

particular one forces a method-of-lines approach for time-dependent PDEs upon the user.)

Some interdependencies are unavoidable, for example visualization must know about the

DG discretization, and the discretization must know about the geometry. Nonetheless, these

dependencies are kept to a minimum and happen along well-defined interfaces. Remarkably,

aside from aspects of quadrature, operator templates are built without knowledge of the

DG discretization.

I remark that the design of special-purpose languages for finite element operators

templates in itself is far from new [Pironneau et al., 2010, and predecessor projects]. Also

the idea of embedding operator templates in another language, as I will do here, has been

discussed many times before, e.g. for Scheme by Bagheri and Scott [2004], for C++ by

Prud’homme [2006], for Python by Logg and Wells [2010], and for even discontinuous

Galerkin methods and Python, by Ølgaard et al. [2008].

25

So what sets hedge apart from these similar projects?

• Matrix-free. Unlike most other finite element codes, hedge is not designed to

assemble sparse matrices. Instead, it focuses exclusively on the fast application of an

operator template’s effect to a discretization state vector, reaping a large performance

benefit because it can exploit local matrix structure far better than a generic sparse-

matrix code.

• Multiple targets. One and the same piece of hedge user code can be run on a single

processor, using distributed-memory (MPI) parallelism on multiple machines, on one

graphics processing unit (GPU) (see Chapter 5), or on multiple GPUs using MPI.

The decision to be matrix-free has important consequences in this point, as it enables

target-specific optimizations that would not be available if a sparse-matrix approach

were pursued.

• Optimization. Hedge knows enough about the meaning of the operator templates it

deals with to be able to rewrite them in such a way that their execution will proceed

as quickly as possible. Several examples of this will be provided in Sections 3.3.2

and 3.4.1.

• Run-time code generation. Once an operator template has been suitably rewritten,

hedge generates C or C++ code that is, transparently to the user, compiled to machine

code, loaded into core, and used as part of the running process. Chapter 4 explains

the infrastructure that I have created to support this procedure on the GPU.

• Superscalar virtual machine. Hedge rewrites each operator template into a partially

ordered stream of instructions for a simple “virtual machine” (or VM for short). This

virtual machine has the primitive operations necessary to apply DG operators, some

of which are created on the fly by the run-time code generation technique above.

The only partial order of the instruction stream allows the VM to decide to exploit

26

×

a −

4 b

(a) A tree representation of
the expression a× (4− b).

+

−

4 b

f

−

4 b

(b) The problem of common subexpressions: a tree rep-
resentation of the expression (4− b) + f(4− b).

Figure 3.1. Tree representation of expressions.

asynchrony and advance the evaluation of multiple parts of an operator template at

once. This mirrors the behavior of modern microprocessors, where a similar property

is called ‘superscalar’ because it involves the processing of more than one scalar at a

time. Details of this are explained in Section 3.4.2.

3.2 A Language for Discontinuous Galerkin Meth-

ods

The foundation for these features setting hedge apart is a flexible data structure to repre-

sent DG operators. This may sound trivial, but it again is a differentiator. Many solver

codes involve a one-to-one mapping from operations specified by the user to executed

operations. In hedge, the mapping is not one-to-one, but mediated by a number of different

representations, the first, user-facing one of which is the subject of this section.

This user-facing operator representation uses expression trees, as illustrated in Fig-

27

ure 3.1(a) on the preceding page. The goal of these expressions is to simply represent

DG operators of the form (2.3) in a fairly one-to-one manner, with node types for bilinear

forms, arithmetic operators, and more.

A variety of node kinds are admissible in the expression tree, each compatible with

certain argument types to which its child subtrees must conform. Before I detail the kinds

of nodes, I consider it helpful to enumerate to which types are allowed, or equivalently,

with which objects hedge can deal. These are the following: scalars, whole-volume state

vectors, interior face vectors, and boundary state vectors. Boundary vectors’ types are

further differentiated by their boundary tag, which is a symbolic name for a part of the

discretization domain’s boundary. Boundary tags may overlap, i.e. one face may have more

than one boundary tag, or none at all.

In addition, each of the vector types has a representation tag, which may either indicate

a simple nodal data format as explained in Section 2.1.1, or a quadrature format, in which

the quadrature in use is identified by a quadrature tag. The quadrature tag is a symbolic

name to which the discretization will assigns a meaning later on. (Quadrature is used to

provide extra integration accuracy if one or more arguments of a bilinear form is nonlinear

in its argument vectors.)

Hedge is a scalar code, by which I mean that each of the vectors mentioned are vectors

only to capture their spatial dependencies. Vector quantities, such as the three-component

electric field, are broken up into their scalar constituents and dealt with entirely separately.

No operation works on more than one such vector at a time.

The following operations are admissible node kinds in hedge’s expression trees:

• Arithmetic: binary (division, power) and n-ary (sums and products). Subtraction is

28

not available separately, but represented as a+ (−1) · b. Numpy’s [Oliphant, 2006]

scalar-to-vector broadcasting rules are recognized, i.e. one may add or multiply a

vector and a scalar and get the expected result.

• Constants: Literal scalars such as the (−1) used to represent subtractions.

• Variables: Scalar- or vector-valued placeholders whose value is supplied by the user

at evaluation time. All user-facing data in hedge is nodal, therefore vector variables

are also assumed nodal. Scalar variables must be explicitly declared as such.

• Common Subexpression Tags: Used to remove redundant evaluation in the expres-

sion tree, see Section 3.2.2.

• Operator bindings: A node with two children, representing a unary operation on

a vector. The first child represents the operator being applied, the second one the

vector to which it is bound. The following types of operators exist:

– Element-wise volume operations: These capture the application of bilinear

forms such as the mass matrix

(Mu)i =
∑
Dk⊂Ω

Np∑
j=1

∫
Dk

uk,jlk,j(x)φi(x) dx,

its inverse, or modal filtering. In the expression above, lk,j refers to the jth

Lagrange interpolation polynomial on element k and φi to the i global basis

function–in this case also a Lagrange polynomial.

– Volume local differentiation: This type of operator captures single-sided,

29

element-local stiffness matrices of the following types:

(Slu)i =
∑
Dk⊂Ω

Np∑
j=1

∫
Dk

uk,j∂llk,j(x)φi(x) dx,

(STl u)i =
∑
Dk⊂Ω

Np∑
j=1

∫
Dk

uk,jlk,j(x)∂lφi(x) dx,

for l ∈ {1, . . . , d} with d the number of dimensions of Ω.

– Surface bilinear forms: Used for flux evaluation. See Section 3.2.1.

– Conversion: Various conversion operators are defined that convert between

the admissible vector types. Operators exist to extract volume values opposite

to a certain boundary (identified by a boundary tag), or for up-sampling to a

volume, facial, or boundary quadrature grid.

– Further miscellaneous operations: Finally, a number of auxiliary operators,

such as element-wise maxima for the benefit of Rusanov fluxes, or surface data

exchanges via MPI, are available. This latter data exchange will be examined

in Section 3.3.3, the rest of these operators are secondary to this discussion.

• Function Calls: Function calls are a “hook” by which the user can insert arbitrary

processing into an operator template. Functions are registered with the virtual

machine (see Section 3.4) under a symbolic name and can then be invoked by that

name in operator templates.

• Conditionals: There is limited support for conditionals, with no means for branching,

i.e. both the ‘then’ and the ‘else’ part of a conditional are necessarily evaluated, and

then results chosen based on whether a conditional is positive.

These operations define a language rich enough to capture most DG operators and largely

goes back to abstractions already present in the book by Hesthaven and Warburton [2007].

30

Section 3.2.3 provides an example of how one proceeds to create an operator template. But

before then, I would like to explain two more involved design features of the language:

fluxes and common subexpressions.

3.2.1 Fluxes and Flux-Local Binding

This section describes how hedge’s language captures the evaluation of bilinear forms of

the general shape

(Fu)i =

∫
Γ

F ∗(u(xj))lk,j(x)φi(x) dSx, (3.1)

where

Γ =

(⋃
Dk⊂Ω

∂Dk

)
\ ∂Ω or Γ ⊆

(⋃
Dk⊂Ω

∂Dk

)
∩ ∂Ω,

cases referred to as ‘interior fluxes’ or ‘boundary fluxes’ respectively In the latter case the

subset Γ of the boundary is again specified by a boundary tag.

The function F ∗ may of course depend on more than one argument, unlike in the

example of (3.1). Since the same flux expression F ∗ is often used in more than one situation

(such as for both interior and boundary fluxes), it is defined in a separate expression and

can then be used repeatedly, with its arguments, to which it refers by number, rebound to

different expressions (such as boundary conditions) each time.

Taking into account quadrature, a number of different computational cases can arise

in the evaluation of surface flux expressions like (3.1), in each of which flux evaluation

accepts different argument types:

Nodal interior fluxes. Only nodal volume vectors are accepted as arguments.

Nodal boundary fluxes. Nodal volume and boundary vectors are accepted. The boundary

31

vectors’ boundary tag must match the boundary tag for which the flux is to be

computed.

Quadrature interior fluxes. Only quadrature interior face vectors are accepted as argu-

ments. All arguments must have matching quadrature tags.

Quadrature boundary fluxes. Quadrature interior face vectors and quadrature boundary

vectors are accepted. The boundary vectors’ boundary tag must match the bound-

ary tag for which the flux is to be computed. All arguments must have matching

quadrature tags.

Fluxes are the only operators in hedge that break the ‘scalar-ness’ rule above, in that they

accept any number of vectors as arguments. Boundary fluxes require even more flexibility

since they accept interior and boundary arguments and must specify the boundary tag to

which they apply. This triple is captured in a “boundary pair”, which then becomes the

argument to the flux operator created from the expression F ∗.

It was discussed at length in Section 2.1 that the evaluation of (3.1) actually proceeds

in two stages–first, the values of F ∗ are computed along Γ, and then the integral along Γ is

carried out through the lifting matrix. Hedge’s language does not capture these two steps

separately–they are always lumped together, although all actual target implementations

separate them again.

3.2.2 Common Subexpression Elimination

One issue with tree-based expression representations such as the one of Figure 3.1(a) on

page 26 is that they fail to properly capture redundancy in the expression tree. If this

problem is not dealt with appropriately, identical subexpressions may be evaluated multiple

32

1 d = dimensions
2
3 from hedge.flux import (
4 FluxVectorPlaceholder, make normal)
5
6 w = FluxVectorPlaceholder(1+d)
7 u = w[0]
8 v = w[1:]
9 normal = make normal(d)

10
11 from hedge.tools import join fields
12 flux = − join fields (
13 dot(v.avg, normal) − 0.5∗(u.int−u.ext),
14
15 u.avg ∗ normal
16 − 0.5∗(normal ∗ dot(normal, v.int−v.ext)))
17
18 from hedge.optemplate import (make vector field,
19 BoundaryPair, get flux operator,
20 make stiffness t , InverseMassOperator,
21 BoundarizeOperator, make normal)
22
23 w = make vector field(”w”, d+1)
24 u = w[0]
25 v = w[1:]

26 from hedge.mesh import TAG ALL
27
28 dir u = BoundarizeOperator(TAG ALL)(u)
29 dir v = BoundarizeOperator(TAG ALL)(v)
30 dir bc = join fields (−dir u, dir v)
31
32 # operator assembly
33 flux op = get flux operator (flux)
34
35 op template = InverseMassOperator()(
36 join fields (
37 −dot(make stiffness t(d), v),
38 −(make stiffness t(d)∗u)
39)
40 − (flux op(w) + flux op(
41 BoundaryPair(w, dir bc, TAG ALL))))

Figure 3.2. An example of the construction of an operator template in hedge.

times, leading to gross inefficiency, as seen in Figure 3.1(b).

Hedge avoids this by allowing the user to wrap these subexpressions in a special

node type labelling them as common. This alerts hedge’s operator template processing

machinery to the redundancy and enables its removal. It could be argued that these

common subexpressions should be found automatically–however this constitutes taking

options away from the user, who may need to precisely control the granularity at which

expression evaluation takes place, for example to maintain storage constraints.

3.2.3 An Example

To augment all the abstract discussion of how hedge’s operator language works with a

practical example, Figure 3.2 shows a simple example of how one might build an operator

33

template for the second-order wave equation ∂tu = 4u rewritten in first-order form

∂tu+∇x · v = 0,

∂tv +∇xu = 0

with upwind fluxes

u∗ = n̂ · {v} − 1

2
(u− − u+), v∗ = n̂

(
{u} − n̂

2
· (v− − v+)

)
(3.2)

and homogeneous Dirichlet boundary conditions, where n̂ represents a unit face normal

and u−, u+ and u represent interior, exterior, and average values respectively.

After an index-based flux vector placeholder is created in line 4, it is partitioned into

parts for u and v in lines 5–6. Lines 10 through 14 then almost literally transcribe fluxes of

(3.2). Further on, in lines 23–25, a named user variable w is created and again partitioned

into subfields for u and v. Lines 28–30 extract boundary values from the volume vectors

u and v on the entire domain boundary (TAG ALL) and combine them into a Dirichlet

boundary condition (−u, v). To conclude, the operator is assembled in lines 35–41.

I would like to make one final observation on the example. It was stated above that

hedge is purely scalar internally. That is certainly true and will be visible from the processed

form of this example that will be discussed in Section 3.4.2. Nonetheless, the user is at

liberty to use vectorial abstractions in assembling the operator template. Hedge will

immediately break the operator down into its scalar components–but this fact is transparent

to the user. As an example of this, the template of Figure 3.2 makes use of this to produce a

working operator for the wave equation in any dimension.

34

3.2.4 Discussion

Hedge’s language is expressive enough to capture most discontinuous Galerkin schemes

describable within the confines of Section 2.1. It does so in a way that is concise and closely

matches the mathematical notation one might use in a scientific publication. It therefore

successfully achieves the goals set forth above.

Nonetheless, some of the decisions influencing its design could rightfully be considered

questionable by now and are mainly historically based:

• Operator bindings were introduced to support two alternative syntaxes of speci-

fying operator application, the binding-type op(arg) and the multiplication type

op*arg. The latter enables, for instance, the intuitive syntaxes dot(nabla,

vec) and cross(nabla, vec) for divergences and curls, but this necessitated

that operators be separate objects that can be multiplied and bound. One of hedge’s

first processing steps is to convert all multiplied operators into bound operators, and

the reasoning for allowing multiplied operators seems questionable to me by now.

• Boundary pairs are largely an artifact of the operator binding issue discussed above–

a workaround for the fact that operators can only support a single argument.

• Positional flux argument binding and the entire secondary level of evaluation for

fluxes could have been avoided without much loss in expressiveness, as the creation

of fluxes with identical flux expressions could have been handled through Python

functions at the user level, whose rebinding behavior is more immediately transparent

to the user and would have removed one small detail that a user needs to learn in

order to use hedge.

Fortunately, none of these warts cast doubt on the future maintainability of hedge’s language,

35

and some of them might even be removable in a backwards-compatible fashion.

3.3 The Processing Pipeline

Once an operator template is specified by the user, hedge’s processing machinery goes

to work and, through a number of steps, transforms the template into an intermediate

representation that can be executed by the VM. These processing steps are described in this

section.

3.3.1 Type Inference and Operator Specialization

Throughout the description of hedge’s language in the previous section, it has already

become clear that the language is strongly typed, and using data of the wrong type can

easily have disastrous consequences (consider adding two boundary vectors for separate

boundaries that happen to be of the same length). To protect the user from such mistakes,

and to free the user from having to differentiate all the operators that can arise (e.g. as

described in Section 3.2.1), hedge performs type inference on the expression trees it is

given by the user.

In this type inference step, each subexpression’s type is deduced by propagating type

information up and down the expression tree and, at each node, unifying this information.

As an example of unification, consider an argument of boundary flux that is the sum of two

user variables. From ‘above’, i.e. from the boundary flux expression, the sum can infer that

it must be a boundary vector for a known boundary tag, and from below it can infer that it

must be using a nodal representation (by being made of user variables, which are nodal).

36

This propagation step is repeated until the type information “converges”, i.e. a further

propagation step does not derive any additional information. By the monotonicity of

unification, the process must converge or end in a unification error.

Once type inference is complete, complete type information is available and operator

specialization takes place, integrating argument type information into the operators being

applied (such as which quadrature tag is used, etc.). This information is then used in code

generation.

3.3.2 Optimizations

It is often convenient for the user to generate slightly suboptimal representations of an

operator template. Hedge incorporates a number of processing steps whose goal it is to

turn such templates into ones that can be evaluated as efficiently as possible.

These are the processing steps that hedge performs for optimization:

• Constant Folding short-circuits the evaluation of expressions whose value is known

at processing time, such as any expression multiplied by zero, or a number of

multiplications by constant scalars which can be collapsed into one.

• Boundary-Condition-to-Flux-Rewriting. Many boundary conditions (such as es-

pecially homogeneous Dirichlet and Neumann types) are expressed in terms of the

interior values of a certain quantity. There are two ways in which these boundary

conditions can be expressed in hedge: First, by using an extraction operator, comput-

ing the correct boundary vector of exterior values, and then feeding this vector back

into a boundary flux. Second, by substituting the boundary condition directly into

the flux expression, which then only needs to refer to the interior fields.

37

Both ways have advantages: The first way is very straightforward and lets the

computer code reflect boundary conditions as they are written on paper, as evidenced

in Section 3.2.3. The second way is cumbersome for the user, but much more efficient.

In keeping with hedge’s goals, this processing step rewrites the first form into the

second, achieving both efficiency and convenience for the user.

• Derivative Joining. Hedge provides infrastructure to generate certain types of

operator templates in a mechanized way, such as for second-order operators of type

∇·F (∇u) [Arnold et al., 2002] of IP, LDG and a few more flavors. When combining

these with other parts of an operator template, the user may obtain an expression

of the type ∂x(A) + ∂x(B). Derivative joining performs the obvious rewrite to

∂x(A+B).

• Inverse Mass Contraction. For time-dependent simplicial DG, one obtains schemes

of the form (2.2). As already seen in (2.3), it is computationally efficient to combine

the inverse mass matrix arising from the inner product around the time derivative

with other element-local matrices if the discretization allows it. (Curvilinear elements

for example might prevent this.) Inverse Mass Contraction automatically performs

this rewriting step, taking into account the linearity of the operation to find further

simplifications.

3.3.3 Target-Specific Rewriting

The ability to reason about and rewrite the users’ operator template is not only very useful

in providing convenience while achieving speed, it turns out to be crucial for an entirely

different task as well: The support of different computational targets. In a distributed-

memory domain-decomposing parallelization of a DG operator using MPI, interior fluxes

are broken up into parts on each subdomain–the interior faces of the subdomain, and

38

new boundaries that have emerged along the element faces at which the domain was

split. Hedge’s parallel computing support makes use of the operator template rewriting

capabilities to explicitly add these boundary fluxes, along with further expressions that

facilitate MPI-based exchange of boundary data. In the compilation step detailed in

Section 3.4.1, these flux exchange expressions are split up into separate send and receive

instructions.

Support for GPUs (Chapter 5) also employs rewriting in a somewhat more complicated

manner to facilitate efficient GPU-DG flux computations.

3.4 The Virtual Machine

While a tree-based operator template representation as introduced above is convenient

for rewriting and simplification, such a representation can become cumbersome when it

comes to the efficient evaluation of the expression, i.e. the execution of the processing

steps indicated by the expression tree. The optimizations applied in the compilation from

tree-shape to instruction stream (that I will describe below) will make the superiority of the

approach over direct recursive-descent evaluation immediately obvious.

3.4.1 The Compilation Step

Like most optimization and rewriting steps above, compilation proceeds through a number

of depth-first traversals of the expression tree.

The first such traversal collects all differentiation-like operator applications occurring

in the tree. Many of these apply to the same subexpression, but may differentiate along

39

different (e.g. x and y) axes. It is important to realize at this stage that DG differentia-

tion conceptually proceeds in two stages–first, by differentiating the expansion along the

element-local unit directions, and then by transforming the local derivatives to ones aligned

with the global x and y axes. Hence the local derivatives are a shared “raw material” that

should be reused. Unfortunately, a tree-traversal-based evaluation would be required to

store all local derivative based on the possibility that they might be reused somewhere else

in the tree. This can result in prohibitive amounts of storage use. In hedge’s compilation

step, this information is gather ahead of time, and all required derivatives of a given subex-

pression (and only the required ones!) are computed together, so that the local derivatives

may be safely discarded thereafter.

A similar “economy of scale” arises in the evaluation of surface flux terms. Since each

flux evaluation needs to read certain information, e.g. index data indicating where facial

nodes are located within a volume vector, or what the surface normals of a given face are, it

again makes sense to amortize these fetch costs over as many flux expressions as possible.

The second pass of hedge’s compilation step uses another tree traversal to find all occurring

flux operators, groups them by their integration domains Γ and, through an analysis of their

data dependencies, determines which fluxes may be batched together. This “flux batching”

is one of the optimizations that allow hedge to operate in a purely scalar fashion while still

being efficient.

Yet another type of expression occurring in hedge’s language can benefit from batching–

vector arithmetic. Imagine the two operations d← a+ b and e← a+ c. If both of these

expressions were evaluated separately, then a would have to be read twice, an unnecessary

expense in memory bandwidth. Therefore, again based on a data dependency analysis that

respects the common subexpression information of Section 3.2.2, hedge is able to group

together vector arithmetic on vectors of matching size, saving large amounts of memory

bandwidth.

40

3.4.2 The Execution Model

The end result of compilation is a stream of instructions, each of which closely represents

one of the operations given in Section 3.2, while taking into account the batching of the

previous section. Each instruction contains a list of its data dependencies and its output

variables. Output variables are named either artificially, or, for ease of debugging, by names

specified along with common subexpressions. The generated code is free of side effects,

i.e. variables are only assigned once. To reduce the amount of storage occupied, the virtual

machine detects which variables are still ‘live’ (i.e. still required in a future computation)

and discards the rest.

As indicated above, the best way to view this dependency-annotated instruction stream

is as a partially-ordered plan for the evaluation of a compiled operator template. It would

of course be trivial to remove the ambiguity and turn the partial order into a total one, at

which point one could also conveniently discard dependency information. I would argue

that this is unwise, because some of the instructions supported by the virtual machine

may require an unspecified and varying time to complete (such as MPI transfers across a

physical network or GPU-host transfers across a host bus) and no single static schedule

may work in all cases.

In addition to taking an indeterminate amount of time, many of these instructions are

also asynchronous, i.e. a command is issued to perform them, and the main processor is

free to pursue other tasks while the operation completes. Such operations are captured

in hedge’s execution model by futures [e.g. Friedman and Wise, 1976] (often also called

“promises”)–handles to data which are not yet available but will be at some future time.

Hedge’s futures have two capabilities: They can be queried whether their underlying

operation has finished, and they can be asked to yield their promised datum, waiting if

necessary.

41

Based on the future’s query facility, hedge’s virtual machine makes sure that, as long as

instructions exist whose data dependencies are available, processing continues–an important

property that a static schedule cannot ensure. Of course, static scheduling can be more

efficient when asynchrony is not a concern. Therefore hedge still makes five attempts

to create a totally ordered static schedule based on observation of execution order of

the dynamic schedule. Each static schedule is reused until it produces a “stall”, i.e. a

situation where further instructions are available, but cannot be evaluated because their data

dependencies are not ready yet. After five non-stall-free static schedules, hedge gives up

and resorts to dynamic scheduling full-time.

To give the reader an impression of the instruction streams that hedge creates from

operator templates, I have included data flow graphs that were automatically generated

from these streams. Figure 3.3 on the following page shows the (simple) data flow graph

resulting from the wave equation example of Section 3.2.3, the largest part of which is

taken up by the surface flux calculations, which are represented by the big boxes in the

middle of the figure. The boundary flux is given in the slightly bigger box on the left, while

the interior flux is shown in the smaller box to the right. From the resulting graph, one can

see how the various optimizations have been applied by hedge–in particular, the effects of

derivative batching, flux batching, and inverse mass contraction can be observed.

It is instructive to notice how the data flow graph (or, equivalently, hedge’s dependency

graph information, from which it is derived) neatly exposes the inherent opportunities for

parallel execution of different parts of the operator–a capability of which I plan to make

more use in the future.

The example of Figure 3.4 on page 43 shows a processed operator template for the

compressible Navier-Stokes equation with quadrature. My goal in showing this operator is

not so much to shed light on how it is processed by hedge (as it is not exactly legible at the

42

initial

p0: _expr0 <- MInvST0(w[1])

w

p0: _expr1 <- MInvST1(w[2])

w

p0: { /* Lift(0) */

 _expr2 <- <Lift((-1)*(0.5*(Int[1] +

 Ext[1])*Normal(0) + 0.5*(Int[2] +

 Ext[2])*Normal(1) + (-1)*0.5*(Int[0] +

 (-1)*Ext[0])))>(array(w[0], w[1], w[2]))

 _expr3 <- <Lift((-1)*(0.5*(Int[0] +

 Ext[0])*Normal(0) +

 (-1)*0.5*Normal(0)*(Normal(0)*(Int[1] +

 (-1)*Ext[1]) + Normal(1)*(Int[2] +

 (-1)*Ext[2]))))>(array(w[0], w[1], w[2]))

 _expr4 <- <Lift((-1)*(0.5*(Int[0] +

 Ext[0])*Normal(1) +

 (-1)*0.5*Normal(1)*(Normal(0)*(Int[1] +

 (-1)*Ext[1]) + Normal(1)*(Int[2] +

 (-1)*Ext[2]))))>(array(w[0], w[1], w[2]))

}

w

p0: { /* B[TAG_ALL]Lift(0) */

 _expr5 <- <B[TAG_ALL]Lift((-1)*(0.5*(Int[0] +

 (-1)*Int[0])*Normal(0) +

 (-1)*0.5*Normal(0)*(Normal(0)*(Int[1] +

 (-1)*Int[1]) + Normal(1)*(Int[2] +

 (-1)*Int[2]))))>(BPair(array(w[0], w[1],

 w[2]), array(), TAG_ALL))

 _expr6 <- <B[TAG_ALL]Lift((-1)*(0.5*(Int[1] +

 Int[1])*Normal(0) + 0.5*(Int[2] +

 Int[2])*Normal(1) + (-1)*0.5*(Int[0] +

 (-1)*(-1)*Int[0])))>(BPair(array(w[0], w[1],

 w[2]), array(), TAG_ALL))

 _expr7 <- <B[TAG_ALL]Lift((-1)*(0.5*(Int[0] +

 (-1)*Int[0])*Normal(1) +

 (-1)*0.5*Normal(1)*(Normal(0)*(Int[1] +

 (-1)*Int[1]) + Normal(1)*(Int[2] +

 (-1)*Int[2]))))>(BPair(array(w[0], w[1],

 w[2]), array(), TAG_ALL))

}

w

p0: {

 _expr8 <- MInvST0(w[0])

 _expr9 <- MInvST1(w[0])

}

w

result

p0: _expr12 <- /* compiled */ (-1)*_expr9 +

 (-1)*(_expr4 + _expr7)

_expr12

p0: _expr11 <- /* compiled */ (-1)*_expr8 +

 (-1)*(_expr3 + _expr5)

_expr11

p0: _expr10 <- /* compiled */ (-1)*(_expr0 + _expr1) +

 (-1)*(_expr2 + _expr6)

_expr10

_expr0 _expr1_expr4_expr3 _expr2_expr7_expr5 _expr6_expr9_expr8

Figure 3.3. Data flow graph for the second-order wave operator from the example of Section
3.2.3.

size at which it is shown), but rather to clarify that the techniques described in this chapter

apply equally well to large, more complicated operators.

3.5 Conclusions

In this chapter, I have described a set of methods by which I have implemented a hybrid

discontinuous Galerkin solver that underlies much of the further work in this thesis. I have

described in how far the design goals set forth at the beginning have influenced the design

of the solver, and I have shown tricks which enabled me to achieve the design goals while

maintaining full efficiency even when the two seemed critically at odds with each other.

In addition to allowing large-scale, parallel, and GPU computations, it is efficient and

competitive with (often much more verbose and less flexible) codes written in compiled

languages.

43

in
it
ia

l

p
0
:
v
o
l_

q
u
a
d
_
s
ta

te
2
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(q
[2

])

q

p
0
:
v
o
l_

q
u
a
d
_
s
ta

te
3
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(q
[3

])

q

p
0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0
 <

-

<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(q
[0

])

q

p
0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1
 <

-

<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(q
[1

])

q

p
0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2
 <

-

<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(q
[2

])

q

p
0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3
 <

-

<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(q
[3

])

q

p
0
:
_
e
x
p
r1

0
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(b
c
_
q
_
o
u
t[
0
])

b
c
_
q
_
o
u
t

p
0
:
_
e
x
p
r1

1
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

o
u
tf
lo

w
>

>
(q

[0
])

q

p
0
:
_
e
x
p
r1

3
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

o
u
tf
lo

w
>

>
(q

[2
])

q

p
0
:
_
e
x
p
r1

5
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(b
c
_
q
_
o
u
t[
2
])

b
c
_
q
_
o
u
t

p
0
:
_
e
x
p
r1

6
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

o
u
tf
lo

w
>

>
(q

[3
])

q

p
0
:
_
e
x
p
r1

8
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(b
c
_
q
_
o
u
t[
3
])

b
c
_
q
_
o
u
t

p
0
:
_
e
x
p
r1

9
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(b
c
_
q
_
o
u
t[
1
])

b
c
_
q
_
o
u
t

p
0
:
_
e
x
p
r2

0
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

o
u
tf
lo

w
>

>
(q

[1
])

q

p
0
:
_
e
x
p
r3

2
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(b

c
_
q
_
in

[0
])

b
c
_
q
_
in

p
0
:
_
e
x
p
r3

3
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

in
flo

w
>

>
(q

[2
])

q

p
0
:
_
e
x
p
r3

5
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

in
flo

w
>

>
(q

[0
])

q

p
0
:
_
e
x
p
r3

7
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(b

c
_
q
_
in

[2
])

b
c
_
q
_
in

p
0
:
_
e
x
p
r3

8
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

in
flo

w
>

>
(q

[3
])

q

p
0
:
_
e
x
p
r4

0
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(b

c
_
q
_
in

[3
])

b
c
_
q
_
in

p
0
:
_
e
x
p
r4

1
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(b

c
_
q
_
in

[1
])

b
c
_
q
_
in

p
0
:
_
e
x
p
r4

2
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

in
flo

w
>

>
(q

[1
])

q

p
0
:
_
e
x
p
r5

4
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,n

o
s
lip

]>
(b

c
_
q
_
n
o
s
lip

[0
])

b
c
_
q
_
n
o
s
lip

p
0
:
_
e
x
p
r5

5
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

n
o
s
lip

>
>

(q
[2

])

q

p
0
:
_
e
x
p
r5

7
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

n
o
s
lip

>
>

(q
[0

])

q

p
0
:
_
e
x
p
r5

9
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

n
o
s
lip

>
>

(q
[3

])

q

p
0
:
_
e
x
p
r6

1
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,n

o
s
lip

]>
(b

c
_
q
_
n
o
s
lip

[1
])

b
c
_
q
_
n
o
s
lip

p
0
:
_
e
x
p
r6

2
 <

-
<

B
o
u
n
d
a
ri
z
e
<

ta
g
=

n
o
s
lip

>
>

(q
[1

])

q

p
0
:
v
o
l_

q
u
a
d
_
s
ta

te
1
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(q
[1

])

q

p
0
:
v
o
l_

q
u
a
d
_
s
ta

te
0
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(q
[0

])

q

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

p
 <

-#
-

0
.4

*(
q
[1

]
+

 (
-0

.5
)*

(q
[2

]*
q
[2

]/
q
[0

]
+

q
[3

]*
q
[3

]/
q
[0

])
)

u
0
 <

-#
-

q
[2

]/
q
[0

]

u
1
 <

-#
-

q
[3

]/
q
[0

]

s
o
u
n
d
_
s
p
e
e
d
 <

-#
-

s
q
rt

(1
.4

*p
/q

[0
])

n
o
rm

_
u
 <

-#
-

s
q
rt

(u
0
*u

0
 +

 u
1
*u

1
)

_
e
x
p
r1

6
7
 <

-
n
o
rm

_
u
 +

 s
o
u
n
d
_
s
p
e
e
d

_
e
x
p
r2

 <
-

n
o
rm

_
u
 +

 s
o
u
n
d
_
s
p
e
e
d

}

q

p
0
:
{

_
e
x
p
r8

2
 <

-
M

In
v
S

T
0
(q

[2
])

_
e
x
p
r8

3
 <

-
M

In
v
S

T
1
(q

[2
])

}

q

p
0
:
{

/*
 F

lu
x
(0

)
*/

(f

lu
x
-l
o
c
a
l)
 u

_
a
v
g
 <

-
0
.5

*(
In

t[
0
]
+

 E
x
t[
0
])

_
e
x
p
r8

4
 <

-
<

F
lu

x
(N

o
rm

a
l(
0
)*

u
_
a
v
g
)>

(a
rr

a
y
(q

[0
])

)

_
e
x
p
r8

5
 <

-
<

F
lu

x
(N

o
rm

a
l(
1
)*

u
_
a
v
g
)>

(a
rr

a
y
(q

[0
])

)

_
e
x
p
r8

6
 <

-
<

F
lu

x
(N

o
rm

a
l(
0
)*

u
_
a
v
g
)>

(a
rr

a
y
(q

[3
])

)

_
e
x
p
r8

7
 <

-
<

F
lu

x
(N

o
rm

a
l(
1
)*

u
_
a
v
g
)>

(a
rr

a
y
(q

[3
])

)

_
e
x
p
r8

8
 <

-
<

F
lu

x
(N

o
rm

a
l(
1
)*

u
_
a
v
g
)>

(a
rr

a
y
(q

[2
])

)

_
e
x
p
r8

9
 <

-
<

F
lu

x
(N

o
rm

a
l(
0
)*

u
_
a
v
g
)>

(a
rr

a
y
(q

[2
])

)

}

q

p
0
:
{

_
e
x
p
r9

3
 <

-
M

In
v
S

T
0
(q

[0
])

_
e
x
p
r9

4
 <

-
M

In
v
S

T
1
(q

[0
])

}

q

p
0
:
{

_
e
x
p
r9

8
 <

-
M

In
v
S

T
1
(q

[3
])

_
e
x
p
r9

9
 <

-
M

In
v
S

T
0
(q

[3
])

}

q

re
s
u
lt

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

_
e
x
p
r7

7
 <

-#
-

v
o
l_

q
u
a
d
_
s
ta

te
1
 +

0
.4

*(
v
o
l_

q
u
a
d
_
s
ta

te
1
 +

(-

0
.5

)*
(v

o
l_

q
u
a
d
_
s
ta

te
2
*v

o
l_

q
u
a
d
_
s
ta

te
2
/v

o
l_

q
u
a
d
_
s
ta

te
0

+

v
o
l_

q
u
a
d
_
s
ta

te
3
*v

o
l_

q
u
a
d
_
s
ta

te
3
/v

o
l_

q
u
a
d
_
s
ta

te
0
))

x
_
flu

x
2
_
2
 <

-

v
o
l_

q
u
a
d
_
s
ta

te
2
*v

o
l_

q
u
a
d
_
s
ta

te
2
/v

o
l_

q
u
a
d
_
s
ta

te
0

+

 0
.4

*(
v
o
l_

q
u
a
d
_
s
ta

te
1
 +

(-

0
.5

)*
(v

o
l_

q
u
a
d
_
s
ta

te
2
*v

o
l_

q
u
a
d
_
s
ta

te
2
/v

o
l_

q
u
a
d
_
s
ta

te
0

+

v
o
l_

q
u
a
d
_
s
ta

te
3
*v

o
l_

q
u
a
d
_
s
ta

te
3
/v

o
l_

q
u
a
d
_
s
ta

te
0
))

x
_
flu

x
3
_
2
 <

-

v
o
l_

q
u
a
d
_
s
ta

te
2
*v

o
l_

q
u
a
d
_
s
ta

te
3
/v

o
l_

q
u
a
d
_
s
ta

te
0

u
0
_
3
 <

-#
-

v
o
l_

q
u
a
d
_
s
ta

te
2
/v

o
l_

q
u
a
d
_
s
ta

te
0

y
_
flu

x
2
_
2
 <

-

v
o
l_

q
u
a
d
_
s
ta

te
3
*v

o
l_

q
u
a
d
_
s
ta

te
2
/v

o
l_

q
u
a
d
_
s
ta

te
0

y
_
flu

x
3
_
2
 <

-

v
o
l_

q
u
a
d
_
s
ta

te
3
*v

o
l_

q
u
a
d
_
s
ta

te
3
/v

o
l_

q
u
a
d
_
s
ta

te
0

+

 0
.4

*(
v
o
l_

q
u
a
d
_
s
ta

te
1
 +

(-

0
.5

)*
(v

o
l_

q
u
a
d
_
s
ta

te
2
*v

o
l_

q
u
a
d
_
s
ta

te
2
/v

o
l_

q
u
a
d
_
s
ta

te
0

+

v
o
l_

q
u
a
d
_
s
ta

te
3
*v

o
l_

q
u
a
d
_
s
ta

te
3
/v

o
l_

q
u
a
d
_
s
ta

te
0
))

u
1
_
3
 <

-#
-

v
o
l_

q
u
a
d
_
s
ta

te
3
/v

o
l_

q
u
a
d
_
s
ta

te
0

d
u
1
_
d
y
 <

-#
-

(_
e
x
p
r1

0
2
 +

(-

1
)*

u
1
_
3
*_

e
x
p
r1

0
5
)/

v
o
l_

q
u
a
d
_
s
ta

te
0

d
u
0
_
d
y
 <

-#
-

(_
e
x
p
r1

0
8
 +

(-

1
)*

u
0
_
3
*_

e
x
p
r1

1
0
)/

v
o
l_

q
u
a
d
_
s
ta

te
0

d
u
1
_
d
x
 <

-#
-

(_
e
x
p
r1

1
3
 +

(-

1
)*

u
1
_
3
*_

e
x
p
r1

1
5
)/

v
o
l_

q
u
a
d
_
s
ta

te
0

d
u
0
_
d
x
 <

-#
-

(_
e
x
p
r9

2
 +

(-

1
)*

u
0
_
3
*_

e
x
p
r9

7
)/

v
o
l_

q
u
a
d
_
s
ta

te
0

x
_
flu

x
1
_
2
 <

-
_
e
x
p
r7

7
*u

0
_
3

y
_
flu

x
1
_
2
 <

-
_
e
x
p
r7

7
*u

1
_
3

ta

u
_
0
0
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
0
_
d
x
 +

 d
u
0
_
d
x
 +

(-

0
.6

6
6
6
6
6
6
6
6
6
6
7
)*

(d
u
0
_
d
x
 +

 d
u
1
_
d
y
))

ta

u
_
0
1
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
0
_
d
y
 +

 d
u
1
_
d
x
)

ta

u
_
1
0
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
1
_
d
x
 +

 d
u
0
_
d
y
)

ta

u
_
1
1
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
1
_
d
y
 +

 d
u
1
_
d
y
 +

(-

0
.6

6
6
6
6
6
6
6
6
6
6
7
)*

(d
u
0
_
d
x
 +

 d
u
1
_
d
y
))

_
e
x
p
r1

1
6
 <

-
ta

u
_
0
0
*u

0
_
3
 +

 t
a
u
_
0
1
*u

1
_
3

_
e
x
p
r1

1
8
 <

-
ta

u
_
1
0
*u

0
_
3
 +

 t
a
u
_
1
1
*u

1
_
3

}

v
o
l_

q
u
a
d
_
s
ta

te
2

p
0
:
_
e
x
p
r0

 <
-

Q
[g

a
s
d
y
n
_
v
o
l]S

tif
fT

0
(v

o
l_

q
u
a
d
_
s
ta

te
2
)

v
o
l_

q
u
a
d
_
s
ta

te
2

v
o
l_

q
u
a
d
_
s
ta

te
3

p
0
:
_
e
x
p
r1

 <
-

Q
[g

a
s
d
y
n
_
v
o
l]S

tif
fT

1
(v

o
l_

q
u
a
d
_
s
ta

te
3
)

v
o
l_

q
u
a
d
_
s
ta

te
3

p
0
:
_
e
x
p
r3

 <
-

<
E

lW
M

a
x
>

(_
e
x
p
r2

)

p
0
:
_
e
x
p
r4

 <
-

<
E

lW
M

a
x
>

(_
e
x
p
r3

)

_
e
x
p
r3

p
0
:
e
m

a
x
_
c
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r4

)

_
e
x
p
r4

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]F

lu
x
(0

)
*/

_
e
x
p
r6

 <
-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
7
]
+

E

x
t[
7
])

 +
 N

o
rm

a
l(
1
)*

(I
n
t[
1
1
]
+

 E
x
t[
1
1
])

 +

(-

1
)*

M
a
x
(I

n
t[
0
],
 E

x
t[
0
])

*(
E

x
t[
3
]
+

(-

1
)*

In
t[
3
])

))
>

(a
rr

a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

))
_
e
x
p
r7

 <
-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
5
]
+

E

x
t[
5
])

 +
 N

o
rm

a
l(
1
)*

(I
n
t[
9
]
+

 E
x
t[
9
])

 +

(-

1
)*

M
a
x
(I

n
t[
0
],
 E

x
t[
0
])

*(
E

x
t[
1
]
+

(-

1
)*

In
t[
1
])

))
>

(a
rr

a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

))
_
e
x
p
r8

 <
-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
8
]
+

E

x
t[
8
])

 +
 N

o
rm

a
l(
1
)*

(I
n
t[
1
2
]
+

 E
x
t[
1
2
])

 +

(-

1
)*

M
a
x
(I

n
t[
0
],
 E

x
t[
0
])

*(
E

x
t[
4
]
+

(-

1
)*

In
t[
4
])

))
>

(a
rr

a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

))
_
e
x
p
r9

 <
-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
6
]
+

E

x
t[
6
])

 +
 N

o
rm

a
l(
1
)*

(I
n
t[
1
0
]
+

 E
x
t[
1
0
])

 +

(-

1
)*

M
a
x
(I

n
t[
0
],
 E

x
t[
0
])

*(
E

x
t[
2
]
+

(-

1
)*

In
t[
2
])

))
>

(a
rr

a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

)) }

e
m

a
x
_
c

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(0

)
*/

(f

lu
x
-l
o
c
a
l)
 r

h
o
 <

-
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
2
 <

-
E

x
t[
1
]

(f

lu
x
-l
o
c
a
l)
 d

rh
o
m

 <
-

rh
o
_
2
 +

 (
-1

)*
rh

o

(f

lu
x
-l
o
c
a
l)
 u

0
 <

-
E

x
t[
2
]/
E

x
t[
1
]

(f

lu
x
-l
o
c
a
l)
 u

0
_
2
 <

-
E

x
t[
3
]/
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 d

u
m

v
e
c
0
 <

-
u
0
 +

 (
-1

)*
u
0
_
2

(f

lu
x
-l
o
c
a
l)
 u

1
 <

-
E

x
t[
4
]/
E

x
t[
1
]

(f

lu
x
-l
o
c
a
l)
 u

1
_
2
 <

-
E

x
t[
5
]/
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 d

u
m

v
e
c
1
 <

-
u
1
 +

 (
-1

)*
u
1
_
2

(f

lu
x
-l
o
c
a
l)
 d

p
m

 <
-

0
.4

*(
E

x
t[
7
]
+

(-

0
.5

)*
(E

x
t[
2
]*

E
x
t[
2
]/
E

x
t[
1
]
+

E

x
t[
4
]*

E
x
t[
4
]/
E

x
t[
1
])

)
+

 (
-0

.4
)*

(E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)

(f

lu
x
-l
o
c
a
l)
 b

c
_
rh

o
_
o
u
tf
lo

w
 <

-
rh

o
 +

 d
rh

o
m

 +

(N

o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)*

rh
o
/(

2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

)
+

(-

1
)*

d
p
m

/(
2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*(
0
.5

6
*(

E
x
t[
6
]

+

 (
-0

.5
)*

(E
x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

)

(f

lu
x
-l
o
c
a
l)
 b

c
_
u
_
o
u
tf
lo

w
0
 <

-
u
0
_
2
 +

 d
u
m

v
e
c
0
 +

(-

1
)*

N
o
rm

a
l(
0
)*

(N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

d
p
m

*N
o
rm

a
l(
0
)/

(2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*r
h
o
)

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
u
0
 <

-

b
c
_
rh

o
_
o
u
tf
lo

w
*b

c
_
u
_
o
u
tf
lo

w
0

(f

lu
x
-l
o
c
a
l)
 b

c
_
p
_
o
u
tf
lo

w
 <

-
0
.4

*(
E

x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)
+

 (
0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*r
h
o
*(

N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0

+

 N
o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

 d
p
m

/2

(f

lu
x
-l
o
c
a
l)
 b

c
_
u
_
o
u
tf
lo

w
1
 <

-
u
1
_
2
 +

 d
u
m

v
e
c
1
 +

(-

1
)*

N
o
rm

a
l(
1
)*

(N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

d
p
m

*N
o
rm

a
l(
1
)/

(2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*r
h
o
)

(f

lu
x
-l
o
c
a
l)
 e

 <
-

b
c
_
p
_
o
u
tf
lo

w
/0

.4
 +

b
c
_
rh

o
_
o
u
tf
lo

w
/2

*(
b
c
_
u
_
o
u
tf
lo

w
0
*b

c
_
u
_
o
u
tf
lo

w
0

+

 b
c
_
u
_
o
u
tf
lo

w
1
*b

c
_
u
_
o
u
tf
lo

w
1
)

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
u
1
 <

-

b
c
_
rh

o
_
o
u
tf
lo

w
*b

c
_
u
_
o
u
tf
lo

w
1

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
2
 <

-

rh

o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
o
u
tf
lo

w
 +

 0
.4

*(
e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
o
u
tf
lo

w
 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
o
u
tf
lo

w
))

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
2
 <

-

rh

o
_
u
1
*r

h
o
_
u
0
/b

c
_
rh

o
_
o
u
tf
lo

w

(f

lu
x
-l
o
c
a
l)
 C

S
E

0
 <

-
e
 +

 0
.4

*(
e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
o
u
tf
lo

w
 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
o
u
tf
lo

w
))

(f

lu
x
-l
o
c
a
l)
 u

0
_
3
 <

-
rh

o
_
u
0
/b

c
_
rh

o
_
o
u
tf
lo

w

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
1
 <

-
C

S
E

0
*u

0
_
3

(f

lu
x
-l
o
c
a
l)
 u

1
_
3
 <

-
rh

o
_
u
1
/b

c
_
rh

o
_
o
u
tf
lo

w

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
1
 <

-
C

S
E

0
*u

1
_
3

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
0
 <

-
rh

o
_
u
0

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
0
 <

-
rh

o
_
u
1

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
3
 <

-

rh

o
_
u
0
*r

h
o
_
u
1
/b

c
_
rh

o
_
o
u
tf
lo

w

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
3
 <

-

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
o
u
tf
lo

w
 +

 0
.4

*(
e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
o
u
tf
lo

w
 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
o
u
tf
lo

w
))

_
e
x
p
r2

2
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
7
]

+

 x
_
b
flu

x
2
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
1
]
+

 y
_
b
flu

x
2
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(r

h
o
_
u
0
 +

(-

1
)*

In
t[
3
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

3
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
6
]

+

 x
_
b
flu

x
1
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
0
]
+

 y
_
b
flu

x
1
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(e

 +

(-

1
)*

In
t[
2
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

4
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

rh
o
_
u
1
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

5
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

rh
o
_
u
0
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

6
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
1
)*

rh
o
_
u
1
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

7
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

b
c
_
rh

o
_
o
u
tf
lo

w
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

8
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
5
]

+

 x
_
b
flu

x
0
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
9
]
+

 y
_
b
flu

x
0
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(b

c
_
rh

o
_
o
u
tf
lo

w
 +

(-

1
)*

In
t[
1
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r2

9
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
1
)*

rh
o
_
u
0
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r3

0
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
1
)*

b
c
_
rh

o
_
o
u
tf
lo

w
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r3

1
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
8
]

+

 x
_
b
flu

x
3
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
2
]
+

 y
_
b
flu

x
3
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(r

h
o
_
u
1
 +

(-

1
)*

In
t[
4
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

}

e
m

a
x
_
c

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(0

)
*/

(f

lu
x
-l
o
c
a
l)
 r

h
o
 <

-
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 u

0
 <

-
E

x
t[
1
]/
E

x
t[
2
]

(f

lu
x
-l
o
c
a
l)
 u

0
_
2
 <

-
E

x
t[
3
]/
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 d

u
m

v
e
c
0
 <

-
u
0
 +

 (
-1

)*
u
0
_
2

(f

lu
x
-l
o
c
a
l)
 u

1
 <

-
E

x
t[
4
]/
E

x
t[
2
]

(f

lu
x
-l
o
c
a
l)
 u

1
_
2
 <

-
E

x
t[
5
]/
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 d

u
m

v
e
c
1
 <

-
u
1
 +

 (
-1

)*
u
1
_
2

(f

lu
x
-l
o
c
a
l)
 d

p
m

 <
-

0
.4

*(
E

x
t[
7
]
+

(-

0
.5

)*
(E

x
t[
1
]*

E
x
t[
1
]/
E

x
t[
2
]
+

E

x
t[
4
]*

E
x
t[
4
]/
E

x
t[
2
])

)
+

 (
-0

.4
)*

(E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)

(f

lu
x
-l
o
c
a
l)
 b

c
_
p
_
in

flo
w

 <
-

0
.4

*(
E

x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)
+

 (
0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*r
h
o
*(

N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0

+

 N
o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

 d
p
m

/2

(f

lu
x
-l
o
c
a
l)
 b

c
_
rh

o
_
in

flo
w

 <
-

rh
o
 +

(N

o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)*

rh
o
/(

2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

)
+

d
p
m

/(
2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*(
0
.5

6
*(

E
x
t[
6
]

+

 (
-0

.5
)*

(E
x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

)

(f

lu
x
-l
o
c
a
l)
 b

c
_
u
_
in

flo
w

0
 <

-
u
0
_
2
 +

N

o
rm

a
l(
0
)*

(N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

d
p
m

*N
o
rm

a
l(
0
)/

(2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*r
h
o
)

(f

lu
x
-l
o
c
a
l)
 b

c
_
u
_
in

flo
w

1
 <

-
u
1
_
2
 +

N

o
rm

a
l(
1
)*

(N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

d
p
m

*N
o
rm

a
l(
1
)/

(2
*(

0
.5

6
*(

E
x
t[
6
]
+

(-

0
.5

)*
(E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
0
]
+

E

x
t[
5
]*

E
x
t[
5
]/
E

x
t[
0
])

)/
rh

o
)*

*0
.5

*r
h
o
)

(f

lu
x
-l
o
c
a
l)
 e

 <
-

b
c
_
p
_
in

flo
w

/0
.4

 +

b
c
_
rh

o
_
in

flo
w

/2
*(

b
c
_
u
_
in

flo
w

0
*b

c
_
u
_
in

flo
w

0
 +

b
c
_
u
_
in

flo
w

1
*b

c
_
u
_
in

flo
w

1
)

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
u
0
 <

-

b
c
_
rh

o
_
in

flo
w

*b
c
_
u
_
in

flo
w

0

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
u
1
 <

-

b
c
_
rh

o
_
in

flo
w

*b
c
_
u
_
in

flo
w

1

(f

lu
x
-l
o
c
a
l)
 C

S
E

0
 <

-
e
 +

 0
.4

*(
e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
in

flo
w

 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
in

flo
w

))

(f

lu
x
-l
o
c
a
l)
 u

0
_
3
 <

-
rh

o
_
u
0
/b

c
_
rh

o
_
in

flo
w

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
1
 <

-
C

S
E

0
*u

0
_
3

(f

lu
x
-l
o
c
a
l)
 u

1
_
3
 <

-
rh

o
_
u
1
/b

c
_
rh

o
_
in

flo
w

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
1
 <

-
C

S
E

0
*u

1
_
3

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
3
 <

-

rh

o
_
u
0
*r

h
o
_
u
1
/b

c
_
rh

o
_
in

flo
w

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
3
 <

-

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
in

flo
w

 +
 0

.4
*(

e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
in

flo
w

 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
in

flo
w

))

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
2
 <

-

rh

o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
in

flo
w

 +
 0

.4
*(

e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
in

flo
w

 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
in

flo
w

))

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
2
 <

-

rh

o
_
u
1
*r

h
o
_
u
0
/b

c
_
rh

o
_
in

flo
w

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
0
 <

-
rh

o
_
u
0

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
0
 <

-
rh

o
_
u
1

_
e
x
p
r4

4
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
6
]

+

 x
_
b
flu

x
1
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
0
]
+

 y
_
b
flu

x
1
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(e

 +

(-

1
)*

In
t[
2
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r4

5
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
8
]

+

 x
_
b
flu

x
3
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
2
]
+

 y
_
b
flu

x
3
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(r

h
o
_
u
1
 +

(-

1
)*

In
t[
4
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r4

6
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

b
c
_
rh

o
_
in

flo
w

)>
(B

P
a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r4

7
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

rh
o
_
u
0
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r4

8
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
1
)*

rh
o
_
u
1
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r4

9
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
1
)*

rh
o
_
u
0
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r5

0
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
1
)*

b
c
_
rh

o
_
in

flo
w

)>
(B

P
a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r5

1
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
7
]

+

 x
_
b
flu

x
2
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
1
]
+

 y
_
b
flu

x
2
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(r

h
o
_
u
0
 +

(-

1
)*

In
t[
3
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r5

2
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

rh
o
_
u
1
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r5

3
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
5
]

+

 x
_
b
flu

x
0
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
9
]
+

 y
_
b
flu

x
0
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(b

c
_
rh

o
_
in

flo
w

 +

(-

1
)*

In
t[
1
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

}

e
m

a
x
_
c

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(0

)
*/

(f

lu
x
-l
o
c
a
l)
 r

h
o
 <

-
E

x
t[
0
]

(f

lu
x
-l
o
c
a
l)
 u

0
 <

-
E

x
t[
1
]/
E

x
t[
2
]

(f

lu
x
-l
o
c
a
l)
 d

u
m

v
e
c
0
 <

-
u
0

(f

lu
x
-l
o
c
a
l)
 u

1
 <

-
E

x
t[
3
]/
E

x
t[
2
]

(f

lu
x
-l
o
c
a
l)
 d

u
m

v
e
c
1
 <

-
u
1

(f

lu
x
-l
o
c
a
l)
 d

p
m

 <
-

0
.4

*(
E

x
t[
5
]
+

(-

0
.5

)*
(E

x
t[
1
]*

E
x
t[
1
]/
E

x
t[
2
]
+

E

x
t[
3
]*

E
x
t[
3
]/
E

x
t[
2
])

)
+

 (
-0

.4
)*

E
x
t[
4
]

(f

lu
x
-l
o
c
a
l)
 b

c
_
rh

o
_
n
o
s
lip

 <
-

rh
o
 +

(N

o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)*

rh
o
/(

2
*(

0
.5

6
*E

x
t[
4
]/
rh

o
)*

*0
.5

)

+

d
p
m

/(
2
*(

0
.5

6
*E

x
t[
4
]/
rh

o
)*

*0
.5

*(
0
.5

6
*E

x
t[
4
]/
rh

o
)*

*0
.5

)

(f

lu
x
-l
o
c
a
l)
 b

c
_
u
_
n
o
s
lip

0
 <

-

N

o
rm

a
l(
0
)*

(N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

d
p
m

*N
o
rm

a
l(
0
)/

(2
*(

0
.5

6
*E

x
t[
4
]/
rh

o
)*

*0
.5

*r
h
o
)

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
u
0
 <

-

b
c
_
rh

o
_
n
o
s
lip

*b
c
_
u
_
n
o
s
lip

0

(f

lu
x
-l
o
c
a
l)
 b

c
_
p
_
n
o
s
lip

 <
-

0
.4

*E
x
t[
4
]
+

(0

.5
6
*E

x
t[
4
]/
rh

o
)*

*0
.5

*r
h
o
*(

N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0

+

 N
o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

 d
p
m

/2

(f

lu
x
-l
o
c
a
l)
 b

c
_
u
_
n
o
s
lip

1
 <

-

N

o
rm

a
l(
1
)*

(N
o
rm

a
l(
0
)*

d
u
m

v
e
c
0
 +

N

o
rm

a
l(
1
)*

d
u
m

v
e
c
1
)/

2
 +

d
p
m

*N
o
rm

a
l(
1
)/

(2
*(

0
.5

6
*E

x
t[
4
]/
rh

o
)*

*0
.5

*r
h
o
)

(f

lu
x
-l
o
c
a
l)
 e

 <
-

b
c
_
p
_
n
o
s
lip

/0
.4

 +

b
c
_
rh

o
_
n
o
s
lip

/2
*(

b
c
_
u
_
n
o
s
lip

0
*b

c
_
u
_
n
o
s
lip

0
 +

b
c
_
u
_
n
o
s
lip

1
*b

c
_
u
_
n
o
s
lip

1
)

(f

lu
x
-l
o
c
a
l)
 r

h
o
_
u
1
 <

-

b
c
_
rh

o
_
n
o
s
lip

*b
c
_
u
_
n
o
s
lip

1

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
2
 <

-

rh

o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
n
o
s
lip

 +
 0

.4
*(

e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
n
o
s
lip

 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
n
o
s
lip

))

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
2
 <

-

rh

o
_
u
1
*r

h
o
_
u
0
/b

c
_
rh

o
_
n
o
s
lip

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
0
 <

-
rh

o
_
u
0

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
0
 <

-
rh

o
_
u
1

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
3
 <

-

rh

o
_
u
0
*r

h
o
_
u
1
/b

c
_
rh

o
_
n
o
s
lip

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
3
 <

-

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
n
o
s
lip

 +
 0

.4
*(

e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
n
o
s
lip

 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
n
o
s
lip

))

(f

lu
x
-l
o
c
a
l)
 C

S
E

0
 <

-
e
 +

 0
.4

*(
e
 +

(-

0
.5

)*
(r

h
o
_
u
0
*r

h
o
_
u
0
/b

c
_
rh

o
_
n
o
s
lip

 +

rh

o
_
u
1
*r

h
o
_
u
1
/b

c
_
rh

o
_
n
o
s
lip

))

(f

lu
x
-l
o
c
a
l)
 u

0
_
2
 <

-
rh

o
_
u
0
/b

c
_
rh

o
_
n
o
s
lip

(f

lu
x
-l
o
c
a
l)
 x

_
b
flu

x
1
 <

-
C

S
E

0
*u

0
_
2

(f

lu
x
-l
o
c
a
l)
 u

1
_
2
 <

-
rh

o
_
u
1
/b

c
_
rh

o
_
n
o
s
lip

(f

lu
x
-l
o
c
a
l)
 y

_
b
flu

x
1
 <

-
C

S
E

0
*u

1
_
2

_
e
x
p
r6

4
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
7
]

+

 x
_
b
flu

x
2
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
1
]
+

 y
_
b
flu

x
2
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(r

h
o
_
u
0
 +

(-

1
)*

In
t[
3
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r6

5
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
1
)*

rh
o
_
u
0
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r6

6
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
5
]

+

 x
_
b
flu

x
0
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
9
]
+

 y
_
b
flu

x
0
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(b

c
_
rh

o
_
n
o
s
lip

 +

(-

1
)*

In
t[
1
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r6

7
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
0
)*

b
c
_
rh

o
_
n
o
s
lip

)>
(B

P
a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r6

8
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
8
]

+

 x
_
b
flu

x
3
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
2
]
+

 y
_
b
flu

x
3
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(r

h
o
_
u
1
 +

(-

1
)*

In
t[
4
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r6

9
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
0
)*

rh
o
_
u
0
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r7

0
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
1
)*

b
c
_
rh

o
_
n
o
s
lip

)>
(B

P
a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r7

1
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
1
)*

rh
o
_
u
1
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r7

2
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(0

.5
*(

N
o
rm

a
l(
0
)*

(I
n
t[
6
]

+

 x
_
b
flu

x
1
)

+
 N

o
rm

a
l(
1
)*

(I
n
t[
1
0
]
+

 y
_
b
flu

x
1
)

+

 (
-1

)*
M

a
x
(I

n
t[
0
],
 0

)*
(e

 +

(-

1
)*

In
t[
2
])

))
>

(B
P

a
ir
(a

rr
a
y
(

0
:
e
m

a
x
_
c

1
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
1

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

5
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

6
:
x
_
fl
u
x
1

7
:
x
_
fl
u
x
2

8
:
x
_
fl
u
x
3

9
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

1
0
:
y
_
flu

x
1

1
1
:
y
_
flu

x
2

1
2
:
y
_
flu

x
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r7

3
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
0
)*

rh
o
_
u
1
)>

(B
P

a
ir
(a

rr
a
y
(

0
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

}

e
m

a
x
_
c

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

d
u
0
_
d
x
_
2
 <

-#
-

(_
e
x
p
r1

2
1
 +

(-

1
)*

u
0
_
2
*_

e
x
p
r1

2
3
)/

fa
c
e
_
q
u
a
d
_
s
ta

te
0

d
u
1
_
d
y
_
2
 <

-#
-

(_
e
x
p
r1

2
5
 +

(-

1
)*

u
1
_
2
*_

e
x
p
r1

2
7
)/

fa
c
e
_
q
u
a
d
_
s
ta

te
0

d
u
0
_
d
y
_
2
 <

-#
-

(_
e
x
p
r1

2
9
 +

(-

1
)*

u
0
_
2
*_

e
x
p
r1

3
1
)/

fa
c
e
_
q
u
a
d
_
s
ta

te
0

d
u
1
_
d
x
_
2
 <

-#
-

(_
e
x
p
r1

3
3
 +

(-

1
)*

u
1
_
2
*_

e
x
p
r1

3
5
)/

fa
c
e
_
q
u
a
d
_
s
ta

te
0

ta

u
_
0
0
_
2
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
0
_
d
x
_
2
 +

d
u
0
_
d
x
_
2
 +

 (
-0

.6
6
6
6
6
6
6
6
6
6
6
7
)*

(d
u
0
_
d
x
_
2
 +

d
u
1
_
d
y
_
2
))

ta

u
_
0
1
_
2
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
0
_
d
y
_
2
 +

d
u
1
_
d
x
_
2
)

ta

u
_
1
0
_
2
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
1
_
d
x
_
2
 +

d
u
0
_
d
y
_
2
)

ta

u
_
1
1
_
2
 <

-
0
.0

0
1
1
8
3
2
1
5
9
5
6
6
2
*(

d
u
1
_
d
y
_
2
 +

d
u
1
_
d
y
_
2
 +

 (
-0

.6
6
6
6
6
6
6
6
6
6
6
7
)*

(d
u
0
_
d
x
_
2
 +

d
u
1
_
d
y
_
2
))

_
e
x
p
r1

3
6
 <

-
ta

u
_
0
0
_
2
*u

0
_
2
 +

 t
a
u
_
0
1
_
2
*u

1
_
2

_
e
x
p
r1

3
7
 <

-
ta

u
_
1
0
_
2
*u

0
_
2
 +

 t
a
u
_
1
1
_
2
*u

1
_
2

}

fa
c
e
_
q
u
a
d
_
s
ta

te
0

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

_
e
x
p
r5

 <
-#

-
fa

c
e
_
q
u
a
d
_
s
ta

te
1
 +

0
.4

*(
fa

c
e
_
q
u
a
d
_
s
ta

te
1
 +

(-

0
.5

)*
(f

a
c
e
_
q
u
a
d
_
s
ta

te
2
*f

a
c
e
_
q
u
a
d
_
s
ta

te
2
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

+

fa

c
e
_
q
u
a
d
_
s
ta

te
3
*f

a
c
e
_
q
u
a
d
_
s
ta

te
3
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0
))

x
_
flu

x
2
 <

-

fa

c
e
_
q
u
a
d
_
s
ta

te
2
*f

a
c
e
_
q
u
a
d
_
s
ta

te
2
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

+

 0
.4

*(
fa

c
e
_
q
u
a
d
_
s
ta

te
1
 +

(-

0
.5

)*
(f

a
c
e
_
q
u
a
d
_
s
ta

te
2
*f

a
c
e
_
q
u
a
d
_
s
ta

te
2
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

+

fa

c
e
_
q
u
a
d
_
s
ta

te
3
*f

a
c
e
_
q
u
a
d
_
s
ta

te
3
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0
))

x
_
flu

x
3
 <

-

fa

c
e
_
q
u
a
d
_
s
ta

te
2
*f

a
c
e
_
q
u
a
d
_
s
ta

te
3
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

u
0
_
2
 <

-
fa

c
e
_
q
u
a
d
_
s
ta

te
2
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

y
_
flu

x
2
 <

-

fa

c
e
_
q
u
a
d
_
s
ta

te
3
*f

a
c
e
_
q
u
a
d
_
s
ta

te
2
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

y
_
flu

x
3
 <

-

fa

c
e
_
q
u
a
d
_
s
ta

te
3
*f

a
c
e
_
q
u
a
d
_
s
ta

te
3
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

+

 0
.4

*(
fa

c
e
_
q
u
a
d
_
s
ta

te
1
 +

(-

0
.5

)*
(f

a
c
e
_
q
u
a
d
_
s
ta

te
2
*f

a
c
e
_
q
u
a
d
_
s
ta

te
2
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

+

fa

c
e
_
q
u
a
d
_
s
ta

te
3
*f

a
c
e
_
q
u
a
d
_
s
ta

te
3
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0
))

u
1
_
2
 <

-
fa

c
e
_
q
u
a
d
_
s
ta

te
3
/f
a
c
e
_
q
u
a
d
_
s
ta

te
0

x
_
flu

x
1
 <

-
_
e
x
p
r5

*u
0
_
2

y
_
flu

x
1
 <

-
_
e
x
p
r5

*u
1
_
2

}

fa
c
e
_
q
u
a
d
_
s
ta

te
0

fa
c
e
_
q
u
a
d
_
s
ta

te
0

fa
c
e
_
q
u
a
d
_
s
ta

te
0

fa
c
e
_
q
u
a
d
_
s
ta

te
0

fa
c
e
_
q
u
a
d
_
s
ta

te
0

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]F

lu
x
(0

)
*/

_
e
x
p
r1

3
8
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(N

o
rm

a
l(
0
)*

0
.5

*(
In

t[
0
]
+

E

x
t[
0
])

 +
 N

o
rm

a
l(
1
)*

0
.5

*(
In

t[
1
]
+

E

x
t[
1
])

)>
(a

rr
a
y
(

0
:
ta

u
_
0
0
_
2

1
:
ta

u
_
0
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

))
_
e
x
p
r1

3
9
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(N

o
rm

a
l(
0
)*

0
.5

*(
In

t[
0
]
+

E

x
t[
0
])

 +
 N

o
rm

a
l(
1
)*

0
.5

*(
In

t[
1
]
+

E

x
t[
1
])

)>
(a

rr
a
y
(

0
:
_
e
x
p
r1

3
6

1
:
_
e
x
p
r1

3
7

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

))
_
e
x
p
r1

4
0
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]F

lu
x
(N

o
rm

a
l(
0
)*

0
.5

*(
In

t[
0
]
+

E

x
t[
0
])

 +
 N

o
rm

a
l(
1
)*

0
.5

*(
In

t[
1
]
+

E

x
t[
1
])

)>
(a

rr
a
y
(

0
:
ta

u
_
1
0
_
2

1
:
ta

u
_
1
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

)) }

fa
c
e
_
q
u
a
d
_
s
ta

te
0

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(0

)
*/

_
e
x
p
r1

4
1
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
ta

u
_
0
0
_
2

1
:
ta

u
_
0
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r1

4
2
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
ta

u
_
1
0
_
2

1
:
ta

u
_
1
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

_
e
x
p
r1

4
3
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’o
u
tf
lo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
_
e
x
p
r1

3
6

1
:
_
e
x
p
r1

3
7

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r1

0
,
_
e
x
p
r1

2
,
_
e
x
p
r1

4
,
_
e
x
p
r1

5
,

_
e
x
p
r1

7
,
_
e
x
p
r1

8
,
_
e
x
p
r1

9
,
_
e
x
p
r2

1
),

’o

u
tf
lo

w
’)
)

}

fa
c
e
_
q
u
a
d
_
s
ta

te
0

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(0

)
*/

_
e
x
p
r1

4
4
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
ta

u
_
0
0
_
2

1
:
ta

u
_
0
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r1

4
5
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
ta

u
_
1
0
_
2

1
:
ta

u
_
1
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

_
e
x
p
r1

4
6
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’i
n
flo

w
’]F

lu
x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
_
e
x
p
r1

3
6

1
:
_
e
x
p
r1

3
7

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r3

2
,
_
e
x
p
r3

4
,
_
e
x
p
r3

6
,
_
e
x
p
r3

7
,

_
e
x
p
r3

9
,
_
e
x
p
r4

0
,
_
e
x
p
r4

1
,
_
e
x
p
r4

3
),

’in

fl
o
w

’)
)

}

fa
c
e
_
q
u
a
d
_
s
ta

te
0

p
0
:
{

/*
 Q

[g
a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(0

)
*/

_
e
x
p
r1

4
7
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
_
e
x
p
r1

3
6

1
:
_
e
x
p
r1

3
7

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r1

4
8
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
ta

u
_
1
0
_
2

1
:
ta

u
_
1
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

_
e
x
p
r1

4
9
 <

-

<

Q
[g

a
s
d
y
n
_
fa

c
e
]B

[’n
o
s
lip

’]F
lu

x
(N

o
rm

a
l(
0
)*

In
t[
0
]

+

 N
o
rm

a
l(
1
)*

In
t[
1
])

>
(B

P
a
ir
(a

rr
a
y
(

0
:
ta

u
_
0
0
_
2

1
:
ta

u
_
0
1
_
2

2
:
fa

c
e
_
q
u
a
d
_
s
ta

te
2

3
:
fa

c
e
_
q
u
a
d
_
s
ta

te
0

4
:
fa

c
e
_
q
u
a
d
_
s
ta

te
3

),
 a

rr
a
y
(_

e
x
p
r5

4
,
_
e
x
p
r5

6
,
_
e
x
p
r5

8
,
_
e
x
p
r6

0
,

_
e
x
p
r6

1
,
_
e
x
p
r6

3
),

 ’n
o
s
lip

’)
)

}

fa
c
e
_
q
u
a
d
_
s
ta

te
0

fa
c
e
_
q
u
a
d
_
s
ta

te
1

fa
c
e
_
q
u
a
d
_
s
ta

te
1

fa
c
e
_
q
u
a
d
_
s
ta

te
1

fa
c
e
_
q
u
a
d
_
s
ta

te
1

fa
c
e
_
q
u
a
d
_
s
ta

te
1

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
2

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

fa
c
e
_
q
u
a
d
_
s
ta

te
3

_
e
x
p
r1

0

_
e
x
p
r1

0

p
0
:
_
e
x
p
r1

2
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(_
e
x
p
r1

1
)

_
e
x
p
r1

1

_
e
x
p
r1

2

_
e
x
p
r1

2

p
0
:
_
e
x
p
r1

4
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(_
e
x
p
r1

3
)

_
e
x
p
r1

3

_
e
x
p
r1

4

_
e
x
p
r1

4

_
e
x
p
r1

5

_
e
x
p
r1

5

p
0
:
_
e
x
p
r1

7
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(_
e
x
p
r1

6
)

_
e
x
p
r1

6

_
e
x
p
r1

7

_
e
x
p
r1

7

_
e
x
p
r1

8

_
e
x
p
r1

8

_
e
x
p
r1

9

_
e
x
p
r1

9

p
0
:
_
e
x
p
r2

1
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,o

u
tf
lo

w
]>

(_
e
x
p
r2

0
)

_
e
x
p
r2

0

_
e
x
p
r2

1

_
e
x
p
r2

1

_
e
x
p
r3

2

_
e
x
p
r3

2

p
0
:
_
e
x
p
r3

4
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(_

e
x
p
r3

3
)

_
e
x
p
r3

3

_
e
x
p
r3

4

_
e
x
p
r3

4

p
0
:
_
e
x
p
r3

6
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(_

e
x
p
r3

5
)

_
e
x
p
r3

5

_
e
x
p
r3

6

_
e
x
p
r3

6

_
e
x
p
r3

7

_
e
x
p
r3

7

p
0
:
_
e
x
p
r3

9
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(_

e
x
p
r3

8
)

_
e
x
p
r3

8

_
e
x
p
r3

9

_
e
x
p
r3

9

_
e
x
p
r4

0

_
e
x
p
r4

0

_
e
x
p
r4

1

_
e
x
p
r4

1

p
0
:
_
e
x
p
r4

3
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,in

flo
w

]>
(_

e
x
p
r4

2
)

_
e
x
p
r4

2

_
e
x
p
r4

3

_
e
x
p
r4

3

_
e
x
p
r5

4

_
e
x
p
r5

4

p
0
:
_
e
x
p
r5

6
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,n

o
s
lip

]>
(_

e
x
p
r5

5
)

_
e
x
p
r5

5

_
e
x
p
r5

6

_
e
x
p
r5

6

p
0
:
_
e
x
p
r5

8
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,n

o
s
lip

]>
(_

e
x
p
r5

7
)

_
e
x
p
r5

7

_
e
x
p
r5

8

_
e
x
p
r5

8

p
0
:
_
e
x
p
r6

0
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,n

o
s
lip

]>
(_

e
x
p
r5

9
)

_
e
x
p
r5

9

_
e
x
p
r6

0

_
e
x
p
r6

0

_
e
x
p
r6

1

_
e
x
p
r6

1

p
0
:
_
e
x
p
r6

3
 <

-

<

T
o
B

d
ry

Q
u
a
d
[g

a
s
d
y
n
_
fa

c
e
,n

o
s
lip

]>
(_

e
x
p
r6

2
)

_
e
x
p
r6

2

_
e
x
p
r6

3

_
e
x
p
r6

3
p
0
:
_
e
x
p
r7

5
 <

-
<

In
v
M

>
(_

e
x
p
r7

4
)

_
e
x
p
r7

5

v
o
l_

q
u
a
d
_
s
ta

te
1

v
o
l_

q
u
a
d
_
s
ta

te
0

p
0
:
_
e
x
p
r8

0
 <

-
<

In
v
M

>
(_

e
x
p
r7

9
)

p
0
:
_
e
x
p
r1

6
9
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

0
 +

 g
ra

d
_
lo

c
 +

g
ra

d
_
fl
u
x

_
e
x
p
r8

0

p
0
:
g
ra

d
_
flu

x
0
 <

-
<

In
v
M

>
(_

e
x
p
r9

0
)

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

g
ra

d
_
lo

c
0
 <

-#
-

(-
1
)*

_
e
x
p
r8

2

_
e
x
p
r1

2
0
 <

-
g
ra

d
_
lo

c
0
 +

 g
ra

d
_
flu

x
0

_
e
x
p
r9

1
 <

-
g
ra

d
_
lo

c
0
 +

 g
ra

d
_
flu

x
0

}

g
ra

d
_
fl
u
x
0

p
0
:
_
e
x
p
r9

2
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r9

1
)

_
e
x
p
r9

2

p
0
:
g
ra

d
_
flu

x
0
_
2
 <

-
<

In
v
M

>
(_

e
x
p
r9

5
)

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

g
ra

d
_
lo

c
0
_
2
 <

-#
-

(-
1
)*

_
e
x
p
r9

3

_
e
x
p
r1

1
4
 <

-
g
ra

d
_
lo

c
0
_
2
 +

 g
ra

d
_
flu

x
0
_
2

_
e
x
p
r1

2
2
 <

-
g
ra

d
_
lo

c
0
_
2
 +

 g
ra

d
_
flu

x
0
_
2

_
e
x
p
r1

3
4
 <

-
g
ra

d
_
lo

c
0
_
2
 +

 g
ra

d
_
flu

x
0
_
2

_
e
x
p
r9

6
 <

-
g
ra

d
_
lo

c
0
_
2
 +

 g
ra

d
_
flu

x
0
_
2

}

g
ra

d
_
flu

x
0
_
2

p
0
:
_
e
x
p
r9

7
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r9

6
)

_
e
x
p
r9

7

p
0
:
g
ra

d
_
flu

x
1
 <

-
<

In
v
M

>
(_

e
x
p
r1

0
0
)

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

g
ra

d
_
lo

c
1
 <

-#
-

(-
1
)*

_
e
x
p
r9

8

_
e
x
p
r1

0
1
 <

-
g
ra

d
_
lo

c
1
 +

 g
ra

d
_
flu

x
1

_
e
x
p
r1

2
4
 <

-
g
ra

d
_
lo

c
1
 +

 g
ra

d
_
flu

x
1

}

g
ra

d
_
fl
u
x
1

p
0
:
_
e
x
p
r1

0
2
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r1

0
1
)

_
e
x
p
r1

0
2

p
0
:
g
ra

d
_
flu

x
1
_
2
 <

-
<

In
v
M

>
(_

e
x
p
r1

0
3
)

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

g
ra

d
_
lo

c
1
_
2
 <

-#
-

(-
1
)*

_
e
x
p
r9

4

_
e
x
p
r1

0
4
 <

-
g
ra

d
_
lo

c
1
_
2
 +

 g
ra

d
_
flu

x
1
_
2

_
e
x
p
r1

0
9
 <

-
g
ra

d
_
lo

c
1
_
2
 +

 g
ra

d
_
flu

x
1
_
2

_
e
x
p
r1

2
6
 <

-
g
ra

d
_
lo

c
1
_
2
 +

 g
ra

d
_
flu

x
1
_
2

_
e
x
p
r1

3
0
 <

-
g
ra

d
_
lo

c
1
_
2
 +

 g
ra

d
_
flu

x
1
_
2

}

g
ra

d
_
flu

x
1
_
2

p
0
:
_
e
x
p
r1

0
5
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r1

0
4
)

_
e
x
p
r1

0
5

p
0
:
g
ra

d
_
flu

x
1
_
3
 <

-
<

In
v
M

>
(_

e
x
p
r1

0
6
)

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

g
ra

d
_
lo

c
1
_
3
 <

-#
-

(-
1
)*

_
e
x
p
r8

3

_
e
x
p
r1

0
7
 <

-
g
ra

d
_
lo

c
1
_
3
 +

 g
ra

d
_
flu

x
1
_
3

_
e
x
p
r1

2
8
 <

-
g
ra

d
_
lo

c
1
_
3
 +

 g
ra

d
_
flu

x
1
_
3

}

g
ra

d
_
flu

x
1
_
3

p
0
:
_
e
x
p
r1

0
8
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r1

0
7
)

_
e
x
p
r1

0
8

p
0
:
_
e
x
p
r1

1
0
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r1

0
9
)

_
e
x
p
r1

1
0

p
0
:
g
ra

d
_
flu

x
0
_
3
 <

-
<

In
v
M

>
(_

e
x
p
r1

1
1
)

p
0
:
{

/*
 c

o
m

p
ile

d
 *

/

g
ra

d
_
lo

c
0
_
3
 <

-#
-

(-
1
)*

_
e
x
p
r9

9

_
e
x
p
r1

1
2
 <

-
g
ra

d
_
lo

c
0
_
3
 +

 g
ra

d
_
flu

x
0
_
3

_
e
x
p
r1

3
2
 <

-
g
ra

d
_
lo

c
0
_
3
 +

 g
ra

d
_
flu

x
0
_
3

}

g
ra

d
_
flu

x
0
_
3

p
0
:
_
e
x
p
r1

1
3
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r1

1
2
)

_
e
x
p
r1

1
3

p
0
:
_
e
x
p
r1

1
5
 <

-
<

T
o
Q

u
a
d
[g

a
s
d
y
n
_
v
o
l]>

(_
e
x
p
r1

1
4
)

_
e
x
p
r1

1
5

p
0
:
g
ra

d
_
lo

c
 <

-
<

In
v
M

>
(_

e
x
p
r1

1
9
)

g
ra

d
_
lo

c

p
0
:
_
e
x
p
r1

2
1
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

2
0
)

_
e
x
p
r1

2
1

p
0
:
_
e
x
p
r1

2
3
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

2
2
)

_
e
x
p
r1

2
3

p
0
:
_
e
x
p
r1

2
5
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

2
4
)

_
e
x
p
r1

2
5

p
0
:
_
e
x
p
r1

2
7
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

2
6
)

_
e
x
p
r1

2
7

p
0
:
_
e
x
p
r1

2
9
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

2
8
)

_
e
x
p
r1

2
9

p
0
:
_
e
x
p
r1

3
1
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

3
0
)

_
e
x
p
r1

3
1

p
0
:
_
e
x
p
r1

3
3
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

3
2
)

_
e
x
p
r1

3
3

p
0
:
_
e
x
p
r1

3
5
 <

-
<

T
o
In

tF
Q

u
a
d
[g

a
s
d
y
n
_
fa

c
e
]>

(_
e
x
p
r1

3
4
)

_
e
x
p
r1

3
5

p
0
:
g
ra

d
_
flu

x
 <

-
<

In
v
M

>
(_

e
x
p
r1

5
0
)

g
ra

d
_
flu

x

p
0
:
_
e
x
p
r1

5
4
 <

-
<

In
v
M

>
(_

e
x
p
r1

5
3
)

p
0
:
_
e
x
p
r1

7
0
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

5
4
 +

 g
ra

d
_
lo

c
_
2
 +

g
ra

d
_
flu

x
_
2

_
e
x
p
r1

5
4

p
0
:
g
ra

d
_
lo

c
_
2
 <

-
<

In
v
M

>
(_

e
x
p
r1

5
7
)

g
ra

d
_
lo

c
_
2

p
0
:
g
ra

d
_
flu

x
_
2
 <

-
<

In
v
M

>
(_

e
x
p
r1

5
8
)

g
ra

d
_
flu

x
_
2

p
0
:
_
e
x
p
r1

6
2
 <

-
<

In
v
M

>
(_

e
x
p
r1

6
1
)

p
0
:
_
e
x
p
r1

7
1
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

6
2
 +

 g
ra

d
_
lo

c
_
3
 +

g
ra

d
_
flu

x
_
3

_
e
x
p
r1

6
2

p
0
:
g
ra

d
_
lo

c
_
3
 <

-
<

In
v
M

>
(_

e
x
p
r1

6
5
)

g
ra

d
_
lo

c
_
3

p
0
:
g
ra

d
_
flu

x
_
3
 <

-
<

In
v
M

>
(_

e
x
p
r1

6
6
)

g
ra

d
_
flu

x
_
3

p
0
:
_
e
x
p
r1

6
8
 <

-
<

E
lW

M
a
x
>

(_
e
x
p
r1

6
7
)

_
e
x
p
r1

6
8

_
e
x
p
r1

7
1

_
e
x
p
r1

7
0

_
e
x
p
r1

6
9

_
e
x
p
r2

_
e
x
p
r1

6
7

p
0
:
_
e
x
p
r1

6
6
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

4
0
 +

 _
e
x
p
r1

4
2
 +

_
e
x
p
r1

4
5
 +

 _
e
x
p
r1

4
8

_
e
x
p
r1

6
6

p
0
:
_
e
x
p
r1

6
5
 <

-
/*

 c
o
m

p
ile

d
 *

/
(-

1
)*

(_
e
x
p
r1

6
3
 +

_
e
x
p
r1

6
4
)

_
e
x
p
r1

6
5

p
0
:
_
e
x
p
r1

6
1
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

5
9
 +

 _
e
x
p
r1

6
0
 +

(-

1
)*

(_
e
x
p
r8

 +
 _

e
x
p
r3

1
 +

 _
e
x
p
r4

5
 +

 _
e
x
p
r6

8
)

_
e
x
p
r1

6
1

p
0
:
_
e
x
p
r7

6
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

0
(x

_
flu

x
1
_
2
)

x
_
flu

x
1
_
2

p
0
:
_
e
x
p
r7

8
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

1
(y

_
flu

x
1
_
2
)

y
_
flu

x
1
_
2

p
0
:
_
e
x
p
r8

1
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

0
(_

e
x
p
r1

1
6
)

_
e
x
p
r1

1
6

p
0
:
_
e
x
p
r1

1
7
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

1
(_

e
x
p
r1

1
8
)

_
e
x
p
r1

1
8

p
0
:
_
e
x
p
r1

5
1
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

0
(x

_
flu

x
2
_
2
)

x
_
flu

x
2
_
2

p
0
:
_
e
x
p
r1

5
2
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

1
(y

_
flu

x
2
_
2
)

y
_
flu

x
2
_
2

p
0
:
_
e
x
p
r1

5
5
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

0
(t

a
u
_
0
0
)

ta
u
_
0
0

p
0
:
_
e
x
p
r1

5
6
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

1
(t

a
u
_
0
1
)

ta
u
_
0
1

p
0
:
_
e
x
p
r1

5
9
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

0
(x

_
flu

x
3
_
2
)

x
_
flu

x
3
_
2

p
0
:
_
e
x
p
r1

6
0
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

1
(y

_
flu

x
3
_
2
)

y
_
flu

x
3
_
2

p
0
:
_
e
x
p
r1

6
3
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

0
(t

a
u
_
1
0
)

ta
u
_
1
0

p
0
:
_
e
x
p
r1

6
4
 <

-
Q

[g
a
s
d
y
n
_
v
o
l]S

tif
fT

1
(t

a
u
_
1
1
)

ta
u
_
1
1

p
0
:
_
e
x
p
r1

5
8
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

3
8
 +

 _
e
x
p
r1

4
1
 +

_
e
x
p
r1

4
4
 +

 _
e
x
p
r1

4
9

_
e
x
p
r1

5
8

p
0
:
_
e
x
p
r1

5
7
 <

-
/*

 c
o
m

p
ile

d
 *

/
(-

1
)*

(_
e
x
p
r1

5
5
 +

_
e
x
p
r1

5
6
)

_
e
x
p
r1

5
7

p
0
:
_
e
x
p
r1

5
3
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

5
1
 +

 _
e
x
p
r1

5
2
 +

(-

1
)*

(_
e
x
p
r6

 +
 _

e
x
p
r2

2
 +

 _
e
x
p
r5

1
 +

 _
e
x
p
r6

4
)

_
e
x
p
r1

5
3

p
0
:
_
e
x
p
r1

5
0
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r1

3
9
 +

 _
e
x
p
r1

4
3
 +

_
e
x
p
r1

4
6
 +

 _
e
x
p
r1

4
7

_
e
x
p
r1

5
0

ta
u
_
1
0
_
2

ta
u
_
0
0
_
2

_
e
x
p
r1

3
7

ta
u
_
0
1
_
2

_
e
x
p
r1

3
6

ta
u
_
1
1
_
2

ta
u
_
1
0
_
2

ta
u
_
0
0
_
2

_
e
x
p
r1

3
7

ta
u
_
0
1
_
2

_
e
x
p
r1

3
6

ta
u
_
1
1
_
2

ta
u
_
1
0
_
2

ta
u
_
0
0
_
2

_
e
x
p
r1

3
7

ta
u
_
0
1
_
2

_
e
x
p
r1

3
6

ta
u
_
1
1
_
2

ta
u
_
1
0
_
2

ta
u
_
0
0
_
2

_
e
x
p
r1

3
7

ta
u
_
0
1
_
2

_
e
x
p
r1

3
6

ta
u
_
1
1
_
2

_
e
x
p
r9

6
_
e
x
p
r1

1
4

_
e
x
p
r1

2
2

_
e
x
p
r1

3
4

_
e
x
p
r1

1
2

_
e
x
p
r1

3
2

_
e
x
p
r1

0
4

_
e
x
p
r1

0
9

_
e
x
p
r1

2
6

_
e
x
p
r1

3
0

_
e
x
p
r1

0
7

_
e
x
p
r1

2
8

_
e
x
p
r1

0
1

_
e
x
p
r1

2
4

_
e
x
p
r9

1
_
e
x
p
r1

2
0

p
0
:
_
e
x
p
r1

1
9
 <

-
/*

 c
o
m

p
ile

d
 *

/
(-

1
)*

(_
e
x
p
r8

1
 +

_
e
x
p
r1

1
7
)

_
e
x
p
r1

1
9

p
0
:
_
e
x
p
r1

1
1
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

6
 +

 _
e
x
p
r2

4
 +

_
e
x
p
r7

3
 +

 _
e
x
p
r5

2

_
e
x
p
r1

1
1

p
0
:
_
e
x
p
r1

0
6
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

8
 +

 _
e
x
p
r2

9
 +

_
e
x
p
r6

5
 +

 _
e
x
p
r4

9

_
e
x
p
r1

0
6

p
0
:
_
e
x
p
r1

0
3
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

5
 +

 _
e
x
p
r3

0
 +

_
e
x
p
r7

0
 +

 _
e
x
p
r5

0

_
e
x
p
r1

0
3

p
0
:
_
e
x
p
r1

0
0
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

7
 +

 _
e
x
p
r2

6
 +

_
e
x
p
r7

1
 +

 _
e
x
p
r4

8

_
e
x
p
r1

0
0

p
0
:
_
e
x
p
r9

5
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

4
 +

 _
e
x
p
r2

7
 +

_
e
x
p
r6

7
 +

 _
e
x
p
r4

6

_
e
x
p
r9

5

p
0
:
_
e
x
p
r9

0
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r8

9
 +

 _
e
x
p
r2

5
 +

_
e
x
p
r6

9
 +

 _
e
x
p
r4

7

_
e
x
p
r9

0

p
0
:
_
e
x
p
r7

9
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r7

6
 +

 _
e
x
p
r7

8
 +

(-

1
)*

(_
e
x
p
r9

 +
 _

e
x
p
r2

3
 +

 _
e
x
p
r4

4
 +

 _
e
x
p
r7

2
)

_
e
x
p
r7

9

p
0
:
_
e
x
p
r7

4
 <

-
/*

 c
o
m

p
ile

d
 *

/
_
e
x
p
r0

 +
 _

e
x
p
r1

 +

(-

1
)*

(_
e
x
p
r7

 +
 _

e
x
p
r2

8
 +

 _
e
x
p
r5

3
 +

 _
e
x
p
r6

6
)

_
e
x
p
r7

4

u
1
_
2

u
0
_
2

y
_
flu

x
2

y
_
flu

x
1

x
_
flu

x
3

x
_
flu

x
1

x
_
flu

x
2

y
_
flu

x
3

x
_
flu

x
3

y
_
flu

x
2

y
_
flu

x
1

x
_
flu

x
1

x
_
flu

x
2

y
_
flu

x
3

y
_
flu

x
2

y
_
flu

x
1

x
_
flu

x
3

x
_
flu

x
1

x
_
flu

x
2
y
_
flu

x
3

x
_
flu

x
3

y
_
flu

x
1

x
_
flu

x
1

x
_
flu

x
2

y
_
flu

x
2

y
_
flu

x
3

_
e
x
p
r0

_
e
x
p
r1

_
e
x
p
r8

_
e
x
p
r6

_
e
x
p
r9

_
e
x
p
r7

_
e
x
p
r3

1
_
e
x
p
r2

2

_
e
x
p
r2

4
_
e
x
p
r2

9
_
e
x
p
r3

0
_
e
x
p
r2

6
_
e
x
p
r2

7
_
e
x
p
r2

5

_
e
x
p
r2

3

_
e
x
p
r2

8

_
e
x
p
r4

5
_
e
x
p
r5

1

_
e
x
p
r5

2
_
e
x
p
r4

9
_
e
x
p
r5

0
_
e
x
p
r4

8
_
e
x
p
r4

6
_
e
x
p
r4

7

_
e
x
p
r4

4

_
e
x
p
r5

3

_
e
x
p
r6

8
_
e
x
p
r6

4

_
e
x
p
r7

3
_
e
x
p
r6

5
_
e
x
p
r7

0
_
e
x
p
r7

1
_
e
x
p
r6

7
_
e
x
p
r6

9

_
e
x
p
r7

2

_
e
x
p
r6

6

_
e
x
p
r7

6
_
e
x
p
r7

8

_
e
x
p
r8

3
_
e
x
p
r8

2

_
e
x
p
r8

6
_
e
x
p
r8

8
_
e
x
p
r8

5
_
e
x
p
r8

7
_
e
x
p
r8

4
_
e
x
p
r8

9

_
e
x
p
r9

3
_
e
x
p
r9

4
_
e
x
p
r9

9
_
e
x
p
r9

8

_
e
x
p
r8

1
_
e
x
p
r1

1
7

_
e
x
p
r1

4
0

_
e
x
p
r1

3
8

_
e
x
p
r1

3
9

_
e
x
p
r1

4
2

_
e
x
p
r1

4
1

_
e
x
p
r1

4
3

_
e
x
p
r1

4
5

_
e
x
p
r1

4
4

_
e
x
p
r1

4
6

_
e
x
p
r1

4
8

_
e
x
p
r1

4
9

_
e
x
p
r1

4
7

_
e
x
p
r1

5
1

_
e
x
p
r1

5
2

_
e
x
p
r1

5
5

_
e
x
p
r1

5
6

_
e
x
p
r1

5
9

_
e
x
p
r1

6
0

_
e
x
p
r1

6
3

_
e
x
p
r1

6
4

Figure 3.4. Data flow graph for the compressible Navier-Stokes operator with quadrature,
discretized using Lax-Friedrichs fluxes for the first-order part and stabilized central fluxes for
the second-order part [Arnold et al., 2002].

44

Of course, work on a big project such as this is never ‘finished’. Nonetheless, hedge

has reached a stage where it is useful and, by virtue of its open-source licensing, has

found a number of users outside Brown University. A few things could still be done to

make hedge even more efficient. For example, DG-specific operators such as element-wise

differentiation could be mixed with vector arithmetic to avoid a few more store-fetch

cycles. I would expect that this type of tail computation optimization might, depending on

approximation order, be able to achieve another 20 per cent of speed gain on both CPUs

and GPUs.

As a conclusion, I can say that in addition to being an interesting exercise in software

design, hedge has been a productive vehicle for my research, as I hope to demonstrate in

subsequent chapters, and I anticipate that this will continue to be the case in the future.

CHAPTER FOUR

Code Generation on Graphics

Processors

45

46

4.1 Introduction

Graphics Processing Units (GPUs) [Dally et al., 2003, Lindholm et al., 2008, Seiler

et al., 2008] promise tremendous advantages in throughput over conventional processor

architectures, ideally resulting in a large reduction of execution time for suitable compute-

or bandwidth-bound algorithms. However, execution time is not the only time scale to

consider when comparing computer architectures. Indeed, the development time for a

scientific code will, in many cases, be a significant fraction of its useful lifespan. GPUs

now threaten to tip this balance even further out of the programmer’s favor, through the

following four factors.

First, there is still much change going on in the area of massively parallel processors.

These changes are driven by many factors–chip manufacturing processes change, new ideas

and abstractions in hardware and software emerge and disappear at a rapid pace, market

conditions change. Programs that work well on last year’s machines may not continue to

represent optimal choices today. While the recent ratification of the OpenCL standard [The

Khronos OpenCL Working Group, 2008] may bring a moment of stability, the landscape of

devices that may be accessed is still large and ever-changing. Even though some patterns

are emerging, the world is still very far from having settled on a programming model for

massively parallel machines–a model that is as stable as the one programmers have enjoyed

on CPUs for the last few decades.

Second, GPU code is very sensitive to seemingly innocent changes. Hardware imple-

mentation details are much more visible and have a much greater performance effect in

GPU programs than they do in today’s CPU programs. Relative component clock rates,

bus widths, vector widths, memory and buffer sizes all have an immediate impact on a

successful code. The very premise of GPU computing is to try and find a better use for the

47

silicon tied up in the caching, speculation and out-of-order execution that frees a modern

CPU developer from having to worry about hardware peculiarities. I therefore expect that

GPU developers will continue to be exposed to these details.

Third, and potentially a corollary of the last point, GPUs offer many more implementa-

tion choices, and often little guidance on which choice may lead to efficient code. It is not

uncommon to see differences of an order of magnitude in execution time between codes

that accomplish the same basic task. This is not likely to occur on a current-generation

CPU, where, with few exceptions, “reasonably coded” and “highly optimized” fall within

at most a factor of two or three of each other.

The fourth and possibly worst factor is that GPU development tools are in their infancy.

Many years have been spent creating development tools that help the CPU developer achieve

high productivity. These tools range from high-level languages and libraries that allow

the programmer to deal in convenient abstractions, to optimizing compilers, debuggers,

and profilers, which likewise shield the programmer from having to deal with the full

complexity of the hardware. Many of these tools are either unavailable, inadequate or

rudimentary on today’s parallel architectures.

I propose that GPU run-time code generation (“RTCG”) helps the programmer reclaim

a significant share of the productivity lost to these factors. By GPU RTCG, I mean the

ability to seamlessly execute arbitrary, generated low-level C (or C-like) source code for

high-volume computational tasks in the context of the generating program. In the form

described in this chapter, the generation and execution of the low-level code is performed

from a high-level scripting language. By the term “scripting language” or “high-level

language”, I mean a language that

• enables various programming paradigms (e.g. functional, procedural, object, aspect,

48

etc.),

• is dynamically typed,

• includes error reporting facilities,

• manages resources automatically,

• offers comprehensive built-in functionality,

• requires no user-visible compilation (i.e. suitable for interactive use), and

• works well as a “glue language” for lower level building blocks.

The family of major general-purpose scripting languages at the time of this writing includes

Python, Ruby, Lua, and JavaScript and numerous others.

The present work describes lessons learned from many earlier approaches. GPU RTCG

is a form of “metaprogramming”: instead of directing computer code immediately at a

problem, one directs code at the creation of and reasoning about another piece of code

which then solves the problem at hand. It is not initially clear that this additional level

actually results in any tangible gain, but I will defer this discussion to the later parts of

this chapter. For now, it should suffice to say that I am by no means the first to apply

the basic principle. Today, perhaps the most common mechanism used to implement

metaprogramming ideas is the template mechanism of the C++ programming language.

Many things have been implemented in this effective (if cumbersome) way: Expression

evaluators [Veldhuizen and Jernigan, 1997], parser generators [de Guzman, 2008], even

entire PDE solver frameworks [Prud’homme, 2006, Reynders et al., 1996]. The template-

based technique is however constrained to being applied at the time when the software is

built, which limits its usefulness. A variety of ways have been devised to circumvent this

restriction, reaching from assembly of small prefabricated pieces into a full code [Frigo and

49

Human

Machine

Idea Scripting Code

GPU Code GPU Compiler GPU Binary GPU Result

Figure 4.1. Operating principle of GPU code generation.

Johnson, 2005], to build-time evaluation of different code versions [Whaley et al., 2001].

It should further not be forgotten that the Lisp programming language already brought

the fundamental insight of the von Neumann architecture, namely that ‘code is data’, to

higher-level languages in the early 1960s [McCarthy, 1962], albeit not necessarily with

computational efficiency as the primary target.

In the context of GPUs, metaprogramming has so far been applied mainly in a graphics

and image processing context [Lejdfors and Ohlsson, 2006, Wedekind et al., 2008] and to

ease the use of a standard rendering pipeline for general-purpose uses [Tarditi et al., 2006].

Other projects focus on generating GPU code using a compile-time C++-based framework

[McCool and Du Toit, 2004, McCool and RapidMind Inc., 2006].

Further, this work can be seen in the context of recent [Lengauer et al., 2004] and not so

recent [Keppel et al., 1991] efforts to promote program generation as a mainstream idea. In

comparison however, I am choosing a decidedly simple approach that values pragmatism

over theoretical appeal: Why should one invent new tools from scratch when good results

are achievable using a scripting language with a GPU and a C compiler? Curiously, many

previous authors give up the immeasurable advantage of being able to generate code at run

time all too easily. This capability is the main point of this chapter.

The text is organized as follows: I begin by giving a very brief overview of how GPUs

differ from other computing platforms from the point of view of software in Section 4.2.

50

I continue in Section 4.3 by providing a sampling of problems arising from a GPU’s

special structure where GPU RTCG can be profitably applied. Section 4.4 then describes a

scripting-based approach to these problems that is supported by my open-source PyCUDA

toolkit. Section 4.5 describes how a number of applications from varied disciplines have

benefited from the approach in general and PyCUDA in particular. Finally, in Section 4.6, I

close with a few remarks and ideas for future work.

4.2 GPU Software Creation

In the preceding sections, I have already argued that software for GPUs is far more subject

to influences beyond its own control than is likely to be the case for CPU software. Such

external influences may include, in no particular order,

• the width and number of available compute units,

• the amount of available on-chip buffer memory,

• the speed of various access patterns to on- and off-chip memory,

• the ratio of available memory bandwidth to compute bandwidth,

• the latency and bandwidth between the host (CPU) and the device (GPU), and

• the instruction scheduling details of the processor in use.

Section 2.2 explained that GPUs are aimed at computations of a ‘streaming’ nature. It

is therefore appropriate to visualize a computation running on a GPU as a network of

“streams” with varying throughputs, connected to buffer spaces and processing elements

that turn inputs into results in certain batch sizes. The goal of designing GPU algorithms is

51

to first map the desired computation (e.g. matrix multiplication) onto such a network of

streams, and, simultaneously, to find a mapping from these streams, buffers, and processing

elements to the physically available hardware. From this picture, it becomes apparent that

every nontrivial piece of GPU software represents a complicated trade-off. In many cases,

the programmer making these trade-offs has incomplete information on the factors involved.

For example, design details of the compute device may be unavailable to the programmer.

But even if they are, program execution in massively parallel processors is a complicated

and non-local process that may defy easy comprehension even by the processor’s designers.

GPU programming therefore relies extensively on experimentation and micro-benchmarking

to overcome missing knowledge of causes by obtaining measurements of symptoms. As

a software developer, this is a very unsatisfying place to be in: the obtained results may

not be robust to changes of hardware, problem sizes or other parameters. Further, this

experimentation and benchmarking is generally tedious work that needs to be carried out

systematically, consistently and repeatably. It is therefore not far-fetched to wish for these

tasks to be automated. From there, it is a small step to metaprogramming, the automated

reasoning about programs, and RTCG.

4.3 Problems Solved by GPU Run-Time Code Gen-

eration

This section is devoted to describing a number of issues that are commonly faced when

programming a GPU. In each case, I point out how a GPU RTCG strategy can be used to

address these issues in a natural and straightforward manner.

52

4.3.1 Automated Tuning

During the creation of a GPU program, it is natural for the programmer to come up with

a number of variants of a given code, each of which will be observed to have certain

properties regarding data layout and computation speed. The conventional approach to

code tuning then calls for the fastest variant to survive, while the others will be discarded.

This is not necessarily a desirable course of action, as information is lost. Instead, it seems

more appropriate to retain as many of these variants as is practical, assuming that they hold

at least some promise. Further, each variant may have a number of tunable parameters,

such as loop lengths, block sizes, etc. Retaining variant information permits choosing the

best one from a reasonable-size pool of candidates in an automated fashion, guided by

some metric such as execution speed. This is the basic premise of automated tuning, which

is trivially enabled by GPU RTCG. Further, automated tuning is not just enabled by RTCG,

it is enabled at the right time–namely at run time–when complete information is available.

I present three examples illustrating the type of choices optimally resolved by automatic

tuning:

The first and perhaps the most important choice in GPU algorithm design is that of

loop slicing, as explained in Section 2.2. Even loops that are trivially linear on the CPU

must typically be subdivided into several levels for the GPU to be efficient, with levels

corresponding to SIMD lanes, execution units, as well as serial execution. For some

algorithms such as matrix multiplication, loop slicing is important even on the CPU to

preserve locality of access and thereby the efficiency of on-chip caches. Since GPUs have

even less cache and even more slicing levels, getting the loop slicing right is of paramount

importance to obtaining reasonable performance.

Second, many GPU architectures have user-managed on-chip memories. Upon creation

of a code, it is often not obvious which pieces of data will yield the most benefit from low

53

latency local storage. It is almost certain that on-chip memory will remain a scarce resource

for the foreseeable future. Thus, peak performance necessitates trade-offs that adapt to the

hardware situation at hand.

Third, GPU architectures achieve high memory throughput not through high memory

clock rates, but rather through wide data buses. Unfortunately, wide data buses only achieve

acceptable net bandwidths when used to transfer large numbers of consecutive data words.

Further, the bus widths are often closely matched with the widths of SIMD units in a GPU.

It is to be expected that both the loop slicing of the algorithm and the layout of the data

it uses will be influenced by these performance characteristics of memory access. Many

strategies have been invented to deal with these restrictions, and almost all of them come

with drawbacks limiting their usefulness–e.g. wasted space and SIMD lanes in the case of

padding. As in the case of user-managed on-chip memory, it is desirable, but nontrivial, to

choose a layout that balances advantages and disadvantages.

4.3.2 The Cost of Flexibility

Flexibility is commonly seen as a desirable feature of a computer code–where “code”

usually means a user-facing executable. The more functions a certain executable can

perform without having to be modified, the better. Yet there exists a flexibility versus

performance trade off. As an example that is the polar opposite of flexibility, one may

consider an optimized code that can only multiply matrices of a certain size. No matter

how fast or otherwise attractive such a code may be, unless the user’s desired application

requires matrix multiplications of this size, it is entirely useless. Thus almost all computer

codes are built with at least some flexibility.

It should then be realized that flexibility comes at a cost: Constants get replaced by

54

variables, formerly fixed loop trip counts become variable, and quite generally a compiler

has less knowledge available at compile time, making its optimizer less effective. The

process of removing such flexibility, on the other hand, is generally frowned upon and

derisively called “hardcoding”. I feel, however, that this point of view has no merit once

run-time code generation is available, as one is at liberty to generate code for exactly one

purpose–any extra flexibility is likely just unneeded ballast.

In compile-time metaprogramming frameworks, hardcoding is sometimes replaced by

generating a large number of potentially needed code variants ahead of time by considering

anticipated needs for different problem sizes, data types, etc. Once the number of variants

surpasses “a few”, the costs of this approach quickly become very significant both in

compilation time and memory footprint of the executable. In comparison, GPU RTCG

suffers no such scaling penalty: It can use information available only at run time to cut

down the number of variants that need to be generated, it can use caching to amortize the

cost of finding the optimal code, and unused code variants can be disposed of immediately.

4.3.3 High-Performance Abstractions

Nearly all computer programs are built in ‘layers’, where each individual layer solves a

certain subproblem and presents a more abstract, ‘higher-level’ interface to surrounding

layers. This is good engineering practice, as it allows partitioning a big problem into many

smaller ones, and it enables reuse of engineering effort. In some cases, this layering is

easily achieved and results in very little loss for the ‘consumer’ of the interface. In other

cases, such abstractions can be made uneconomical by coding circumstance. I will first

look at examples of how this might happen, and then at what RTCG does to improve the

situation. One common instance of uneconomical abstractions occurs when a consumer

of an interface needs to specify details about an operation that is to be performed on large

55

volumes of data, as part of an inner loop in the abstraction. As a trivial example, consider

an abstract form of vector addition allowing a variety of scalar types.

An easy (but unsuitable) run-time technique is the use of function pointers (or equiva-

lently, virtual methods). In the frame of the example, each scalar addition under this scheme

would require a computed call to a subroutine carrying out the addition on the scalar level.

While this allows the required level of run-time polymorphism, it is very expensive: A

floating point addition can usually be carried out in a single machine clock cycle, but a

computed jump may defeat prediction logic, stall the execution pipeline, and can easily take

several orders of magnitude longer than the operation it is meant to perform. Furthermore,

the requisite computed calls are unavailable on many types of GPUs.

The disadvantages of the function pointer approach drove the development of mecha-

nisms for compile-time-polymorphism on the CPU and the GPU. In C++, this is achieved

through the use of class and function templates. If the user’s customization is assumed

to be known at compile time, the compiler can make use of that knowledge and generate

efficient code. In the example, the vector addition would be written with respect to an un-

specified type, relying (for example) on the assumption that the underlying scalar supplies

addition. The type of the scalar is required to be known at compile time, and hence the

compiler can statically find the addition routine and substitute (“in-line”) its use, ideally

eliminating all overhead. This is a popular approach, but it has two shortcomings: First, it

requires early concretization. In the example, all desired uses of the vector addition code

have to be known before the program is run. Second, the C++ template mechanism in

particular responds unfavorably to complexity growth. It makes simple things like type

substitution quite easy. But templates alone, even without the rest of C++, form a fully

capable–if awkward–programming language [Veldhuizen, 2003], and some implementers

have seen this as an invitation to do rather advanced things with them. While such use

validates the need for a meta-level where code is able to reason about other code, the actual

56

end results in this case tend to be both brittle and complicated.

The ideal solution would be a compromise of these two. Function pointers are simple,

flexible and do not require early concretization, while templates have very little overhead.

By removing the distinction between ‘compile time’ and ‘run time’, RTCG fills this

void. Once RTCG is available, appropriate code can be generated whenever a different

requirement arises, leading to flexibility. RTCG code is also fast–it can do away with

any sort of flexibility, because it can safely be considered “single-purpose”. Further, code

generation can be seen as a text processing task. Since one is not limited in the choice

of tools with which to perform this generation, RTCG-based codes can be as simple as

possible and respond favorably to complexity growth.

4.3.4 GPUs and the Need for Flexibility

As a final comment, it should be emphasized that in the past, due to the associated develop-

ment complexity especially for C++-based techniques, metaprogramming was restricted to

high-need applications. The cost of metaprogramming outweighed the disadvantages of

“hardcoding” only for the largest of projects.

GPUs however democratize this need, as they put a larger penalty on inflexible, untuned

code. By deciding to perform a GPU port of an algorithm, one implicitly states that one

is willing to trade some implementation effort for a substantial performance gain. As

explained above, finding a good implementation is often nontrivial, and therefore the

potential gain from RTCG is large. In other words, GPUs increase the relative cost of not

using metaprogramming techniques, and therefore it is likely that code generation and

techniques like it will see much wider adoption. However, good tools are required to allow

the broadest possible cross-section of developers to take advantage of RTCG.

57

4.4 PyCUDA: A Scripting-Based Approach to GPU

RTCG

The previous section has shown that GPU RTCG solves a number of pressing problems in

the development of high-performance compute-oriented codes. In this section, I present

PyCUDA, a practical and mature open-source toolkit supporting GPU RTCG.

While its name already suggests that PyCUDA connects the high-level Python pro-

gramming language [van Rossum et al., 1994] with the Nvidia CUDA compute abstraction

[Nvidia Corporation, 2009], at least the first choice deserves justification. The major

factor in choosing a high-level, dynamic programming language over a potentially better-

performing, low-level, static one is the complementarity of tasks between the GPU and the

host processor. The GPU is optimally suited to carrying out throughput-oriented parts of

a program, namely the part that would have conventionally constituted the ‘inner loops’.

Freed from this duty, the CPU now is responsible for “only” control and communica-

tion (including, e.g., disk input/output). In other words, it now works at a higher level

of abstraction. Therefore a high-level scripting language (such as Python) can perform

this higher-level job equally well or better, simply because the performance demands are

reduced, and both code generation and execution control can be of considerable complexity.

Control input is needed by the GPU about once every millisecond, and code generation

is needed even less frequently. A Python-based GPU compute code will have no trouble

realizing the same full performance potential of GPU hardware as a C-controlled GPU

compute code, but with much less effort on the part of the programmer. This reduction in

effort is achieved in many ways–for example, data types and resources are managed by

the language itself instead of by a human, also closures and other high-level constructs are

available. Relatedly I would like to emphasize that PyCUDA does not inhabit Python’s

software ecosystem by itself: a large number of packages for such diverse purposes as

58

plotting, computer algebra, or optimization are available easily and under liberal licenses

[Langtangen, 2009]. Significantly, the mpi4py package [Dalcı́n et al., 2005] in conjunc-

tion with PyCUDA allows a straightforward combination of shared-memory GPU-based

and distributed-memory MPI-based parallelism. The easy availability of a multitude of

packages contributes to making scripting languages more productive than their conventional

compiled counterparts. Scripting languages such as Python or even MATLAB are already

popular for exploratory prototyping, but in combination with a GPU, their usefulness

extends well into the territory of ‘full-scale’ codes.

PyCUDA itself is built from multiple levels. At the lowest level, PyCUDA makes

the entirety of the CUDA run-time system available from Python by introducing a thin

object-oriented shell. In this context, I would like to emphasize the word “entirety”: Every

feature of the CUDA run-time system is accessible from Python via PyCUDA, including

textures, pinned host memory, OpenGL interaction, zero-copy host memory mapping, etc.

While this low-level interface translation is relatively straightforward, care was taken to

make the interface a “good citizen” of the high-level-language system: Memory allocation

and resource management concerns are handled automatically in close coordination with the

Python garbage collector, avoiding spurious resource shortages. Entities such as textures,

code modules, and compute devices are reflected into Python using object-oriented terms,

providing better abstraction than the low-level C interface. Errors are detected and reported

automatically. Further, programmers of high-level languages expect that their programs

do not abort upon executing erroneous code, that most error conditions are recoverable

and that useful feedback is available on what happened that caused the error. PyCUDA

satisfies these expectations. Care is taken however that these automatisms do not turn into

a liability. For example, a program under tight memory constraints may not have the luxury

of allowing automatic resource management. For this use case, PyCUDA still allows the

user to manually control deallocation of resources.

59

Edit

PyCUDA

Run

GPU Source Module

Cache?

GPU Compiler
no

GPU Binary

yes

Upload to GPU

Run on GPU

Figure 4.2. Work flow of PyCUDA GPU program compilation. PyCUDA aims to maintain
a scripting-like “edit-run-repeat” style of working for the user. The compilation and caching
operations in the gray box are performed without user involvement.

The basic shell described so far establishes the basis for more interesting, higher-level

features. PyCUDA augments the runtime system by a critical capability: It allows the

user to easily create on-GPU binaries simply by providing C-like CUDA1 source code as a

simple character string. This capability is what enables GPU run-time code generation.

Two factors contribute to making this process easy and transparent: First, the user makes

no contact with the underlying CUDA compiler infrastructure unless desired. Second, the

result of the compilation process is stored in a semi-permanent cache and reused if possible.

The cache is sensitive to changes in the hardware and software environment and initiates

recompilation when necessary. As a result, compilation of source code and subsequent

loading of the binary code becomes nearly instantaneous and invisible to the user, and the

quick turn-around time of a scripting-based programming environment is retained. Figure

4.2 illustrates the principle, the end result of which is to make computations specified by C

source code a library service that is available cheaply.

Further, whenever GPU RTCG is used for automated tuning, it is desirable that the

expense of time and processing power involved in the tuning is only incurred once per

1For completeness, it should be mentioned that PyCUDA also allows the just-in-time compilation of code
expressed in Nvidia’s lower-level “PTX” abstract machine language.

60

a)
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)
a gpu = cuda.mem alloc(a.nbytes)
cuda.memcpy htod(a gpu, a) # host−to−device

mod = cuda.SourceModule(”””
global void multiply by two(float ∗a)
{

int idx = threadIdx.x + threadIdx.y∗4;
a[idx] ∗= 2;
}
” ” ”)

func = mod.get function(”multiply by two”)
func(a gpu, block=(4,4,1))

Compute Kernel

a) cont’d.
a doubled = numpy.empty like(a)
cuda.memcpy dtoh(a doubled, a gpu) # device−to−host
print a doubled
print a

b)
import numpy
import pycuda.autoinit
import pycuda.gpuarray as gpuarray

a gpu = gpuarray.to gpu(
numpy.random.randn(4,4).astype(numpy.float32))

a doubled = (2∗a gpu).get()
print a doubled
print a gpu

Figure 4.3. a) An example of the use of PyCUDA, showing the use of the SourceModule
facility for (static) GPU run-time code generation. This simple program uploads a 4× 4 array
of single-precision floating point numbers, multiplies them by two on the GPU, and retrieves
the result. b) An example performing the same function as a), but using GPUArrays.

relevant code change. In most cases, the presence of a compiler cache is already sufficient

here, as compilation is usually several orders of magnitude more time-consuming than

the actual timing run of the code. However, when that is not the case, PyCUDA supports

the building of an application-level cache by offering means for the easy gathering of

identifying information regarding hardware, software and their corresponding versions.

The combination of RTCG with services of the run-time system such as high-precision

timing and code property access already suffices to enable the strategies laid out in Section

4.3. Figure 4.3a) illustrates, by way of a sample program, how the pieces of PyCUDA

explained so far fit together.

61

4.4.1 Abstractions in PyCUDA

One of the fundamental principles in PyCUDA is that while high-level features are desired,

their use should never obstruct access to low-level features, and their use should never

obscure the underlying processes. The purpose of this is twofold:

• Uninhibited low-level access ensures that all opportunities for unanticipated uses of

low-level facilities are retained.

• Whenever a high-level abstraction is used, the developer deciding to use it assumes a

responsibility to know what the abstraction does, fix it if it breaks, or adapt it if is no

longer suitable.

Keeping this in mind, PyCUDA does include a number of abstractions, but strives to keep

them simple and “flat”. It further strives to only include “popular” abstractions that are

expected to be useful to a significant share of client codes, lessening the maintenance

burden on every individual user.

PyCUDA GPU Arrays

PyCUDA provides computational linear algebra involving vectors and multi-dimensional

arrays that are designed to match the interface of the widely-used (CPU-based) Python array

package numpy [Oliphant, 2006]. This array class, called GPUArray, offers a complete

set of features, including

• element-wise algebraic operations such as addition, multiplication, etc.,

• a full set of floating-point transcendental as well as utility functions,

62

a)
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
from pycuda.curandom import rand as curand
from pycuda.elementwise import ElementwiseKernel

x = curand((500000,))
y = curand((500000,))
z = gpuarray.empty like(x)

lin comb = ElementwiseKernel(
” float a, float ∗x, float b, float ∗y, float ∗z”,
”z[i] = a∗x[i] + b∗y[i] ”)

lin comb(5, x, 6, y, z)

b)
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
from pycuda.curandom import rand as curand
from pycuda.elementwise import ElementwiseKernel, \

VectorArg, ScalarArg

x = curand((500000,))
y = curand((500000,))
z = gpuarray.empty like(x)

lin comb = ElementwiseKernel([
ScalarArg(x.dtype, ”a”), VectorArg(x.dtype, ”x”),
ScalarArg(y.dtype, ”b”), VectorArg(y.dtype, ”y”),
VectorArg(x.dtype, ”z”)],
”z[i] = a∗x[i] + b∗y[i] ”)

lin comb(5, x, 6, y, z)

Figure 4.4. Element-wise linear combinations implemented via PyCUDA’s element-wise
operation code generator, accessible as pycuda.elementwise.ElementwiseKernel.
a) shows a simple, statically typed version. b) shows a version that relies on type introspection
to generate code that is appropriate for the given combination of array types. (The result type is
defaulted to the first argument’s type for simplicity.)

• type promotion and arbitrary combinations of data types (e.g. adding 32-bit integers

to 32-bit floating point values results in 64-bit floating point values to preserve

precision),

• reductions such as sums, maxima, and inner products, and

• tight integration with the numpy [Oliphant, 2006] Python array package.

Using the GPUArray infrastructure, PyCUDA also implements GPU-based sparse matrix-

vector multiplication, as described by Garland and Bell [Bell and Garland, 2008, 2009].

Based on this feature, in turn, I was able to include a fast conjugate-gradient-based [Hestenes

and Stiefel, 1952] linear system solver, which uses the GPU to solve large systems about

ten times faster than competing CPU implementations. Both of these facilities interact

seamlessly with the CPU-based SciPy module [Jones et al., 2001–].

On top of GPUArrays, PyCUDA offers code generation features for custom element-

wise and reduction operations. These work by letting the user specify only short snippets

63

of C code for core functionality, while supplying loop slicing and driver code automatically.

Figure 4.4a) illustrates this for the element-wise operation case, implementing a two-vector

linear combination. The reduction code generator is similar in spirit. I would like to

emphasize the ease with which this simple RTCG tool overcomes the common problem of

proliferation of temporary variables plaguing abstract, operator-overloading array packages.

C++ packages employing template techniques can achieve a similar degree of efficiency

through the expression template mechanism [Veldhuizen and Jernigan, 1997], but a robust,

usable implementation of this technique is far more complex than the simple generation

of C code involved in the RTCG solution. In general, the effort required to create RTCG

programs scales very gently with the degree of sophistication required. Figure 4.4b)

illustrates this by extending the previous linear combination code to adapt the vector types

in the generated code dynamically, by making use of Python’s run-time type introspection.

It may be argued that these examples look pleasant only because PyCUDA contains a

nice enough pre-made user interface that suits this purpose. This is certainly true, but this

should be seen in a different light: Only by working in a high-level language was I able

to provide this type of user interface. Since providing usable, abstract interfaces is more

straightforward in scripting environments, this niceness becomes the rule rather than the

exception.

4.4.2 Code Generation with PyCUDA

I now turn to how a user might go about creating abstractions such as ElementwiseKernel

herself. Since PyCUDA can natively process C code (or rather CUDA’s flavor thereof), the

objective is the generation of such code. PyCUDA makes no assumptions about the origins

of the code it processes, which allows the logic involved in the generation to be designed to

match the needs of the application. There are, however, three suggested ways of generating

64

a)
from jinja2 import Template

tpl = Template(”””
global void add(

{{ type name }} ∗tgt,
{{ type name }} ∗op1,
{{ type name }} ∗op2)

{
int idx = threadIdx.x +
{{ thread block size }} ∗ {{block size}}
∗ blockIdx.x;

{% for i in range(block size) %}
{% set offset = i∗thread block size %}
tgt [idx + {{ offset }}] =

op1[idx + {{ offset }}]
+ op2[idx + {{ offset }}];

{% endfor %}
}”” ”)

rendered tpl = tpl .render(
type name=”float”, block size=block size,
thread block size=thread block size)

smod = SourceModule(rendered tpl)

b)
from codepy.cgen import FunctionBody, \

FunctionDeclaration, Typedef, POD, Value, \
Pointer , Module, Block, Initializer , Assign

from codepy.cgen.cuda import CudaGlobal

mod = Module([
FunctionBody(

CudaGlobal(FunctionDeclaration(
Value(”void” , ”add”),
arg decls=[Pointer(POD(dtype, name))

for name in [” tgt ” , ”op1”, ”op2”]])),
Block([

Initializer (
POD(numpy.int32, ”idx”),
”threadIdx.x + %d∗blockIdx.x”
% (thread block size∗block size)),

]+[
Assign(

” tgt [idx+%d]” % (o∗thread block size),
”op1[idx+%d] + op2[idx+%d]” % (

o∗thread block size,
o∗thread block size))

for o in range(block size)]))])

smod = SourceModule(mod)

Figure 4.5. Different methods of Run-Time Code Generation (RTCG) with PyCUDA. Exam-
ple a) generates a piece of C code from a textual template implementing an unrolled version of
vector addition. (using the Jinja2 engine [Ronacher, 2009] in this instance) Example b) builds
a data structure approximating a C syntax tree for the same purpose as a). This tree is then con-
verted to C code using the authors’ codepy package [Klöckner, 2009]. Full context for both ex-
amples can be found in the PyCUDA source tree as examples/demo meta template.py
and examples/demo meta codepy.py.

code which I have found to cover a variety of needs.

Simple textual keyword replacement. This simple technique performs the equivalent of

search-and-replace on source code. It suffices for a surprisingly large range of use

cases, such as the substitution of types and constants into source code at run time. Its

technological reach is increased by combining it with C preprocessor macros. Further

contributing to its attractiveness, Python’s standard library can perform keyword

substitution without relying on external software.

Textual Templating. For code generation applications where control flow and condition-

als are required, but all code variants are textually related, the use of a so-called

templating engine, commonly used for the generation of web pages, offers a natural

65

escalation of the capabilities of keyword substitution. Many templating engines (and

correspondingly, templating languages) exist. Figure 4.5a) demonstrates the use of

the Jinja2 [Ronacher, 2009] engine for the generation of a simple, partially unrolled

vector addition code.

Syntax Tree Building. The use of templating finds its limits if the codes to be generated

cease to be textually related. Then it becomes appropriate to introduce a full represen-

tation of the target code in the host language. The most general such representation

is in the form of a syntax tree. Syntax tree building allows code to be generated using

all facilities of the host language. In particular, while templating is mostly “flat” and

oriented along the lines of the output, syntax tree building allows the user to use, e.g.,

a hierarchy of functions to generate the desired code.

Figure 4.5b) demonstrates the use of the authors’ CodePy [Klöckner, 2009] package

for the generation of the same unrolled vector addition code as in the previous

example. Comparing Figures 4.5a) and b) also reveals that syntax tree generation

does not represent a “giant leap” when compared to templating. This again serves to

emphasize the gentle growth of complexity in GPU RTCG with PyCUDA.

I have already emphasized various times that one of the central goals of PyCUDA is

to facilitate the construction of abstractions, the more sophisticated of which amount to

domain-specific languages. From a compiler construction perspective, the three strategies

above amount to using C as an intermediate representation in the building of a compiler

for such a language. Given that PyCUDA is not aimed at optimization at the lowest,

machine-language levels, this seems to be an appropriate choice.

PyCUDA is available from http://mathema.tician.de/software/pycuda

under the liberal MIT open-source software license. Full documentation is available online

and packaged with the distribution, along with a large body of examples and tests. The

http://mathema.tician.de/software/pycuda

66

package supports all platforms on which CUDA is available. PyCUDA has been used in a

variety of research codes (see Section 4.5 for a few examples). In addition, PyCUDA can

be used interactively from the command line as well as from the notebook interface of the

Sage exploratory computation system [Stein and Joyner, 2005].

4.4.3 PyOpenCL: OpenCL and GPU RTCG

For those concerned about the vendor specificity of the CUDA compute abstraction, Py-

OpenCL, a sister project of PyCUDA, has recently been released by the authors under

the same terms and is available from http://mathema.tician.de/software/

pyopencl. It targets the OpenCL [The Khronos OpenCL Working Group, 2008] industry

standard compute abstraction. PyOpenCL extends the methods presented thus far to a

significantly wider range of devices and vendors. At the time of this writing, PyOpenCL

enables the basic premise of this chapter, but has not yet grown to include most of the

high-level facilities available in PyCUDA.

4.5 Successful Applications

PyCUDA has been used successfully in a considerable number of research projects. I

outline a few projects and their use of RTCG in detail below. Beyond those, the following

researchers have agreed to let me mention their use of PyCUDA:

• Ian Cullinan and the SAFE Advanced Surveillance group at NICTA are using Py-

CUDA to search large facial image databases. Their work seamlessly integrates a

GPU-accelerated search algorithm with a Python web interface written using the

http://mathema.tician.de/software/pyopencl
http://mathema.tician.de/software/pyopencl

67

Django framework. Using PyCUDA for this task approximately halved the time it

takes to run a search.

• Tomasz Rybak at Bialystok Technical University is applying GPU computing to

the generation of recurrence diagrams for time series analysis. Using PyCUDA for

his analyses, he was able to achieve an 85-fold speedup of his computations. He is

using code generation strategies to achieve even greater speeds in cases when data

set characteristics allows for using faster memory.

• Chris Heuser with the Center for the Study of Complex Systems at the University

of Michigan used PyCUDA to implement an agent-based model. PyCUDA allowed

for the easy integration of many of the model’s features. In the future, RTCG will

be used to allow run-time alterations of agent characteristics, world size, and other

model parameters.

• Romain Brette and Dan Goodman are using PyCUDA to simulate spiking neural

networks with their simulator “Brian” [Goodman and Brette, 2008]. Brian relies on

PyCUDA to generate run-time GPU code for the integration of differential equations

provided by the user in a Python script. GPU performance was up to 60 times faster

than a comparable CPU implementation for some models.

• Nicolas Pinto, David Doukhan, James J. DiCarlo, and David D. Cox [Pinto et al.,

2009] are using PyCUDA as a means of accelerating their investigation in Com-

putational Visual Neuroscience. Their approach involves the highly parallel, high-

throughput screening of very many brain-inspired models of the human visual cortex.

Because of the multitude of parameters examined, RTCG is crucial to their approach.

• Bryan Catanzaro, Yunsup Lee and coworkers [Catanzaro et al., 2009] have used

PyCUDA as the foundation of higher level programming tools, performing Selective

Embedded Just In Time Specialization [Catanzaro et al., 2009]. The idea behind

68

SEJITS is to provide highly productive environments for parallel programming

through the use of specialized runtime code-generation. They create domain specific

modules, called specializers, which use metaprogramming to analyze a high level

description of a particular computation, and then perform JIT code generation for

that particular computation.

• Lastly, of course, in the implementation of discontinuous Galerkin finite element

PDE solvers, as will be described in Chapter 5.

A comprehensive, up-to-date listing of successful uses of PyCUDA, PyOpenCL and GPU

run-time code generation in general is maintained on the web at http://wiki.tiker.

net/PyCuda/ShowCase.

4.6 Conclusions

I have described the powerful consequences of the confluence of two events in high-

performance computing: First, the emergence of general-purpose programmable GPUs as

a viable mass market product has made performance jumps of an order of magnitude or

more a reality for a number of important applications. Second, the maturing of open-source

scripting languages and their software ecosystems has enabled similar jumps in productivity

for creators of scientific software. It is straightforward to see that a hybrid model combining

GPUs and scripting offers numerous advantages over more traditional models of software

creation.

The main message of this chapter is that through the natural addition of GPU run-time

code generation to this mixture, one automatically combines the strengths and compensates

for the weaknesses of each of the technologies involved, leading to a compelling way of

http://wiki.tiker.net/PyCuda/ShowCase
http://wiki.tiker.net/PyCuda/ShowCase

69

constructing high-performance computational software.

To make GPU RTCG accessible, I have built, documented, and published PyCUDA, a

toolkit that allows the easy application of the principles described here. I have described

the facilities available in PyCUDA and demonstrated their use. I will continue to extend

and maintain both PyCUDA and PyOpenCL.

Based on these toolkits, I will explore the construction of tools that allow researchers

to focus on their target areas, while leaving the detailed work involved in accomplishing

basic computational tasks to the machine. One effort that is currently underway will use

empirical optimization to try and find well-performing kernels for a certain set of basic

array operations, such as those involved in dense numerical linear algebra or certain PDE

solvers. Further, it should not be forgotten that PyCUDA was born out of the need of

actual applications, as Section 4.5 illustrated. As the research in these application areas

progresses, I fully expect that more advanced needs will drive the implementation of even

better tools.

In summary, I believe that the flexibility of run-time generated code provides a crucial

tool in unlocking the performance capabilities of advanced hardware to a broader mass of

developers, and I look forward to the opportunities and challenges that future hardware

generations will bring.

CHAPTER FIVE

Discontinuous Galerkin Methods on

Graphics Processors

70

71

5.1 Introduction

In this chapter, I will explore how and with what benefit discontinuous Galerkin (DG)

methods as introduced in Section 2.1 can be brought onto GPUs.

Two main questions arise in this endeavor: First, how shall the computational work be

partitioned? In a distributed-memory setting, the answer is quite naturally domain decom-

position. For the shared-memory parallelism of a GPU, there are several possibilities, and

there is often no single answer that works well in all settings. Second, DG implementations

on serial processors often rely heavily on the availability of off-the-shelf, pre-tuned linear

algebra and communication primitives. These aids are either unavailable or unsuitable on

a GPU platform, and in stark contrast to the relatively straightforward implementation of

DG on serial machines, optimal use of graphics hardware for DG presents the implementer

with a staggering number of choices. I will describe these choices as well as a generative

approach that exploits them to adapt the method to both the problem and the hardware at

run time.

Using graphics processors for computational tasks is by no means a new idea. In fact,

even in the days of marginally programmable fixed-function hardware, some (especially

particle-based) methods obtained large speedups from running on early GPUs. (e.g. [Li

et al., 2003]) In the domain of solvers for partial differential equations, Finite-Difference

Time-Domain (FDTD) methods are a natural fit to graphics processors and obtained

speedups of about an order of magnitude with relative ease (e.g., [Krakiwsky et al., 2004]).

Finite Element solvers were also brought onto GPUs relatively early on (e.g., [Göddeke

et al., 2005]), but often failed to reach the same impressive speed gains observed for the

simpler FD methods. In the last few years, high-level abstractions such as Brook and

Brook for GPUs [Buck et al., 2004] have enabled more and more complex computations on

72

streaming hardware. Building on this work, Barth et al. [Barth and Knight, 2005] already

predicted promising performance for two-dimensional DG on a simulation of the Stanford

Merrimac streaming architecture [Dally et al., 2003]. Nowadays, compute abstractions

are becoming less encumbered by their graphics heritage [Lindholm et al., 2008, Nvidia

Corporation, 2009]. This has helped bring algorithms of even higher complexity onto the

GPU (e.g. [Gumerov and Duraiswami, 2008]). Taking advantage of these recent advances,

this chapter presents, to the best of my knowledge, one of the first general finite-element

based solvers that achieves more than an order of magnitude of speedup on a single real-

world consumer graphics processor when compared to a CPU implementation of the same

method.

A sizable part of this speedup is owed to my use of high-order approximations. High-

order methods require more work per degree of freedom than low-order methods. This

increased arithmetic intensity shifts the method from being limited by memory bandwidth

towards being limited by compute bandwidth. The relative abundance of cheap computing

power on a GPU makes high-order methods especially beneficial there.

In this chapter, I will discuss the numerical solution of linear hyperbolic systems of

conservation laws using DG methods on the GPU. Important examples of this class of partial

differential equations (PDEs) include the second-order wave equation, Maxwell’s equations,

and many relationships in acoustics and linear elasticity. Certain nontrivial adjustments to

the discontinuous Galerkin method become necessary when treating nonlinear problems

(see, e.g., [Hesthaven and Warburton, 2007, Chapter 5]). One possible scheme to deal with

the issues arising in the solution of nonlinear systems of conservation laws using DG on a

GPU will be investigated in the subsequent chapter.

I will further focus on tetrahedra as the basic discretization element for a number

of reasons. First, it is undisputed that three-dimensional calculations are in many cases

73

both more practically relevant and more plagued by performance worries than their lower-

dimensional counterparts. Second, they have the most mature meshing machinery available

of all commonly used element shapes. And third, when compared with tensor product

elements, tetrahedral DG is both more arithmetically intense and requires fewer memory

fetches. Overall, it is conceivable that tetrahedral DG will benefit more from being carried

out on a GPU.

This chapter describes the mapping of DG methods onto the Nvidia CUDA program-

ming model. Hardware implementations of CUDA are available in the form of consumer

graphics cards as well as specialized compute hardware. In addition, the CUDA model has

been mapped onto multi-core CPUs with good success [Stratton et al., 2008]. Rather than

claim an artificial generality, I will describe my approach firmly in the context of this model

of computation. While that makes this work vendor-specific, I believe that most of the

ideas presented herein can be reused either identically or with mild modifications to adapt

the method to other, related architectures. The emerging OpenCL industry standard [The

Khronos OpenCL Working Group, 2008] specifies a model of parallel computation that

is a very close relative of CUDA, promising broad applicability of the methods presented

herein. It should be noted, however, that OpenCL can be used with a multitude of device

types whose suitability for DG in general and my methods in particular will of course vary.

The chapter is organized as follows: I give a brief overview of the theory and serial

implementation of DG in Section 2.1. The CUDA programming model is described in Sec-

tion 2.2. Section 5.2 explains the basic design choices behind my approach, while Section

5.3 gives detailed implementation advice and pseudo-code. Section 5.4 characterizes my

computational results in terms of speed and accuracy. Finally, in Section 5.5 I conclude

with a few remarks and ideas for future work.

74

5.2 DG on the GPU: Design

The answers to three questions emerge as the central design decisions in mapping a

numerical method into an algorithm that can run on a GPU:

Computation Layout. How can the task be decomposed into a grid of thread blocks, given

there cannot be any inter-block communication? Is it necessary to use a sequence of

grids instead of a single grid?

Data Layout. How well does the data conform to the device’s alignment requirements?

Where and to what extent will padding be used?

Fetch Schedule. When will what piece of the data be fetched from global into on-chip

memory, i.e. registers or shared memory?

Note that the computation layout and the data layout are often the same, and rarely

independent. For the bandwidth reasons described in Section 2.2, the index of the thread

computing a certain result should match the index where that result is stored. Post-

computation permutations come at the cost of setting aside shared memory to perform the

permutation. It is therefore common to see algorithms designed around the principle of

one thread per output. The fetch schedule, lastly, determines how often data can be reused

before it is evicted from on-chip storage.

Unstructured discontinuous Galerkin methods have a number of natural granularities:

• the number Np of DOFs per element,

• the number Nfp of DOFs per face,

• the number Nf of faces per element,

75

• the number n of unknowns in the system of conservation laws.

The number of elements K also influences the work partition, but it is less important in the

present discussion.

The first three granularities above depend on the chosen order of approximation as

well as the shape of the reference element. Figure 5.1(a) gives a few examples of their

values. Perhaps the first problem that needs to be addressed is that many of the DOF

counts, especially at the practically relevant orders of 3 and 4, conform quite poorly to

the hardware’s preference for batches of 16 and 32. A simple solution is to round the

size of each element up to the next alignment boundary. This leads to a large amount

of wasted memory. More severely, it also leads to a large amount of wasted processing

power, assuming a one-thread-per-output design. For example, rounding Np for a fourth-

order element up to the next warp size boundary (T = 32) leads to 45% of the available

processing power being wasted. It is thus natural to aggregate a number of elements to get

closer to an alignment boundary. Now, each of the parts of a DG operator is likely to have its

own preferred granularity corresponding to one thread block. One option is to impose one

such part’s granularity on the whole method. I find that a better compromise is to introduce

a sub-block granularity for this purpose. My method aggregates the smallest number KM

of elements to achieve less than 5% waste when padding up to the next multiple NpM

of T/2 = 16. Figure 5.1(b) illustrates the principle. I then impose the restriction that

each thread block work on an integer number of these microblocks. I assign the symbol

nM := dK/KMe to the total number of microblocks.

The next question to be answered involves decomposing a task into an appropriate set

of thread blocks. This decomposition is problem-dependent, but a few things can be said in

general. For instance, assume a task that has to be performed in parallel, independently,

on a number of work units, and that requires some measure of preparation before actual

76

N Np Nfp NfNfp

1 4 3 12
2 10 6 24
3 20 10 40
4 35 15 60
5 56 21 84
6 84 28 112
7 120 36 144

(a) DOF counts for moderate-
order tetrahedral elements.

Element

Element

. . .

Element

Element

. . .

Element

Element

. . .

Padding

Np
KMNp

128

64

0

(b) Microblocked memory layout.

Figure 5.1. Matching DG granularities to GPU alignment boundaries.

work units can be processed. The issue is to find the right amount of work to be done by

a single thread block. One may let the block complete work units in parallel, alongside

each other in a single thread (‘in-line’ for brevity), or sequentially. I will use the symbols

wp, wi and ws for the number of work units processed in each way by one thread block.

Thus the total number of work units processed by one thread block is wpwiws. A large wp

may improve speed through increased parallelism and reuse of data in shared memory, but

typically also requires additional shared memory buffer space. Increasing wi gains speed

through reuse of data in registers. Take, for example, a two-operand procedure like matrix

multiplication. Here, increasing wi allows a single thread to use data from the first operand,

once loaded into registers, to process more than one column of the second operand. Like

wp, varying wi also influences buffer space requirements. ws, finally, amortizes preparation

work over a certain number of work units, at the expense of making the computation more

granular. Achieving a balance between these aspects is not generally straightforward, as

Figure 5.8(b) will demonstrate. Note that each of the methods discussed below will have

its own values for wp, wi, and ws.

I noted above that the number n of variables in the system of conservation laws (2.1)

also introduces a granularity. In some cases, it may be advantageous to allow this system

size to play a role in deciding data and computation layouts. One might attempt do this by

77

choosing a packed field layout, i.e. by storing all field values at one node in n consecutive

memory locations. However, a packed field layout is not desirable for a number of reasons,

the most significant of which is that it is unsuited to a one-thread-per-output computation.

If thread 0 computes the first field component, thread 1 the second, and so on, then each

field component is found by evaluating a different expression, and hence by different code.

This cannot be efficiently implemented on SIMT hardware. One could also propose to take

advantage of the granularity n by letting one thread compute all n different expressions

in the conservation law for one node. It is practical to exploit this for the gathering of the

fluxes and the evaluation of F (u). For the more complicated lifting and differentiation

stages on the other hand, this leads to impractical amounts of register pressure. I find that,

especially at moderate orders, the extra flexibility afforded by ignoring n outweighs any

advantage gained by heeding it. If desired, one can always choose KM = n or wi = n to

closely emulate the strategies above. Further, note that for the linear case discussed here,

one has significant freedom in the ordering of operations, for example by commuting the

evaluation of F (uk) with local differentiation.

A final question in the overall algorithm design is whether it is appropriate to split

the DG operator into the subtasks indicated in Figure 2.2, rather than to use a single or

only two grids to compute the whole operator. Field data would need to be fetched only

once, leading to a good amount of data reuse. But at least for the scarce amounts of shared

memory buffer space in current-generation hardware, this view is too simplistic. Each

individual subtask tends to have a better, individual use for on-chip memory. Also, it is

tempting to combine the gather and lift stages, since one works on the immediate output

of the other. Observe however that there is a mismatch in output sizes between the two.

For each element, the gather outputs NfpNf values, while the lift outputs Np. These two

numbers differ, and therefore the optimal computation layouts for both kernels also differ.

While it is possible to use the larger of the two computation layouts and just idle the overlap

78

for the other computation, this is suboptimal. I find that the added fetch cost is easily

amortized by using an optimal computation layout for each part of the flux treatment.

5.3 DG on the GPU: Implementation

5.3.1 How to read this Section

To facilitate a detailed, yet concise look at my implementation techniques, this section

supplements its discussion with pseudo-code for some particularly important subroutines.

Pseudo-code contains all the implementation details and exposes the basic control and

synchronization structure at a single glance. In addition to the code, there is text discussing

every important design decision reflected in the code.

To maximize readability, I will rely on a number of notational conventions. First, dxen

is the smallest integer larger than x divisible by n. Next, [a, b〉 denotes the ‘half-open’ set

of integers {a, . . . , b− 1}. Using this notation, I may indicate ‘vectorized’ statements, e.g.

an assignment a[k,k+n〉 ← k[0,n〉. The loops indicated by these statements are always fully

unrolled in actual code. Depending on notational convenience, I alternate between subscript

notation ai and indexing notation a[i]. Both are to be taken as equivalent. Sometimes, I

use both sub- and superscripts on a variable. This helps brevity and readability, but is only

done if the memory layout of the corresponding variable is clarified elsewhere. Otherwise,

for multidimensional indices, C-like (row-major) data layout is assumed.

Lastly, the GPU offers many different types of storage. To avoid confusion, I assign

each type of storage a separate typographical convention, as outlined in Table 5.1. If and

only if two storage locations of different types are used for related data, I use the same

79

Convention Storage Type
v Italic font Constant or unrolled loop variable
v Typewriter font Register variable
vS Superscript S Variable in shared memory
vG Superscript G Variable in global memory
vT Superscript T Variable bound to a texture

Table 5.1. Typographical conventions for different types of GPU storage.

u . . .

E
lem

ent0
E

lem
ent1

E
lem

ent2
E

lem
ent3

E
lem

ent8

L Lu . . .

E
lem

ent0
E

lem
ent1

E
lem

ent2
E

lem
ent3

E
lem

ent8

(a) Applying an element-local
DG operator L to a field u by
a matrix-matrix product.

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Element
Face Face Face Face

Padding

Nfp
NfNfp

KMNfNfp NfM

256
128

0

(b) Output memory layout for the flux gather stage,
input memory layout of the flux lifting stage.

Figure 5.2. Implementation aspects of flux lifting.

letter for both.

5.3.2 Flux Lifting

Lifting is one of the element-local components of a discontinuous Galerkin operator, and,

for simplicial elements, is efficiently represented by a matrix-matrix multiplication as in

Figure 5.2(a), followed by an element-wise scaling.

The first, tempting approach to implementing this is to take advantage of the vendor-

provided GPU-based BLAS work-alike. This is hampered by sub-optimal performance and

strict alignment requirements. As a result, a custom algorithm is in order.

One key to high performance on the GPU is to find a good use for the scarce amount of

80

shared memory. Both operands in an element-local matrix multiplication see large amounts

of reuse: Each field value is used Np times, and each entry of a local matrix is used Np

times for each element. It is therefore a sensible wish to load both operands into shared

memory. For the tetrahedral elements targeted here, this is problematic. Even for elements

of modest order, the matrix data quickly becomes too large. This restricts the applicability

of a matrix-in-shared approach to low orders, and I will therefore first examine the more

broadly applicable method of using the shared memory for field data. Still, matrix-in-shared

does provide a benefit for certain low orders and is examined in the context of element-local

differentiation in Section 5.3.4.

I choose a one-thread-per-output design for flux lifting. This dictates that computation

and output layouts match Figure 5.1(b). But the input layout for lifting is mildly different:

The flux gather, which provides the input to lifting, extracts NfNfp DOFs per element.

Recall that the layout of Figure 5.1(b) provides Np DOFs per element. Since typically

Np 6= NfNfp, I introduce a mildly different layout as shown in Figure 5.2(b), using the

same number KM of elements as found in a microblock, padded to half-warp granularity.

This padding is likely somewhat more wasteful than the carefully tuned one of Figure

5.1(b). Fortunately, this is irrelevant: I will not be using Figure 5.2(b) as a computation

layout, and data in this format is used only for short-lived intermediate results. Overall, the

resulting memory layout has NfM := dNfNfpKMeT/2 DOFs per microblock.

I am now ready to discuss the actual algorithm, at the start of which one needs to fetch

field data into shared memory. Because I chose a one-thread-per-output computation layout,

I will have Np threads per element fetching data. Due to the mismatch between Np and

NfNfp, multiple fetch cycles may be required to fetch all data. In addition, the last such

fetch cycle must involve a length check to avoid overfetching. It is important to unroll this

fetch loop and to use some care with the ending conditional to still allow fetch pipelining1

1Pipelining is a fetch optimization strategy. It performs high-latency fetches in batches ahead of a

81

to occur.

With the field data in shared memory, the matrix data is fetched using texture units. By

way of the texture cache, I hope to take advantage of the significant redundancy in these

fetches. The matrix texture should use column-major order: Realize that within a block,

a large number of threads, each assigned to a row of the matrix, load values from each

column in turn. Column-major order gives the most locality to this access pattern.

With this preparation, the actual matrix-matrix product can be performed. Since all

threads within one element load each of the element’s nodal values from shared memory in

order, these accesses are handled as a broadcast and therefore conflict-free. Conflicts do

occur, however, if a half-warp straddles an element boundary within a microblock. In that

case, threads before and after the element boundary access different elements, and therefore

a double-broadcast bank conflict occurs. Figure 5.3(a) shows the genesis of this conflict.

Fortunately, that does not automatically mean that microblocking is a bad idea. It turns out

that the performance lost when using no microblocking and hence full padding is about

the same as the one lost to these bank conflicts. Even better: there is a way of mitigating

the conflicts’ impact without having to forgo the performance benefits of microblocking.

The key realization is that even if only one half of a warp encounters a conflict, the other

half of the warp is made to wait, too, regardless of whether it conflicted. Conversely, if one

assembles warps in such a way that conflict-prone and non-conflict-prone half-warps are

kept separate, then one avoids unnecessary stalling. If wp > 1, then one can achieve such a

grouping by laying out the computation as seen in Figure 5.3(b).

Algorithm 5.1 represents the aggregate of the techniques described in this section.

computation. Since a warp only stalls when unavailable data is actually used in a computation, this allows a
single thread to wait for multiple memory transactions simultaneously, decreasing latency and reducing the
need for parallel occupancy. The Nvidia compiler automatically pipelines fetches if the code structure allows
it.

82

wp

NpMNpKMNp

El. Data thread
num-
ber

(a) ‘Conventional’, conflict-
aggravating layout. The first and
third warp (red) serialize access
because of conflicts in the second
half-warp of each microblock. Only
the second warp (green) proceeds
without conflicts.

wp

NpMNpKMNp

El. Data thread
num-
ber

(b) Improved, conflict-mitigating lay-
out. Only the second warp (red) serial-
izes access for conflicts. The first and
third warp (green) remain conflict-
free.

Figure 5.3. Computation layouts for matrix multiplication with fields in shared memory.

Observe that since there is no preparation work, one may set ws := 1. I should stress at this

point that both the field-in-shared and the matrix-in-shared approach can be used for both

lifting and element-local differentiation. Adapting the strategy of Algorithm 5.1 for the

latter is quite straightforward.

5.3.3 Flux Extraction

In a strong-form, nodal implementation of the discontinuous Galerkin method, flux extrac-

tion or ‘gather’ iterates over the node indices of each face in the mesh and evaluates the flux

expression (2.5) at each such node. As such, it is a rather quick operation characterized by

few arithmetic operations and a very scattered fetch pattern. This non-local memory access

pattern is the most expensive aspect of flux extraction on a GPU, and one’s foremost goal

should therefore be to minimize the number of fetches at all costs. For linear conservation

laws, one may with very little harm treat the element-local parts of a DG operator as if they

acted on scalar fields. This is however not true of the non-local flux extraction. Fetching all

fields only once and then computing all n fluxes saves a significant n2 − n fetches of each

facial node value.

83

Algorithm 5.1 Flux Lifting, field-in-shared.

Require: A grid of dnM/wpwie × 1 blocks of size T/2× wp ×NpM/(T/2).
Require: Inputs: LT, the reference element’s lifting matrix; iT, the per-element inverse

Jacobians; fG, the surface fluxes in the format of Figure 5.2(b).
Ensure: Output: rG, the surface fluxes fG multiplied by the per-element lifting matrix Lk.
m← (bxwp + ty)wi { the base microblock number }
i← (T/2)tz + tx { this thread’s DOF number within its microblock }
{ load data }
for all unrolled b ∈ [0, ddNfMeT/dNpMeT e〉 do

if bNpM + i < NfM then
fSty ,[0,wi〉,bNpM+i ← fG(m+[0,wi〉)dNfM eT+bNpM+i

end if
end for

Barrier+Memory Fence
{ perform matrix multiply }
if i < KMNpM then

r[0,wi〉 ← 0
for all unrolled n ∈ [0, NfNfp〉 do

r[0,wi〉 ← r[0,wi〉 + LT[i mod Np, n]fSty ,[0,wi〉,n
end for
rG(m+[0,wi〉)NpM+i ← iT[(m + [0, wi〉)KM + bi/Npc]r[0,wi〉

end if

The next potential savings comes from the fact that the fluxes on the two sides of an

interior face pair use the same face data. By computing fluxes for such face pairs together,

one can cut the number of interior face fetches in half. Computing and storing opposite

fluxes together is of course only possible if the task decomposition assigns both to the same

thread block. This decomposition should therefore be constructed carefully.

To help find the properties of the task decomposition, observe that by choosing to

compute opposite fluxes together, I am implicitly rejecting a one-thread-per-output design.

To accommodate opposite faces’ fluxes being computed simultaneously, I will allow the

gathered fluxes to be written into a shared memory buffer in random order in time, but

conforming to the output layout of Figure 5.2(b). Once completed, this shared memory

buffer will then be flushed to global memory in one contiguous write operation. This limits

the range of possible choices for task decomposition: Thread blocks will output contiguous

84

pieces of data in the output layout. This means that the smallest granularity on which a

thread block for flux extraction may begin and end is that of a microblock: I will let each

thread block compute fluxes on an integer number MB of microblocks. Observe that this is

not ideal: The natural task decomposition for flux extraction is by face pair, not by element,

nor, even worse, by a group of elements as large as a microblock. Nonetheless, given my

output memory layout, this decomposition is inevitable.

But all is not lost. By carefully controlling the assignment of elements to microblocks,

and again by carefully choosing the assignment of microblocks to flux extraction thread

blocks, I can hope to recover many block-interior face pairs within a thread block. Note

the far-reaching consequences of what was just decided: One needs to have the elements

participating in a flux-gather thread block sit adjacent to each other in the mesh. To achieve

this, I partition the mesh into pieces of at most KMMB elements each and then assign the

elements in each piece to microblocks sequentially. This means nothing less than letting

the mesh numbering be decided by what is convenient for the gathering of fluxes.

What can be said about the required partition? It is important to realize that this is

a fairly different domain decomposition problem than the one for distributed-memory

machines. First, there is a hard limit of KMMB elements per piece, as determined by the

amount of shared memory set aside for write buffering. Second, there is a (somewhat

softer) limit on the number of block-external faces. This limit stems from the fact that

information about the faces on which fluxes are gathered needs to be stored somewhere.

Obviously, block-internal face pairs can share this information and therefore require less

storage–one descriptor for each two faces. Face pairs on a block boundary are less efficient.

They require one descriptor for each face. If the block size KMMB is relatively large, a

bad, splintered partition may have too many boundary faces and therefore exceed the “soft”

limit on available space for face pair descriptors. Therefore, for large blocks, one requires a

‘good’ partition with as few block-exterior face pairs as possible. For very small blocks, on

85

the other hand, the problem is exactly opposite: If KMMB is small, the absolute quality of

the mesh partition is not as critically important: The small overall number of faces means

that one will not run out of descriptor space, making the soft limit even softer.

So, how can the needed partition be obtained? A natural first idea is to use conventional

graph partitioning software (e.g. [Karypis and Kumar, 1999]). Problematically, these

packages tend to fail when partitioning very large meshes into very many small parts.

In addition, the ‘soft’ and ‘hard’ limits are difficult to enforce in these packages, so

that obtaining a conforming partition may take several ‘attempts’ with increasing target

partition sizes. Increased target partition sizes, in turn, mean that there are microblocks

where element slots go unassigned. This means that generic graph partitioners are not a

universal answer. They work well and generate good-quality partitions if KMMB ' 10.

Otherwise, I fall back on a simple greedy breadth-first agglomerator designed to exactly

meet the ‘hard’ limit. It picks elements by a total connectivity heuristic and is illustrated

in Algorithm 5.2. The greedy algorithm may produce a few very ‘bad’ scattered blocks

with many external faces, but I have found that they matter neither in performance, nor in

keeping the ‘soft’ limit.

Once the partition is constructed, one obtains for each block a number of elements

whose faces fall into one of three categories: intra-block interior, inter-block interior,

and boundary faces. One then designs the algorithm to walk an array of data structures

describing face pairs, each of which falls into one of these categories. Within this array,

each face pair structure contains all information needed to gather and compute the fluxes for

its target face(s). Descriptors for intra-block interior face pairs drive the flux computation

for two faces at once, while the other two kinds only drive the computation for one face.

The array is loaded from global into shared memory when each thread block begins its

work. To minimize branching and to save storage space in each descriptor, one makes the

kind of each face pair descriptor implicit in its position in the array. To achieve this, one

86

Algorithm 5.2 Simple Greedy Partition.
Require: Input: set of elements E with connectivity C := {(e1, e2) :
e1 and e2 share a face}.

Ensure: Output: the partition, a set of blocks P , each of size ≤ l.
P ← ∅
while E 6= ∅ do

Q← {a seed element from E} (a queue of candidate elements)
B ← ∅ (the block currently being generated)
loop

Find and remove the element e ∈ Q that shares the most faces with B.
if e ∈ E then

Remove e from E, add it to B.
if |B| = l then

Make first entry of Q the new seed element, break the loop.
end if
Q← Q ∪ {f : (e, f) ∈ C}

end if
if Q = ∅ then

if E = ∅ then
Break the loop.

else
Add an arbitrary element from E to Q.

end if
end if

end loop
P ← P ∪ {B}

end while

87

orders the array by the face pair’s category and store how many face pairs of each category

are contained in the array.

Because I am implementing a nodal DG method, face index lists play an important role

in the gather process: Each face’s nodal values need to be extracted from a given volume

field. Since a tetrahedron has four faces, there are four possible index subsets at which each

face’s DOFs are found, all of length Nfp. Knowing these index subsets enables one to find

surface nodal values for one element. But one needs to find corresponding nodal values on

two opposite elements. Therefore, one may need to permute the fetch ordering of one of

the elements in a face pair. Altogether, to find opposing surface nodal values, one needs to

store two index lists. Since the number of distinct index lists is finite, it is reasonable to

remove each individual index list from the face pair data structure and to instead refer to a

global list of index lists. I find that a small texture provides a suitable storage location for

this list. Finally, note that intra-block face pairs require another index list: If one strives to

conform to an assumed ‘natural’ face ordering of one ‘dominant’ face, writing the other’s

data into the purely facial structure from Figure 5.2(b) requires a different index list than

the one needed to read the element’s volume data.

Of all the parts of a DG operator, the flux gather stage is the one that is perhaps least

suited to execution on a GPU. The algorithm is data-driven and therefore branch-intensive,

it accesses memory in an erratic way, and, as n grows, it tends to require a fair bit of register

space. It is encouraging to see that despite these issues, it is possible to design a method,

given in Algorithm 5.3, that performs respectably on current hardware.

88

Algorithm 5.3 Flux Extraction.

Require: a grid of dnM/MBe × 1 blocks of size Nfp × wp × 1.
Require: Inputs: (uT)[0,n〉, the set of fields of which fluxes are to be computed, each as a

separate texture, dG, face information records, JT, face index list array.
Ensure: Outputs: (fG)[0,n〉, the surface fluxes for each face of each element, as a sequence

of scalar fields.
Load face information records from dG[bx] into the shared memory variable dS.

Barrier+Memory Fence
e← ty { initialize the number of the face pair this thread is working on }
while e < # of interior face pairs in dS do

(i−, i+)← dS[e].fetch base−,+ + JT[dS[e].fetch idx list nr−,+, tx]

u
[0,n〉
−,+ ← (uT)

[0,n〉
i−,+

(fS)[0,n〉[dS[e].store base− + tx]

← dS[e].face jacobian · [n̂ · F − (n̂ · F)∗][0,n〉(u
[0,n〉
− , u

[0,n〉
+)

(fS)[0,n〉[dS[e].store base+ + jT[dS[e].store idx list nr+, tx]]

← dS[e].face jacobian · [(−n̂) · F − ((−n̂) · F)∗](u
[0,n〉
+ , u

[0,n〉
−)

e← e + wp
end while
while e < # of interior and exterior face pairs in dS do

(i−, i+)← dS[e].fetch base−,+ + JT[dS[e].fetch idx list nr−,+, tx]

u
[0,n〉
−,+ ← (uT)

[0,n〉
i−,+

(fS)[0,n〉[dS[e].store base− + tx]

← dS[e].face jacobian · [n̂ · F − (n̂ · F)∗](u
[0,n〉
− , u

[0,n〉
+)

e← e + wp
end while
while e < # of face pairs in dS do

i− ← dS[e].fetch base− + JT[dS[e].fetch idx list nr−, tx]

u
[0,n〉
− ← (uT)

[0,n〉
i−

u
[0,n〉
+ ← b(u

[0,n〉
− , dS[e]) { calculate boundary condition }

(fS)[0,n〉[dS[e].store base− + tx]

← dS[e].face jacobian · [n̂ · F − (n̂ · F)∗](u
[0,n〉
− , u

[0,n〉
+)

e← e + wp
end while

Barrier+Memory Fence
(fG)

[0,n〉
bxMBNfM+[0,MBNfM 〉 ← (fS)

[0,n〉
[0,MBNfM 〉 (not unrolled)

89

5.3.4 Element-Local Differentiation

Unlike lifting, element-local differentiation must be represented not as one matrix-matrix

product (see Figure 5.2(a)), but as d = 3 separate ones whose results are linearly combined

to find the global x-, y- and z-derivatives. Each of the d differentiation matrices hasNp×Np

entries and is applied to the same data. To maximize data reuse and minimize fetch traffic,

it is immediately apparent that all d matrix multiplications should be carried out “in-line”

along with each other.

Superficially, this makes differentiation look quite like a lift where one has chosen

wi = d. But there is one crucial difference: the three matrices used for differentiation are

all different. Increasing wi drives data reuse in lifting simply by occupying more registers.

As will be seen in Section 5.4, this suffices to make it go very fast. Differentiation on the

other hand already has a built-in “wi multiplier” of d and has to deal with different matrices.

Both factors significantly increase register pressure. Stated differently, this means that it is

unlikely that I will be able to drive matrix data reuse by using more registers as I was able

to do for lifting. But the matrix remains the most-reused bit of data in the algorithm. In this

section, I will therefore attempt to exploit this reuse by storing the matrix, not the field, in

shared memory.

I have already discussed in Section 5.3.2 that the matrix-in-shared approach can only

work for low orders because of the rapid growth of the matrix data with N . At first, this

seems like a problematic restriction that makes the approach less general than it could be.

It can however be turned into an advantage: Since I can assume that the algorithm runs at

orders six and below, I can exploit this fact in my design decisions.

I will begin the discussion of this approach by figuring how the matrix data should be

loaded into shared memory. As in Section 5.3.2, I will be adopting a one-thread-per-output

90

approach. A straightforward first attempt may be to load all d local differentiation matrices

into shared memory in their entirety. Then each thread computes a different row of the

matrix-vector product, and in doing so, thread number i accesses the ith row of the matrix.

Without loss of generality, let the matrix be stored in row-major order, so that thread i

accesses memory cell number iNp. Shared memory has T/2 = 16 distinct memory banks,

and therefore the access is conflict-free iff Np and 16 are relatively prime, or, more simply,

iff Np is odd. This is encouraging: One can achieve a conflict-free access pattern simply by

adding a ‘padding’ column if necessary to enforce an odd stride S. Figure 5.5(a) shows the

resulting assignment of matrix data to shared memory banks, and Figure 5.5(b) illustrates

the resulting conflict-free access pattern.

Unfortunately, this is too simplistic. In the presence of microblocking, conflict-free

access becomes more difficult. If a half-warp straddles one or more element boundaries,

bank conflicts are likely to result. The access not only has a stride S, but also incorporates

a jump from the end of the matrix to its beginning, a stride of (Np− 1)S. And unlike in the

previous case, one cannot simply add a pad row to make the access conflict-free. Figure

5.5(c) displays the problem.

One way to avoid the disastrous end-to-beginning jump and to maintain the conflict-free

access pattern would be to duplicate the matrix data from the first rows beyond the end

of the matrix. This is workable in principle, but in practice I am already filling the entire

shared memory space with matrix data and am unlikely to be able to afford the added

duplication. Fortunately, the duplication idea can be saved, and there exists a conflict-free

matrix storage layout that does not require one to abandon microblocking.

Departing from the idea that I will store the entire matrix, I now aim at storing just a

constant-size row-wise segment of the matrix. Then, if the end of the matrix falls within

a segment, I fill up the rest of the segment with rows from the beginning, providing the

91

D

D

D

NR

Np

NpM

NMNp

Np

u

Du

Figure 5.4. Row-wise segmentation of a microblocked matrix-matrix product. Element
boundaries are shown in black, segment boundaries in red. Also shown: Fetch redundancy
caused by segmentation. The second segment fetches field data from both the first and the
second element because it overlaps rows from both.

necessary duplication for conflict-free access. For this layout, I consider a composite

matrix made up of NM vertically concatenated copies of the D∂µ. This composite matrix

is then segmented into pieces of NR rows each, where NR is chosen as a multiple of T/2.

Each such matrix segment has a naturally corresponding range of degrees of freedom in

a microblock, and I limit the thread block that loads this matrix segment to computing

outputs from this range. Figure 5.4 illustrates the principle.

This computation layout makes the shared memory access conflict-free. Unfortunately,

it also introduces a different, smaller drawback: there now is fetch redundancy. A segment

needs to fetch field data for each element “touched” by its rows. This may lead it to fetch

the same field values as the segment above and below it. Figure 5.4 gives an indication of

this fetch redundancy, too. Fortunately, these duplicated accesses tend to happen in adjacent

thread blocks and therefore possibly at the same time. I speculate that the L2 texture cache

in the device can help reduce the resulting increased bandwidth demand.

Next, observe that the matrix segments typically use less memory than the whole

matrix. I can therefore reexamine the assertion that loading both matrix and fields into

92

shared memory is not viable. Unfortunately, while the space to do so is now available, the

field access bank conflicts from Section 5.3.2 spoil the idea.

One final observation is that for the typical choice of the reference element [Hesthaven

and Warburton, 2007] the three differentiation matrices D∂µ are all similar to each other by

a permutation matrix. Using this fact could allow for significant storage savings, but in my

experiments, the added logic was too costly to make this trick worthwhile.

Algorithm 5.4 presents an overview of the techniques in this section. Instead of

maintaining three separate local differentiation matrices, it works with one matrix in which

the D∂µ are horizontally concatenated and then segmented. Shared memory limitations

allow this algorithm to work at order six and below.

Algorithm 5.4 Local Differentiation with a segmented matrix in shared memory.

Require: A grid of dNpM/NRe × dnM/(wpwiws)e blocks of size NR × wp × 1.
Require: Inputs: uT, the field to be differentiated; rT, the local-to-global differentiation

coefficients.
Ensure: Output: dGν , the local x, y, z-derivatives of uT.

Allocate the differentiation matrix segment DS ∈ RNR×(Npd) in shared memory.
Load rows [bxNR, bx(NR + 1)〉 (modNp) of [D∂1, . . . , D∂d] into DS.

Barrier+Memory Fence
for all s ∈ [0, ws) do

m← ((byws + s)wp + ty)wi { this thread’s microblock number }
diµ ← 0 for µ ∈ {1, . . . , d} and i ∈ [0, wi〉
for all unrolled n ∈ [0, Np〉 do

u[0,wi〉 ← uT[(m + [0, wi〉)NpM + n]
diµ ← diµ + DS[tx, µNp + n]ui for µ ∈ {1, . . . , d} and i ∈ [0, wi〉

end for
(dG)

mNpM+[0,wi〉NpM+tx
[0,d〉 ←

∑
µ(rT)

(m+[0,wi〉)KM
[0,d〉d+µ diµ

end for

93

Banked
Matrix
Storage

bank

memory
row

number

Full Matrix

(a) Assignment of matrix rows to memory banks.
Alternating matrix rows are shown in two dif-
ferent shades of gray. They preserve their color
as they move into individual 4-byte cells in the
banked shared storage. Padding inserted to pre-
vent conflicts is shown in white.

Banked
Matrix
Storage

bank

memory M
icroblockE

lem
ent0

E
lem

ent1

thread
number

Computation
Layout

(b) Conflict-free access pattern in the
first half-warp of the computation lay-
out. The green highlighting illustrates
that each of the 16 accesses lands in a
unique bank.

Banked
Matrix
Storage

bank

memory M
icroblockE

lem
ent0

E
lem

ent1

thread
number

Computation
Layout

(c) Conflicting access pattern in the sec-
ond half-warp of the computation lay-
out. The memory banks highlighted
in red show 4 banks with two accesses
each.

Figure 5.5. Local matrices and memory banks.

94

5.4 Experimental Results

In this section, I examine experimental results obtained from a DG solver for Maxwell’s

equations in three dimensions for linear, isotropic, and time-invariant materials. In terms of

the electric field E, the magnetic field H , the charge density ρ, the current density j, the

permittivity ε, and the permeability µ, they read

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0, (5.1)

∇ · (εE) = ρ, ∇ · (µH) = 0. (5.2)

One absorbs E and H into a single state vector

u := (E,H)T = (Ex, Ey, Ez, Hx, Hy, Hz)
T .

If one defines

F (u) :=


0 −Ez Ey 0 Hz −Hy

Ez 0 −Ex −Hz 0 Hx

−Ey Ex 0 Hy −Hx 0


T

,

(5.1) is equivalently expressed in conservation form as

ε 0

0 µ

ut +∇ · F (u) = 0.

If the two equations (5.2) are satisfied in the initial condition, the equations (5.1) ensure

that this continues to be the case. Remarkably, the same is also true (to the order of the

scheme) of the DG discretization of the operator [Hesthaven and Warburton, 2002]. One

may therefore assume a compliant initial condition and omit (5.2) from further discussion.

95

I label the numerical solution uN := (EN , HN)T and choose the numerical flux F ∗ to

be the upwind flux from [Mohammadian et al., 1991]:

n̂ · (FN − F ∗N) :=
1

2

 {Z}−1n̂× (Z+ JHNK− n̂× JENK)

{Y }−1n̂× (−Y + JENK− n̂× JHNK)

 .
I have employed the conventional notations for the cross-face average {u} := (u−N +u+

N)/2

and jump JuK := u+
N − u

−
N . For concise notation, I use the intrinsic impedance Z :=

√
µ/ε

and admittance Y := 1/Z. Applying the principles of Section 2.1, I arrive at a discontinuous

Galerkin scheme.

For my experiments, a solver using this scheme runs on an off-the-shelf Nvidia GTX 280

GPU with 1 GiB of memory using the Nvidia CUDA driver version 180.29. The GPU code

was compiled using the Nvidia CUDA compiler version 2.1. At the time of this writing,

GPUs of the same type as the one used in this test are sold for less than US$400.

I use a rectangular, perfectly conducting vacuum cavity (see [Jackson, 1998, Section

8.4]) excited by one of its eigenmodes to test the approximate solutions for accuracy. The

solver works in single precision. L2 errors observed for a sequence of grids at orders

from one through nine are shown in Table 5.2. To better display the actual convergence of

the method, the meshes examined were chosen to be rather coarse. Between the onset of

asymptotic behavior and the saturation at the limits of single precision, the error exhibits

the expected asymptotic behavior of hN+1 [Hesthaven and Warburton, 2002]. I observe

that the solver recovers a significant part of the accuracy provided by IEEE 754 single

precision floating point. It exhibited the same stability properties and CFL time step

restrictions as a corresponding single- and double-precision CPU implementation. I have

thus established that the discussed algorithm works and provides adequate solution accuracy

if the discretization error falls above the threshold provided by the IEEE single precision

96

K 475 728 1187 1844
N h = 0.3 h = 0.255 h = 0.21675 h = 0.184237 EOC
1 1.57 · 100 1.19 · 100 1.03 · 100 6.46 · 10−1 1.72
2 4.15 · 10−1 2.84 · 10−1 1.82 · 10−1 1.19 · 10−1 2.58
3 1.61 · 10−1 9.44 · 10−2 5.56 · 10−2 2.80 · 10−2 3.55
4 4.75 · 10−2 2.52 · 10−2 1.13 · 10−2 5.03 · 10−3 4.64
5 1.54 · 10−2 6.37 · 10−3 2.55 · 10−3 9.03 · 10−4 5.79
6 3.84 · 10−3 1.42 · 10−3 4.42 · 10−4 1.32 · 10−4 6.94
7 9.89 · 10−4 2.77 · 10−4 7.36 · 10−5 1.77 · 10−5 8.24
8 1.91 · 10−4 4.76 · 10−5 1.05 · 10−5 2.55 · 10−6 8.90
9 4.25 · 10−5 8.71 · 10−6 2.10 · 10−6 1.30 · 10−6 7.31

Table 5.2. L2 errors and empirical orders of convergence (EOC) obtained by a solver for
Maxwell’s equations on an Nvidia GTX 280 running in single precision, at a variety of orders
and for a number of rather coarse meshes.

floating point representation.

The reason for bringing DG onto a GPU was however not to show that it works there,

but to show that it can be made to work extremely fast. Figure 5.6(a) portrays the speed of

my solver in comparison with a CPU implementation running on a single core of a 3 GHz

Intel Core2 Duo E8400 CPU, also running in single precision.

The CPU calculations are based on the solver “hedge” (see Chapter 3). The code

generated by hedge is compiled on the fly using gcc 4.3.2, with optimization enabled

(-O3 -march=native -mtune=native -ftree-vectorize). For element-

local parts of the operator, the Python code adaptively chooses between a fully unrolled,

machine-generated matrix multiplication kernel and a BLAS-based version that targets

ATLAS 3.8.2 [Whaley et al., 2001]. The machine-generated matrix multiplication code

does not explicitly use SSE or other vector instruction intrinsics, but such instructions may

well be used by the compiler.

Unless otherwise specified, all performance numbers are based on the wall clock time

from the beginning of one time step to the beginning of the next, including RK4 time

97

stepping. Timings were averaged over a run of 100 (CPU) or several hundred (GPU) time

steps to minimize the influence of timing transients. Timings were observed to be consistent

across runs.

The GPU reaches a peak floating point throughput of more than 250 GFlops/s at

polynomial order nine, and more than half this value at orders three and above, with a rapid

increase between order N = 1 and N = 5, and a performance plateau of more than 200

GFlops/s at orders N = 6 and above. While I would like to argue that these immediate

performance numbers in units of Flops/s are perhaps the most meaningful measure of

performance and are sufficient on their own, it is natural to ask for the performance gain

compared to prior code on the CPU. While such numbers are certainly helpful in putting

results into perspective, the comparison is dangerous, because it introduces another variable–

the quality of the CPU code–into the measurements that has no bearing on the quality of

the GPU results, and they should be viewed with suspicion.

Many of my results contain CPU performance data and speed-up numbers. Above, I

have tried to specify quite carefully how the CPU numbers were obtained. Regardless,

I would like to remark that even for the (rather optimistic) prediction that a more highly

tuned CPU-specific implementation might run twice or three times as fast as mine, the

GPU maintains an advantage well above an order of magnitude, and this is the important

message of this chapter.

In more detail, the GPU outperforms the CPU by factors ranging from 14 to 65. At the

practically relevant orders of three and four, the speedup factors are 57 and 65, respectively.

It is rather fortunate, but not entirely a coincidence that these two orders are not only the

ones that see most practical use, they also exhibit some of the largest speedup factors on

the GPU.

98

2 4 6 8
Polynomial Order N

0

50

100

150

200

250

300

G
Fl

o
p
s/

s
GPU

CPU

2 4 6 8
10

20

30

40

50

60

70

S
p
e
e
d
u
p
 F

a
ct

o
r

Speedup

(a) Discontinuous Galerkin performance in GFlop-
s/s on a GPU and a CPU. Computations were per-
formed in single precision.

2 4 6 8
Polynomial Order N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
O

Fs
/s

1e8

(b) Number of degrees of freedom to which my
methods can apply the Maxwell operator in one
second. Assuming linear scaling, this graph can be
used to determine run times for larger and smaller
problems. DOFs from each of the six Maxwell
fields are counted separately.

Figure 5.6. Performance characteristics of DG on Nvidia graphics hardware.

Orders three and four are particularly favorable not only for their appreciable speedups

and their moderate time step requirements [Warburton and Hagstrom, 2008]. They also

achieve the peak nodal value throughputs on the GPU as shown in Figure 5.6(b). Naturally,

high-order approximations of solutions to partial differential equations contain much

more information per DOF than do solutions obtained via low order methods. This is

most apparent in the number of DOFs required to accurately represent one wavelength

[Hesthaven et al., 2007]. Interestingly, I observe that despite lower computational load,

the DG methods of orders one and two achieve lower overall throughput than the next

higher ones, a likely result of a mismatch with the hardware’s granularities. This crossover

between granularity effects and the increase in floating point work with growing N makes

DG methods of orders three through five the fastest DG methods on a GPU even on a

per-DOF basis.

Recall now that I have split the DG operator into several parts, each of which performs

distinct kinds of processing and tends to require a different strategy to map onto a GPU. It

99

1 2 3 4 5 6 7 8 9
Polynomial Order N

0

50

100

150

200

250

300

350

G
Fl

o
p
s/

s

Gather

Lift

Diff

Assy.

Rk4

Net

(a) Compute bandwidth in GFlops/s achieved by
each part of the DG operator, at various polynomial
orders. The published theoretical peak floating
point performance for the hardware on which these
tests were run is 933 GFlops/s [Various authors,
2008].

2 4 6 8
Polynomial Order N

0

20

40

60

80

100

%
 o

f
w

a
ll

cl
o
ck

 t
im

e

Gather

Lift

Diff

Assy.

Rk4

(b) Percentage of time spent in various parts of the
DG operator vs. polynomial order.

Figure 5.7. Performance characteristics of DG on Nvidia graphics hardware, continued.

is therefore interesting to see what performance level is attained by each part of the operator.

Figure 5.7(a) gives an indication of this performance, based again on the number of

floating point operations per second. Here and wherever GPU performance is broken down

by component, timings were obtained using the cuEventElapsedTime() call. It is

reassuring that, despite different implementation strategies, the flop rates for element-local

differentiation and lifting evolve almost identically as the order N is increased. These two

parts of the operator are also characterized by the highest arithmetic intensity and the most

regular access pattern. As an unsurprising consequence, they are able to realize the greatest

performance gain as the order of the operator and therefore the access granularity grows.

The flux gather, on the other hand, realizes its greatest performance at orders three and four.

I suspect that the decline in performance with increasing N can be attributed to the growth

of the indirect indexing information in the form of face index lists JT from Algorithm 5.3.

These lists are referenced constantly throughout the whole algorithm and are therefore

likely to reside in the texture cache, of which there are only a few KiB per multiprocessor.

As these lists grow, their cache eviction likelihood also grows, resulting in reduced access

100

1 2 3 4 5 6 7 8 9
Polynomial Order N

20

40

60

80

100

120

140

160

180

200

G
lo

b
a
l
M

e
m

o
ry

 B
a
n
d
w

id
th

 [
G

B
/s

]

Gather

Lift

Diff

Assy.

Peak

(a) Memory bandwidths in GB/s achieved by each
part of the DG operator. The peak memory band-
width published by the manufacturer is 141.7 GB/s.
Values exceeding peak bandwidth are believed to
be due to the presence of a texture cache.

15 20 25 30
wp

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

E
x
e
cu

ti
o
n
 t

im
e
 [
m
s]

Local differentiation, matrix-in-shared,
order 4, with microblocking
point size denotes wi ∈

{
1, ,4

}

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

w
s

(b) Sample work distribution parameter study for
local differentiation on fourth-order elements with
microblocking enabled.

Figure 5.8. Performance characteristics of DG on Nvidia graphics hardware, continued.

bandwidth. In addition to the above-mentioned main parts of the operator, the figure also

shows performance data for the assembly of the operator and the fourth-order low-storage

Runge Kutta time stepper [Carpenter and Kennedy, 1994]. Both of these operations perform

linear combinations of vectors, making them much less arithmetically intense than the

element-local operations. Fortunately, as the order N increases, the processing time spent

in element-local operations dominates and helps decrease the influence of the latter three

operations on overall performance. Figure 5.7(b) reinforces this point.

It is interesting to correlate the achieved floating point bandwidth of each component

from Figure 5.7(a) with the bandwidth reached for transfers between the processing core

and global memory, shown in Figure 5.8(a). I have obtained these numbers by counting

the number of bytes fetched from global memory either directly or through a texture

unit. The published theoretical peak memory bandwidth is 141.7 GB/s [Various authors,

2008], shown as a black horizontal line. Perhaps the most striking feature here is that the

calculated memory bandwidth sometimes transcends this theoretical peak. I attribute this

phenomenon to the presence of various levels of texture cache. Its occurrence is especially

101

pronounced in the case of flux lifting, and it should perhaps be sobering that the other

parts of the DG operator do not manage the same feat. In any case, flux lifting uses the

fields-in-shared strategy, and therefore fetches and re-fetches the rather small matrix L,

making large amounts of data reuse a plausible proposition. Aside from this surprising

behavior of flux lifting, it is both interesting and encouraging to see how close to peak

the memory bandwidth for element-local differentiation gets. As a converse to the above,

this makes it likely that the operation does not get much use out of the texture cache in

most situations. It does imply, however, that rather impressive work was done by Nvidia’s

hardware designers: The theoretical peak global memory bandwidth can very nearly be

attained in real-world computations. Next, taking into account what was said in Section

5.3.2 about the flux-gather part of the operator, the rather low memory throughput achieved

is not too surprising–the access pattern is (and, for a general grid, has to be) rather scattered,

decreasing the achievable bandwidth. Lastly, operator assembly, which computes linear

combination of vectors, consists mainly of global memory fetches and stores. It seems

likely that ancillary operations such as index calculations, loop overhead and bounds checks

drive this component’s shortfall from peak memory bandwidth.

I would further like to remark that Figure 5.8(a) indicates that the element-local matrix

parts of the calculation are memory- rather than compute-bound. This should not be

the case–by the nature of the workload, there is much very local floating point work to

be performed, which should suffice to mitigate the dependency on memory bandwidth.

Unfortunately, despite the sophisticated tiling and loop splitting techniques discussed

earlier, it appears that the on-chip memory on the device does not suffice to sufficiently

exploit this locality. This phenomenon is also observed in the vendor’s high-performance

BLAS implementation, whose SGEMM (single-precision matrix-matrix multiplication)

routine reaches very similar performance levels as my element-local matrix routines, albeit

only on much larger matrices.

102

differentiation flux gather flux lifting
N KM Shared wp wi ws MB wp Shared wp wi ws
1 4 Matrix 15 2 2 2 16 Field 3 3 1
2 8 Matrix 21 1 3 1 17 Field 3 3 1
3 4 Matrix 21 1 3 1 8 Field 2 3 1
4 4 Matrix 19 2 3 1 15 Field 2 4 1
5 2 Field 1 4 1 1 9 Field 2 3 1
6 2 Field 1 4 1 1 8 Field 2 4 1
7 2 Field 2 4 1 1 5 Field 2 3 1
8 1 Field 2 4 1 1 2 Field 2 4 1
9 1 Field 2 4 1 1 3 Field 2 4 1

Table 5.3. Empirically optimal method parameters for each part of the DG operator at polyno-
mial orders 1 through 9.

For potential implementers, it may be interesting to know which exact parameters were

used to obtain the results in this section. The parameters of interest include the generic

work distribution tuple (wp, wi, ws) for each subtask, the microblock size KM , the gather

block size MB, and which of the matrix- or field-in-shared approaches was used at what

order. Table 5.3 presents this data. It is peculiar how little regularity there is in this data set.

Despite a sequence of attempts, I have failed to come up with a heuristic that would predict

performance accurately. This led me to develop an empirical optimization procedure that

finds the data of Table 5.3 in an automated fashion through a sequence of synthetic and

real-world benchmarks. A detailed study of the toolkit I have constructed to enable them

was presented in Chapter 4. At this moment, I will restrict myself to displaying the results

of one such procedure. Figure 5.8(b) displays the run time obtained for element-local

differentiation employing microblocking and the matrix-in-shared strategy at order N = 4.

The objective is to find the work distribution parameter tuple (wp, wi, ws) that leads to an

empirically short run time for this part of the operator. It should be stressed that all runs

depicted in the figure perform the same amount of work. From Table 5.3 one can see that in

this particular instance, an optimum was found at (wp, wi, ws) = (19, 2, 3). Undoubtedly,

with better knowledge of the hardware, many of the odd-looking ups and downs in Figure

103

1 2 3 4 5 6 7 8 9
Polynomial Order N

0

50

100

150

200

250

300

G
Fl

o
p
s/

s

with matrix-in-shared, with MB
with matrix-in-shared, no MB
no matrix-in-shared, with MB
no matrix-in-shared, no MB

(a) Performance in GFlops/s achieved at various
polynomial orders, for different simplified imple-
mentations of DG on CUDA.

0 5000 10000 15000 20000
K

0

50

100

150

200

250

G
Fl

o
p
s/

s

N=2

N=4

N=6

(b) Mesh-dependent scaling of discontinuous
Galerkin on Nvidia GPUs.

Figure 5.9. Performance characteristics of DG on Nvidia graphics hardware, continued.

5.8(b) could be understood. Given the published documentation however, one is mostly left

to take the results at face value. Luckily, if one were to randomly choose a configuration

from the portrayed set, in all likelihood the resulting operation would at most take about 20

per cent longer than the optimal one chosen here. On the other hand, with some bad luck

one may also encounter a configuration that makes the computation take about twice as

long.

From Table 5.3 one can also gather that the field-in-shared strategy with a wide variety

of work distribution parameters is found to deliver the best performance at all orders for flux

lifting, as well as for higher-order element-local differentiation. This is plausible behavior

and was already discussed in Section 5.3.4. It is therefore reasonable to ask what would

be lost if the matrix-in-shared approach were omitted from a GPU DG implementation

entirely. Also, the introduction of microblocks into the method brings about some mild

complications, particularly in the form of shared memory bank conflicts, so one may be

compelled to ask how much is lost by ignoring microblocks and simply padding each

element to the nearest alignment boundary. The remaining performance after restricting

my implementation to not use one or both of these optimizations can be seen in Figure

5.9(a). Examination of this figure leads to the conclusion that the work of implementing

104

a matrix-in-shared strategy is likely only worthwhile if one is particularly interested in

running GPU-DG at a few specific low orders. The benefit of employing mircoblocking,

on the other hand, is pervasive and fairly substantial. It stretches to far higher orders than

one might suspect at first, given the growth of the involved operands.

Note that these conclusions apply only to the algorithms exactly as described so far. If

even one simple trick is omitted from an implementation, trade-offs may shift dramatically.

For example, omitting the thread ordering trick from Section 5.3.2 makes a matrix-in-shared

strategy optimal for differentiation up to order six.

I would like to note that the performance results in this section depend on the size of

the problem being worked on. A very small problem may, for example, not offer enough

opportunity to properly occupy all the processing cores that the hardware provides. Figure

5.9(b) reveals that even relatively small problems achieve decent performance. In addition,

I observe that this scaling effect is apparently not just governed by the number of elements

present, but also by the order N , which influences the number of flops per DOF in the

method. I conclude that as soon as there is a certain amount of floating point work to

be done per time step, performance will be as expected. Further on the topic of problem

size, I note that the size of the largest possible simulation is limited only by the amount

of available memory. Following Figure 5.1(a), taking into account the worst-case padding

overhead of 5 per cent and knowing how many scalar fields one needs for storage (30-40 is a

reasonable number for a Maxwell solver), one may easily calculate the number of elements

available on a given GPU. As an example following these guidelines, each gigabyte of

GPU memory translates into about 200k elements at N = 4.

105

Figure 5.10. A sample scattering problem solved using the methods described in the text. The
incident plane-wave electric field is shown as pseudo-color values on the scatterer, while the
scattered electric field is shown as arrows. The computation was performed at order N = 4 on
a mesh of K = 78745 elements using an incident-field formulation [Hesthaven and Warburton,
2002] and characteristic absorbing boundary conditions. It achieved and sustained more than
160 GFlops/s.

5.4.1 Further Results: Double Precision, Distributed Compu-

tation

A common charge leveled against GPU computing is that it is in some sense “a toy” or

“not fit for ‘serious’ use”. Two of the cornerstones of this type of argument is the perceived

lack of full support of calculation in IEEE double precision, and the other is the perceived

impossibility to to treat big problems.

The purpose of this section is to present results refuting both arguments. If one only

looks at the hardware specifications, it is easy to be misled to the conclusion that IEEE

double precision is not a first-class citizen on a GPU: On Nvidia hardware that was

current as of this writing, there are eight times fewer hardware units for performing double

precision calculations than there are for single precision, which might lead one to conclude

that performance would decline by a factor of eight. First, this factor of eight will be

much reduced on future hardware, and second, the situation is not as dire even on present

hardware, as Figure 5.11(a) shows. The data in the figure were obtained on the same

Maxwell eigenmode test as above, but on an Nvidia GTX295 using a newer version of the

106

0 2 4 6 8 10
Polynomial Order N

0

50

100

150

200

250

300

350

400

G
Fl

o
p
s/

s

GPU-DG: Double vs. Single Precision

Single
Double

0.0

0.2

0.4

0.6

0.8

1.0

Ratio

(a) Discontinuous Galerkin performance in GFlops/s
vs polynomial order N on an Nvidia GTX295 GPU
in single and double precision.

0 2 4 6 8 10
Polynomial Order N

0

1000

2000

3000

4000

G
Fl

o
p
s/

s

Flop Rates: 16 GPUs vs 64 CPU cores

GPU
CPU

(b) Discontinuous Galerkin performance in GFlops/s
vs polynomial order N on 16 GPUs, compared to
16 8-core CPUs. The computation was performed in
single precision.

Figure 5.11. Performance of Maxwell-GPU-DG in double precision and on a parallel machine.

solver, with both factors contributing to a slight performance increase over Figure 5.6(a).

The figure shows a performance decrease from single precision to double precision of a

factor between three and five, roughly, with a somewhat significant, and so far unexplained,

drop at order N = 8. It is further remarkable that up to order N = 4, only a performance

reduction by a factor of three is encountered. Considering Figure 5.8(a), it is not hard to

explain why the full impact of the reduction in floating point hardware from single to double

precision is not felt: If the computation were compute-bound, i.e. waiting for floating-point

results, the performance decrease would match the decrease in hardware. As was remarked

above, however, this is not the case, as significant parts of the computation are memory-

bound. And since IEEE double-precision floating point numbers require only twice the

amount of storage of single-precision ones, memory-bound parts of the computation should

only suffer a performance penalty of a factor of two. All of the observed values for the

SP/DP performance ratio are found within this range, therefore doubling as a convenient

indicator of how memory- or compute-bound a certain my GPU-DG implementation is at a

given order N .

107

1 / 4 4 / 16 8 / 32 12 / 48 16 / 64
Rank Count (GPU / CPU)

0

500

1000

1500

2000

2500

3000
G

Fl
o
p
s/

s

GPU/CPU Weak Scaling: DG Order 5

100% Scaling (GPU)

100% Scaling (CPU)

GPU

CPU

(a) GPU and CPU Weak Scaling at N = 5.

1 / 4 4 / 16 8 / 32 12 / 48 16 / 64
Rank Count (GPU / CPU)

0

1000

2000

3000

4000

G
Fl

o
p
s/

s

GPU/CPU Weak Scaling: DG Order 9

100% Scaling (GPU)

100% Scaling (CPU)

GPU

CPU

(b) GPU and CPU Weak Scaling at N = 9.

Figure 5.12. Parallel scaling for distributed-memory Maxwell-GPU-DG.

In summary, while the observed performance in double precision is certainly not as

impressive as in single precision, some of the Flops/s rates achieved are still beyond the

peak (not sustained!) values of current CPUs. Therefore, performing a computation in

double precision is a practical option on a GPU. However precision should be carefully

chosen to make sense for a given computation. If the discretization error is greater than

the precision impact of single precision, performing such a calculation in double precision

would be quite unreasonable.

Next, I would like to discuss some performance results that I have obtained from for

GPU-DG on a 16-GPU cluster. Throughout this chapter, it was observed that DG is very

suitable to the fine-grained, shared-memory parallelism of a GPU. It is further known that

DG also adapts well to the large-scale distributed-memory setting [Fischer et al., 2008].

Here, I am exploring how well DG adapts to a mixture of the two. One might imagine that

it is a disadvantage that communication between GPUs involves three data transfers (GPU

1 to host 1, host 1 to host 2, host 2 to GPU 2), and hence more communication latency and

perhaps reduced bandwidth when compared to direct, host-to-host communication.

Luckily it appears that, if this penalty exists, it is not very large. Figure 5.11(b) shows

108

performance results for 16 T10 GPUs as found in Nvidia S1070-500 rack-mount GPU

computing systems, which were attached to eight dual-quad-core Intel Xeon E5472 hosts

running at 3 GHz. CPU results were obtained on the same machine, with one process per

core. The same caveats as above about comparability of CPU and GPU results hold here,

and two further issues arise hampering direct comparability. First, in a CPU, one should

consider that all CPU cores share the off-chip memory interface, and hence its memory

bandwidth, presenting a natural scaling impediment. Second, in this comparison, the GPU-

based parallel computation had four times fewer (MPI) ranks than the CPU computation.

Therefore the communication needs of both computations are not directly comparable.

Even taking these comparability concerns into account, it appears that the CPU-GPU

performance gap remains larger than an order of magnitude. It is remarkable that the

computation at N = 9 achieves nearly four Teraflops/s of sustained application compute

throughput. Just a few short years ago, such numbers were firmly the territory of very large

supercomputer installations, but they have here been achieved using (comparatively) very

affordable hardware.

It is further interesting to review the scaling properties of the implementation as GPUs

are progressively added. Figure 5.12 displays results for weak scaling (i.e. the problem size

grows with the number of machines) of GPU-DG at polynomial degrees N = 5 and N = 9.

It is clearly visible that at the lower order, where each element contains a larger fraction

of facial degrees of freedom, and hence communication needs are greater, only about 60

per cent of the theoretical, perfectly-scaled throughput (indicated by the dashed line) is

achieved. The situation markedly improves at N = 9, reaching the high performance

results discussed above.

109

5.5 Conclusions

In this chapter, I have described and evaluated a variety of techniques for performing

discontinuous Galerkin simulations on recent Nvidia graphics processors. I began this

work by adapting a pre-existing DG code for the GPU, enabling a thorough comparison

of strategies for mapping the method onto the hardware. After that, I wrote a final code

that combined the insights gained from its precursor and colleagues’ research. This code

implements the strategies of Sections 5.2 and 5.3 and was used to obtain the results in

Section 5.4.

I have shown that, using my strategies, high-order DG methods can reach double-digit

percentages of published theoretical peak performance values for the hardware under

consideration. DG computations on GPUs see speed-up factors just short of two orders

of magnitude. This speed increase translates directly into an increase of the size of the

problem that can be treated using these methods. A single compute device can now do

work that previously required a roomful of computing hardware. Alternatively, a cluster of

machines equipped with these cards can run simulations that were previously outside the

reach of all but the largest supercomputers. This lets the size and complexity of simulations

that researchers can afford on a given hardware budget jump significantly.

To make these speed gains accessible, I have provided detailed advice for potential

implementers who need to achieve a trade-off between computing performance and im-

plementation effort. The data provided in Section 5.4 will help them make informed

implementation decisions by allowing them to predict the computational speed achieved by

their implementations.

Many-core computing presents a rare opportunity, and I feel that discontinuous Galerkin

methods have a number of unique characteristics that make them unusually suitable for

110

many-core platforms. In the past, users have chosen low-order methods because of the

perceived expense involved in running simulations at a high order of accuracy. While

this perception was questionable even in the past, I feel that many-core architectures

disproportionately favor high order and significantly drive down its relative cost. Moreover,

unlike most other numerical schemes for solving partial differential equations, DG methods

make the order of accuracy a tunable parameter. These factors combine to give the user a

maximum of control over both performance and accuracy.

CHAPTER SIX

Viscous Shock Capturing in a

Time-Explicit Discontinuous Galerkin

Method

111

112

6.1 Introduction

In the previous chapter, it was seen that graphics processors can accelerate DG solvers

for linear systems of hyperbolic conservation laws by a significant factor of more than

an order of magnitude. Given this advance, it is a tempting and rather obvious extension

to ask what the same technology can do for nonlinear systems. If the solution of the

system remains smooth for the entire time under consideration, and if thereby the decay of

modal coefficients is fast enough, the method from the previous chapter be used as-is for a

so-called “nodal approach”. Optionally, aliasing error in the computation of integrals for

stiffness and mass matrices can be avoided by the introduction of quadrature schemes of

sufficient order [Hesthaven and Warburton, 2007].

If however the solution does not stay smooth for long enough periods of time, the

arising discontinuities pose a number of problems which have been the subject of intense

study since the early days of scientific computation and numerical analysis. The most

grave such problems are Gibbs phenomena, which manifest themselves as an unphysical

oscillation near a discontinuity. Gibbs phenomena were first observed in the context of

Fourier expansions, but occur just as much in the polynomial spaces I am employing here.

The phenomenon can lead to many undesirable effects such as the occurrence of negative

values for inherently positive quantities (such as density or pressure) or the premature

crossing of thresholds in systems with strong nonlinearities. A vast body of literature on

this subject of shock capturing exists, and it is not my goal here to give a full overview

of the approaches that have been tried. Instead, my goal here is to seek out, based on

immediately related literature, a method that is able to control the occurrence of Gibbs

phenomena in the context of the discontinuous Galerkin method (as introduced in Section

2.1 and discussed in other previous chapters). In doing so, I will engineer the method to

be suited to leveraging the graphics processor-based solver technology presented in the

113

previous chapter.

I choose to base my approach to the problem on artificial viscosity, a purposefully

introduced, carefully designed, and entirely unphysical diffusion term whose sole purpose

it is to selectively damp out high frequency solution components encountered wherever

Gibbs phenomena are present. The technique itself is based on the smoothing character

of diffusive processes, and thereby obvious enough. It dates back to von Neumann and

Richtmyer [1950] and was, as most numerical techniques, first used in the context of

finite difference methods [Lapidus, 1967], and then spread into finite element literature

(see, e.g., the study by John and Schmeyer [2008] for a review) and was also applied to

time-dependent discontinuous Galerkin methods very early on [Bassi and Rebay, 1994].

Within the DG community, the method has enjoyed continuing popularity [e.g. Burman,

2007].

There has been a recent resurgence of interest in the method based on publications

by researchers at the Aerospace Computational Design Laboratory at MIT [Barter and

Darmofal, 2010, Persson and Peraire, 2006]. The methods in this chapter aim to improve

on these latter schemes and make them suitable for a GPU-DG setting. As I justify the

construction of my methods in Section 6.4, I will provide further context and comparison

about the methods cited in this paragraph.

Many more authors have proposed methods to capture shocks within a high-order

discontinuous Galerkin setting, by different methods. Flux limiting, which has been

both successful and popular with Finite Volume practitioners, was combined with DG

immediately in conjunction with the resurgence of interest in the method in the late 1980s.

A vast body of literature has emerged that proposes a large variety of limiters for use with

DG methods, and nearly every method that has enjoyed success in a Finite Volume setting

has been tried with DG, ranging from early TVB limiters [Cockburn and Shu, 1989, 1998,

114

Cockburn et al., 1989, 1990], through a variety of more recent developments [Burbeau

et al., 2001, Dolejsı́ et al., 2003, Krivodonova, 2007, Kuzmin et al., 2005, Tu and Aliabadi,

2005, Xu et al., 2009]. A common theme to limiting is that the solution is modified in some

way to retain desirable properties such as positivity and freedom from spurious oscillation,

and in doing so, reaches various (often low) orders of accuracy.

Although limiting has been tremendously successful and prevalent in the literature, I

am suspicious of the–to my mind–often somewhat brutal modifications to the approximate

solution performed by limiters, and I prefer the simplicity of artificial viscosity methods.

These methods take the position that the only hope of resolving a discontinuity by a high-

order approximation lies in smoothing it out. The method of Spectrally Vanishing Viscosity

[e.g. Kirby and Sherwin, 2006, Tadmor, 1989] is similar in spirit, but tries to restrict its

smoothing action to high-frequency solution components.

One final, if expensive, approach of dealing with discontinuities is that of adapting the

mesh and adding resolution. It is generally thought that ’shocks’, i.e. actual discontinuities,

do not exist in nature [Woodward and Colella, 1984], and thereby, if only enough resolution

were available, the problem of shock capturing would vanish by itself. While nature may

obey this statement, mathematical models of it often do not, and so one needs to “help a

little”–for example by adding an artificial viscosity [e.g. Hartmann, 2006]. Further, while

adaptivity certainly is a useful technique in capturing shocks [Flaherty et al., 1997, Kirby

et al., 2000, Warburton et al., 1999, Xu et al., 2010], it depends on a detector that reliably

tells the method where refinement is necessary. If this detector is just a bit late in detecting

oscillation or underresolved discontinuities, adaptivity by itself is unlikely to be able to

salvage the solution.

It has been noticed that many methods have been proposed which “perform well when

applied to one-dimensional flow problems but which encounter major difficulties in two

115

dimensions.” [Woodward and Colella, 1984] Since Finite Volume methods solve an as-

sembly of essentially one-dimensional discontinuous interface problems (i.e. Riemann

problems [Toro, 2009]), they manage to retain a one-dimensional character, even in mul-

tiple dimensions. The component enabling this is the representation of the solution by

cell averages. Conversely, as soon as significant element-local structure (such as local

polynomial spaces in DG) is present, the transition to two and more dimensions can be

particularly treacherous. To help avoid falling into this trap, I will aim to base my method

only on concepts which have a simple generalization to multiple dimensions. Ambiguities

arising in this generalization are discussed in Section 6.4.3.

In constructing my method, I will proceed as follows: I will begin in Section 6.2 by

explaining a few basic design considerations for the method, in particular in relation to

time integration. In Section 6.3, I will give a brief overview of the hyperbolic conservation

laws that I am targeting, and whose solution theory allows the existence or emergence of

discontinuities and shocks. In this section I will also clarify how the artificial viscosity

term is added to each of the conservation laws, in each case depending on a parameter

ν. It is of course not wise to use a homogeneous, non-zero viscosity ν all across the

solution domain, as this would unduly diffuse even smooth (and well-resolved) solution

features. One therefore needs a detector whose output is a spatially dependent measure

of smoothness s that alerts one to those areas where under-resolution and oscillation are

occurring. The careful construction of a robust detector of this kind (and its justification) is

the main contribution of this chapter, to be found in Section 6.4. The subsequent Section

6.5 explains how measured smoothness may be turned into a space-dependent viscosity

parameter ν(x). Section 6.6 then represents my attempt to convince the reader that the

detector and the viscosity generator work as designed, through a comprehensive series of

tests of increasing complexity. Finally in Section 6.7, I will comment on what was achieved,

what remains to be done, and further point out directions for future investigation.

116

6.2 Basic Design Considerations

I have already stated that, as in the previous chapter, I am targeting massively parallel

throughput-oriented computer architectures with the shock-capturing scheme that this

chapter describes. I have described a method to quickly compute the vector A(x) for

a (then linear) discontinuous Galerkin operator A and a state vector x using graphics

hardware.

On wide-SIMD, parallel architectures such as those of the previous chapter, where

memory is at a premium and scattered memory access is particularly expensive, such

matrix-free methods, if they can be implemented efficiently, will always hold a significant

performance advantage over approaches that have to build, keep in memory, and constantly

access a pre-built sparse matrix, because such a computation is necessarily bound by the

speed at which matrix entries can be streamed into the core, where they are then used

exactly once and discarded. [Bell and Garland, 2008] A matrix-free approach, as shown,

has far more freedom to exploit local structure and re-use data. I will therefore focus my

investigation on matrix-free methods.

This choice has important ramifications. One consequence of it affects the trade-off by

which one chooses between implicit and explicit time stepping. Consider the case of implicit

time integrators, in which one must constantly solve large linear systems of equations.

Direct, factoring solvers for sparse matrices are as yet unavailable on massively parallel

hardware, and even if they were, they would doubly suffer from the issues that sparse

matrices encounter. One therefore naturally looks towards iterative methods for solving

large sparse systems. For the complicated linearized systems arising from the nonlinear

hyperbolic conservation laws I am targeting in this chapter, these methods generally need

help in the form of a preconditioner in order to be efficient. This is the next implication of

117

the choice of matrix-free methods: One automatically chooses to not use the substantial

body of literature showing how a preconditioner may be built from a known sparse matrix.

Instead, one needs to invest further work designing and testing preconditioner (using e.g.

multi-grid or domain-decomposition methods), and, in addition to the design time spent,

these preconditioners may carry significant additional computational expense, typically

through their communication needs. Their suitability for massively parallel computer

architectures is as yet undetermined. In addition, Krylov methods in particular involve

global reductions (in the form of inner products) which are known to not achieve peak

performance on graphics processors [Harris, 2007]. Worse, the nonlinear systems I am

targeting in this chapter require a nonlinear system to be solved (likely by Newton iteration,

which in turn requires Jacobians to be evaluated).

This collection of drawbacks and uncertainties in the application of implicit time

integration on massively parallel hardware makes it seem opportune to examine the use of

explicit time steppers, which were already used with good success in the previous chapter,

with the goal of finding out if the single big disadvantage of explicit methods, namely their

small time step restriction, can be offset by the judicious choice of methods combined with

the advantages conferred by the hardware.

Since the scheme I am aiming to design involves the use of artificial viscosity, the

scaling of the explicit time step is typically given by

∆t ∼ 1

λmax
N2

h
+ ‖ν‖L∞

N4

h2

, (6.1)

where λmax is the largest characteristic velocity and ν is the magnitude of the viscosity, h

is the local mesh size and N is the approximation’s polynomial degree [Hesthaven and

Warburton, 2007]. Within (6.1), the numerical diffusion time scale N4‖ν‖L∞/h2) can be

rather damaging, as it contains mesh-dependent factors at high exponents.

118

70 60 50 40 30 20 10 0 10
Re λ

30

20

10

0

10

20

30

Im
 λ

Dumka3(3)
Dumka3(2)
Dumka3(1)
C/K RK4

Figure 6.1. Stability regions of various DUMKA3 time integrators Medovikov [1998] and
a fourth-order low-storage Runge-Kutta method by Carpenter and Kennedy [1994]. As in
Chapter 8, stability information was obtained by the power method applied to the time stepper
for the test system ẏ = λy.

Luckily, (6.1) does not tell the entire story. First of all, I expect the occurrences of high

viscosity ν to be localized in both space and time. Spatial localization could conceivably

be dealt with using local time stepping (cf. Chapter 8). Temporal localization is easily

dealt with by the use of adaptation in time [e.g. Dormand and Prince, 1980]. Adaptivity

in time is particularly important for explicit time stepping of artificial-viscosity-enhanced

PDE solvers. While some points to the contrary are made below, a detected shock and the

resulting spike in viscosity do change the time step restriction of the method. Perhaps the

temporal variation in the time step requirement is not quite as drastic as (6.1) might suggest,

however there may be solution events requiring very small time steps. In my experience,

these events are relatively rare, and therefore it would be a tremendous waste to only ever

make progress at the smallest ∆t required throughout the entire computation. Section 6.6

will further support this point with empirical observations.

(6.1) embodies a tacit assumption, namely that the stability region of the time stepping

method has the same extent in both the imaginary direction, (roughly) responsible for the

convective scale h/(λmaxN
2), and the negative real direction, responsible for the diffusive

119

time scale. This is not necessarily true, and Runge-Kutta-Chebyshev-type methods have

been designed, for example by Medovikov [1998], whose stability region grows along the

negative real direction proportional to the square of the number of their stages . Figure 6.1

on the preceding page shows an example of such stability regions, compared to that of a

“conventional” equal-aspect Runge-Kutta method [Carpenter and Kennedy, 1994]. I am

therefore confident that the smallness of the time step due to viscosity can be controlled.

One further aspect of the time discretization should be considered: Much of the effort

in this chapter is targeted at mitigating the effect of oscillations in the spatial discretization

of a conservation law that trace their roots back to the polynomial expansions used for them.

Time discretizations, however, are equally based on polynomials, and a total-variation-

diminishing (TVD) family of time steppers has been developed to mitigate oscillations

caused by them [Shu, 1988]. Since in the case of this chapter, the need for adaptivity in

time is greater than perfect control of oscillation, which I deem not achievable just through

the use of artificial viscosity, I am forgoing the use of TVD time discretizations for now,

but I would like to remark that an embedded Runge-Kutta method, whose higher-order

component is TVD, would be likely be the most appropriate choice if it were available.

In summary, the emergence of massively parallel hardware along with the use of non-

mainstream time discretizations may help explicit methods be competitive with implicit

methods for the integration of large-scale nonlinear systems, a few of which I will introduce

next.

120

6.3 Applications and Equations

I will be testing my artificial-viscosity-based shock capturing scheme on a number of differ-

ent hyperbolic conservation laws, ranging from the very simple to the rather complicated.

6.3.1 Advection Equation

At the very simple end of the spectrum, the advection equation

∂tu+ ∂xu = 0

transports its initial condition along its one characteristic, described by the velocity vector

v. I will apply artificial viscosity to this PDE as

∂tu+ v · ∇xu = ∇x · (ν∇xu).

Here, and in all further equations, it is important to write the viscosity in “conservation”

form ∇x · (ν∇xu). The desired consequence of this is that the resulting DG method will

be conservative [Arnold et al., 2002].

In DG discretizations of this equation, I use an upwind flux

n̂ · F ∗N := (n̂ · v)


u− n̂ · v ≥ 0,

u+ n̂ · v < 0

in a strong-form DG formulation. The diffusion term ∇x · (ν∇xu) is discretized by a

first-order (“dual”) interior penalty method [Arnold et al., 2002], with the gradient being

121

computed in strong form, and the divergence computed in weak form. The diffusive fluxes

are given by

u∗N := {uN}, σ∗N := {ν∇x,huN} −
N2

h
ν JuhK ,

where σN is the discretization of ν∇xu.

6.3.2 Second-Order Wave Equation

Upon adding another, opposite characteristic to the advection equation, one obtains the

second order wave equation ∂t2u + c24u = 0, which may be rewritten as a first-order

system of conservation laws as

∂tu+ c∇x · v = 0, (6.2a)

∂tv + c∇xu = 0. (6.2b)

I will apply artificial viscosity to this system in the form

∂tu+ c∇x · v = ∇x · (ν∇xu), (6.3a)

∂tv + c∇xu = ∇x · (ν∇xv), (6.3b)

where I have again been careful to use the conservative form of the diffusive term. The

vector diffusion term ∇x · (ν∇xv) is to be read as the diffusion ν being applied to each

component separately.

The wave equation is valuable for testing artificial viscosity methods because it is

the simplest system where the effects of two coupled characteristics may be observed.

In particular, since I am choosing to use a single artificial viscosity ν that applies to

both components of the system, this system enables me to observe whether this simple

122

choice entails any undesired consequences. The discontinuity sensor to be described below

operates on the component u.

In DG discretizations of this equation, I use an upwind flux

n̂ · F ∗N := c

 n̂ · {v} − 1
2
(u− − u+)

n̂
(
{u} − n̂

2
· (v− − v+)

)


in a strong-form DG formulation. The diffusion terms ∇x · (ν∇xu) and ∇x · (ν∇xv)

(collectively ∇x · (ν∇xq)) are again discretized by a first-order (“dual”) interior penalty

method [Arnold et al., 2002], with the gradient being computed in strong form, and the

divergence computed in weak form. The diffusive fluxes are given by

q∗N := {qN}, σ∗N := {ν∇x,hqN} −
N2

h
ν JqhK ,

where σN is the discretization of ν∇xq and q varies through u and each of the components

of v.

6.3.3 Burgers’ Equation

While the linear hyperbolic conservation laws discussed so far will (in one dimension) only

propagate discontinuities already present in their initial condition, Burgers’ equation is a

nonlinear conservation law whose solution will spontaneously develop discontinuities. This

simple fact makes the equation valuable as a testing prototype for more the subsequent,

more complicated Euler equations.

The equation is given by

∂tu+ ∂x

(
u2

2

)
= 0. (6.4)

123

As in Section 6.3.1, I apply the artificial viscosity simply as

∂tu+ ∂x

(
u2

2

)
= ∂x(ν∂xu). (6.5)

In DG discretizations of this equation, I use a local Lax-Friedrichs (or Rusanov) flux

n̂ · F ∗N := n̂ · F (u+) + F (u−)

2
− λmax

2
(u+ − u−),

where λmax is the maximum characteristic speed, in a weak-form DG formulation. The

diffusion term is discretized as in Section 6.3.1. In multiple dimensions (see Section 6.6.5),

the nonlinear inner products arising in the Galerkin formulation of (6.4) and (6.5) are

integrated using the simplicial quadrature formulas by Grundmann and Möller [1978],

which provide equivalent accuracy at a somewhat lower point count than the schemes used

by Hesthaven and Warburton [2007]. The chosen quadrature is exact to degree 3N , where

N is the polynomial degree of the approximation.

6.3.4 Euler’s Equations of Gas Dynamics

Lastly, the system of conservation laws that justifies the effort spent on this study, Euler’s

equations of gas dynamics, broadly applies to compressible, inviscid flow problems. It is

given by

∂tρ+∇x · (ρu) = 0, (6.6a)

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = 0, (6.6b)

∂tE +∇x · (u(E + p)) = 0. (6.6c)

124

As in Section 6.3.2, I am again choosing to use a single artificial viscosity ν that applies to

all components of the system, such that I get the viscosity-endowed system

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ), (6.7a)

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)), (6.7b)

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE). (6.7c)

The discontinuity sensor to be described below operates on the component ρ.

Persson and Peraire [2006] suggest that a Navier-Stokes-like physical viscosity may

provide sufficient control of jumps and will not unduly smooth out contact discontinuities.

On the other hand, it is obvious that such a system is effectively unable to control initial

discontinuities (and therefore oscillations) in ρ. I therefore deem such a viscosity application

unfit for my purpose.

In DG discretizations of this system, I use a local Lax-Friedrichs (or Rusanov) flux as

in Section 6.3.3 in weak-form DG. The diffusion term is discretized as in Section 6.3.2. As

above, a quadrature exact to degree 3N is used to integrate the nonlinearity.

6.4 A Smoothness-Estimating Detector for the Se-

lective Application of Artificial Viscosity

6.4.1 Detection Methods in the Literature

Detectors for the selective application of artificial viscosity have been built in a large variety

of ways. The most popular, perhaps, is sensing on the L2 norm of the residual of the

125

variational form [Bassi and Rebay, 1994, Jaffre et al., 1995]. Hartmann [2006] employs a

similar indicator that includes sensing of the primary orientation of the discontinuity and

performs anisotropic mesh refinement based on this data.

Other detectors in the literature employ information gathered not on the whole volume

of the domain, but only on element faces [Bassi et al., 1997]. Specializing further, some

methods use the magnitude of the facial inter-element jumps as an indicator of how well-

resolved the solution is and to what degree it has converged [Barter and Darmofal, 2010,

Feistauer and Kučera, 2007].

A further approach to shock detection repurposes entropy pairs, objects from the

solution theory for scalar conservation laws, for the purposes of shock detection [Guermond

and Pasquetti, 2008].

My approach most directly traces its lineage to work by Persson and Peraire [2006],

which addresses one crucial shortcoming in much of the above work: scaling. Many

of the quantities discussed clearly relate directly to how well-resolved (and smooth) the

approximate solution of the system is. It is however rarely clear how large a value of the

quantity in question indicates that a problem exists, and a variety of ad-hoc scaling choices

are proposed, often by the maximum of the quantity found across the domain, or by the

element-local norm, but without assigning an explicit meaning to the scaled quantity.

The method by Persson and Peraire [2006] also performs scaling by the element-local

L2 norm ‖qN‖L2(Dk) of the discretized value of the quantiy qN to be sensed on. On each

element Dk, it obtains a value

Sk :=
(qN , φNp−1)2

L2(Dk)

‖qN‖2
L2(Dk)

, (6.8)

126

s0−κ s0 s0 +κ
sk

0

ν0

ν

Figure 6.2. Viscosity activation map for the sensor of Persson and Peraire [2006].

where {φn}Np−1
n=0 is an orthonormal basis for the expansion space [see e.g. Dubiner, 1991,

Koornwinder, 1975] numbered from 0. Simply put, Sk reflects the (squared) fraction of

qN ’s mass contained in the highest mode of the expansion, relative to all mass present on the

element. Persson and Peraire [2006] then invoke an analogy to Fourier expansions, where a

continuous function (roughly) can be recognized by having Fourier expansions in which

the nth mode’s magnitude scales at most as 1/n2. In doing so, they have conveniently

solved the issue of scaling–it is now understood what Sk measures and what value it is

supposed to take on for which degree of smoothness. Based on this analogy, they argue

that Sk should have a magnitude of 1/N4 for qN to be continuous, or, alternatively, that

smoothing by artificial viscosity should activate if Sn > 1/N4.

They achieve this activation through a sequence of mapping steps. First, they take the

logarithm

sk := log10 Sk

to obtain a quantity that scales linearly with the decay exponent, which they put in relation

to a quantity s0 that they claim should scale as 1/N4. I believe this is a typographical error

in their paper, because for proper comparability, s0 should scale with the logarithm of

127

1/N4. Through the application of a mapping function pictured in Figure 6.2, they obtain

the final per-element viscosity

νk = ν0


0 sk < s0 − κ,

1
2

(
1 + sin π(sk−s0)

2κ

)
s0 − κ ≤ sk ≤ s0 + κ,

1 s0 − κ ≤ sk ≤ s0 + κ,

(6.9)

where ν0 is the maximum viscosity, which Persson and Peraire [2006] suggest to scale with

h/N and κ is the spread of the activation ramp in Figure 6.2 on the previous page.

The focus of the remainder of this chapter is to identify a number of issues and make a

number of improvements to this method of finding an artificial viscosity. For example, as it

stands, the method requires choosing s0, ν0, κ–a multitude of parameters, many of which

are to be found empirically. One of my goals will be to reduce the number of parameters

significantly. Secondly, since (6.8) focuses on the very last mode of the expansion, it does

not treat every direction in space equally, and it may be more sensitive in one direction

(depending on the element’s local-to-global map) than in another.

6.4.2 Estimating Solution Smoothness

Before I begin my discussion of the refinements to the method, let me set the stage by

discussing the type of numerical method at which the to-be-designed artificial viscosity is

aimed. As was already discussed, for methods of low approximation order (and polynomial

degrees N / 2), the flux limiting literature provides plenty of alternatives for shock captur-

ing, and therefore will not be the main target area for my work. Very few serviceable shock

capturing schemes are available for polynomial degrees N ∈ {3, 4}. Since my method, like

the work of Persson and Peraire [2006] will try to extract smoothness information from the

128

modal expansion of the solution, it is my hope that the expansion at these degrees already

contains enough smoothness information to be viable as a basis for an artificial viscosity,

and whether this is actually so will be briefly discussed in Section 6.6. Lastly, at degrees

N ' 5, there is guaranteed to be sufficient smoothness information, though the time step

restriction (6.1) may make these approximations somewhat impractical.

I begin my deconstruction and rebuild of the Peraire-Persson estimator by examining

the assumption that, like for Fourier series, smoothness can be estimated by modal decay. In

Fourier series, this can be justified by viewing what happens if a derivative of an expanded

function is taken (and hence smoothness is reduced)–the nth coefficient’s magnitude gets

multiplied by n. This results in the identity

∥∥∥∥ ddxeinx
∥∥∥∥
Lp((−π,π))

= n
∥∥einx∥∥

Lp((−π,π))
for p ∈ [1,∞]. (6.10)

An polynomial analog for (6.10) is provided by Bernstein’s inequality [Borwein and Erdélyi,

1995, Warburton and Hagstrom, 2008]

∣∣∣∣ ddxP (x)

∣∣∣∣ ≤ n√
1− x2

|P (x)| for P ∈ P n([−1, 1]), x ∈ [−1, 1]. (6.11)

While it conveniently exhibits the same scaling as its Fourier counterpart, unfortunately,

this estimate breaks down near the domain boundaries. Markov’s inequality [ibid.]

∥∥∥∥ ddxP (x)

∥∥∥∥
L∞([−1,1])

≤ n2 ‖P (x)‖L∞([−1,1]) for P ∈ P n([−1, 1]). (6.12)

extends the estimate out to the domain boundary, at the expense of a larger scaling. Further,

it may be argued that if one wants to transfer the knowledge gained from (6.12) to a modal

setting, L∞ is the wrong norm, and one should consider the L2 norm instead to be able to

benefit from Parseval’s identity. Fortunately, an L2 analog of (6.12) is available [Warburton

129

and Hagstrom, 2008, and references therein]

∥∥∥∥ ddxP (x)

∥∥∥∥
L2([−1,1])

≤
√

3n2 ‖P (x)‖L2([−1,1]) for P ∈ P n([−1, 1]), (6.13)

known as an inverse inequality. Taking into account (6.11) and (6.13), the polynomial

analogy to the Fourier case is therefore expected to carry over well for non-smoothness

occurring on the interior of each finite element, whereas for non-smoothness at the domain

boundary, the smoothness measure will likely differ.

Having examined the viability of modal decay as an estimator for smoothness, I seek

to make the notion of modal decay more precise than (6.8). I presume that, for the modal

coefficients {q̂n}Np−1
n=0 of a member qN of the L2-orthonormal approximation space spanned

by {φn}Np−1
n=0 , modal decay is approximately representable as

|q̂n| ∼ cn−s. (6.14)

Taking the logarithm of the relationship (6.14) yields

log |q̂n| ∼ log(c)− s log(n),

an affine relationship whose coefficients s and log(c) may be found through least-squares

fitting, satisfying

Np−1∑
n=1

|log |q̂n| − (log(c)− s log(n))|2 → min! (6.15)

Observe that the decay rate of (6.14) has rather little to do with the presumed magnitude

of the remainder term of an expansion, on which most a-priori error estimates for finite

element solutions are based–these start with an assumption of sufficient smoothness. There

is a connection, however. Mavriplis [1994], in the context of mesh adaptation, has used a

130

1.0 0.5 0.0 0.5 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g

10
|q̂
n
|

SL cutoff
q̂n

Raw: s=1.0

SL: s=0.88

BD+SL: s=1.05

(b)

Figure 6.3. Modal portrait for an approximant of a (discontinuous) Heaviside jump function.
Subfigure (a) shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows
the modal coefficients of a Legendre expansion of the function in (a), the processing of these
coefficients, and the unprocessed and postprocessed smoothness estimates.

similar least-squares fit to the modal decay, defining a continuous function q̂(n) through

the found fit. She then proceeds to estimate the remainder term of the expansion as

‖q − qN‖2
L2(Dk) ≈

(
q̂2
N

2N+1
2

+

∫ ∞
N+1

q̂(n)2

2n+1
2

dn

)
.

This remark aside, the least-squares procedure (6.15) yields an estimate s of the decay

exponent. If the analogy with Fourier modal decay holds water, one would then expect

s ≈ 1 for a discontinuous q, s ≈ 2 for q ∈ C0 \ C1, s ≈ 3 for q ∈ C1 \ C0, and so forth.

Figure 6.3 shows a first attempt at determining whether this is really the case by examining

an interpolant of a Heaviside jump function as shown in Figure 6.3(a). Figure 6.3(b) shows

the magnitudes of the first ten modal coefficients along with the fitted curve (the dashed

red line). The obtained decay exponent s, shown in the legend next to the dashed red line,

matches the expectation rather well, giving a value of exactly 1.

Before moving on from this first successful test, I would like to comment on two impor-

tant features of (6.15) that deserve some extra attention. Notice that although throughout

131

this chapter I have started numbering nodes at zero, the sum in (6.15) starts at one. This

latter choice is easy to justify: The goal of this procedure is to estimate smoothness. For

every common definition of smooth, added constants do not matter–q(x) + c for a real

constant c is considered just as (non)smooth as q itself. It would therefore run counter to

the stated goal if the zeroth mode (which exactly represents an additive constants) was

included in the modal fit. Note that, in disregarding the zeroth mode, one is discarding

potentially useful information. Further below, this problem will make itself felt, and the

now-discarded information will be reintegrated into the estimate in a different form.

The other important feature of (6.15) is that the numbering of nodes starts at zero at all,

which is not immediate. Further, if the zeroth mode had not been eliminated above, this

numbering choice would have caused the use of a logarithm of zero in the specification of

the fit. So why is a zero-based numbering natural for modes, as, because of the logarithm,

shifted numberings are not equivalent? The reason for this goes back to (6.10) and (6.13),

which I have used as an anchor for the entire construction of my estimator. These formulas

are only valid if modes are numbered starting from zero–any other numbering makes them

false.

Continuing this line of experimentation, I would like to move on to an interpolant of a

“kink” function

q(x) :=


0 x < 0,

x x ≥ 0.

The same observations as for the Heaviside function are shown in Figure 6.4 on the next

page. Unfortunately, the figure reveals a rather powerful shortcoming of the modal fit

method as developed so far. An odd-even effect draws the coefficients for the odd modes of

number three and greater to zero, leading to machine zeros (≈ 10−15) in those approximate

coefficient numbers. These “fully converged” coefficients fool the estimator into thinking

132

1.0 0.5 0.0 0.5 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

25

20

15

10

5

0

lo
g

1
0
|q̂
n
|

SL cutoff
q̂n

Raw: s=7.2

SL: s=1.67

BD+SL: s=1.75

(b)

Figure 6.4. Modal portrait for an approximant of a C0 non-differentiable “kink” function.
Subfigure (a) shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows
the modal coefficients of a Legendre expansion of the function in (a), the processing of these
coefficients, and the unprocessed and postprocessed smoothness estimates.

that far more smoothness is present than is actually the case, leading to an estimated decay

exponent of about seven–far too high.

It is unfortunate that the fit can be misled that easily, but a close look at Figure 6.4(b)

will have already revealed to the attentive reader that this is an easily recoverable issue.

Realize that the fit tries to model modal decay, i.e. the shrinking of modal coefficient

magnitudes |q̂n| as n increases. The model (6.14) that is fitted to the decay only generates

monotone modal decays. Figure 6.4(b) is characterized by a strongly non-monotone mode

profile, and this is precisely what is misleading the estimator. Consider this: Given a

mode n with a small coefficient |q̂n|, if there exists another coefficient with m > n and

|q̂m| � |q̂n|, then the small coefficient |q̂n| was likely spurious, just like the near-zero

coefficients in Figure 6.4(b) were spurious. These spurious coefficients should hence be

eliminated from the fit, and this is what a new procedure, termed skyline pessimization,

achieves. From the modal coefficient magnitudes {|q̂n|}Np−1
n=0 , it generates a new set of

133

1.0 0.5 0.0 0.5 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

25

20

15

10

5

0

lo
g

1
0
|q̂
n
|

SL cutoff
q̂n

Raw: s=13.3

SL: s=2.94

BD+SL: s=2.99

(b)

Figure 6.5. Modal portrait for an approximant of a C1 truncated polynomial. Subfigure (a)
shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows the modal
coefficients of a Legendre expansion of the function in (a), the processing of these coefficients,
and the unprocessed and postprocessed smoothness estimates.

modal coefficients by

q̄n := max
i∈{min(n,Np−2),...,Np−1}

|q̂i| for n ∈ {1, 2, . . . , Np − 1}. (6.16)

The effect of the procedure is that each modal coefficient is raised up to the largest higher-

numbered modal coefficient, eliminating non-monotone decay. Since odd-even effects in

modal portraits (such as the one of Figure 6.4(b) are a common phenomenon, there is a

slight modification in (6.16) accounting for the last mode, which is forced to also be larger

than the second-to-last mode. This would become an issue if, for example, only the first

nine modes of Figure 6.4(b) were used, in which case the smallness of the last coefficient

would again cause an artificially high smoothness exponent. Once skyline pessimization

has been performed, decay estimation (6.15) is applied to them in the same fashion as

above, yielding a corrected decay estimate.

The effect of skyline pessimization is shown in the modal portrait of Figure 6.4(b) as

a zig-zagged blue line that appears to “truncate” the bars representing modal coefficients

134

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

2

3

4

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

20

15

10

5

0

lo
g

1
0
|q̂
n
|

SL cutoff
q̂n

Raw: s=−5.7

SL: s=−0.00

BD+SL: s=−0.00

(b)

Figure 6.6. Modal portrait for a function consisting of only the highest representable Legendre
mode φNp−1 in an expansion of length 10. Subfigure (a) shows the nodal data and its unique
polynomial interpolant. Subfigure (b) shows the modal coefficients of a Legendre expansion of
the function in (a), the processing of these coefficients, and the unprocessed and postprocessed
smoothness estimates.

at the level of the largest higher-numbered coefficient. Further, the fitted decay curve is

shown in green, along with the resulting estimated decay exponent, labeled as “SL”. With

skyline pessimization in place, the estimated smoothness exponent for the “kink” example

becomes 1.67–reasonably close to the expected value of 2.

Figure 6.5 on the preceding page shows the next-smoothest test of the estimator, a

truncated polynomial

q(x) :=


0 x < 0,

x2 x ≥ 0.

Obviously, q ∈ C1 \C2. As in the “kink” case, Figure 6.5(b) shows a pronounced odd-even

discrepancy, that leads to spuriously high “raw” smoothness exponent estimate of about

13. After skyline pessimization, the estimate assumes nearly exactly the expected value,

three. The three artificial tests conducted so far confirm the premise on which the estimator

is built, namely that the smoothness of a function represented by a Legendre expansion can

be accurately estimated solely by examining its coefficients.

135

1.0 0.5 0.0 0.5 1.0
x

1.0

0.9

0.8

0.7

0.6

0.5

0.4

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

7

6

5

4

3

2

1

0

lo
g 1

0|q̂
n
|

SL cutoff
q̂n

Raw: s=4.2

SL: s=4.24

BD+SL: s=4.84

(b)

Figure 6.7. Modal portrait for the function cos(3 + sin(1.3x)), as an example of a very smooth
function. Subfigure (a) shows the nodal data and its unique polynomial interpolant. Subfigure
(b) shows the modal coefficients of a Legendre expansion of the function in (a), the processing
of these coefficients, and the unprocessed and postprocessed smoothness estimates.

By presenting a number of further tests, I hope to clarify the behavior of the estimator

as designed so far. A particularly interesting case is shown in Figure 6.6 on the previous

page, which shows the estimator applied to the highest mode present in the Legendre

expansions of length 10 which I have been considering. In a sense, this is the most

oscillatory, and thereby the least smooth, function that the expansion can express. After

skyline pessimization, this function is assigned a smoothness exponent of zero–which in a

Fourier setting would correspond to white noise.

The next two tests, of Figures 6.7 and 6.8 on the next page, are concerned with very

smooth functions and confirm that the estimator recognizes them as such. While the

smoothness values (both around four) assigned to them are not as meaningful as the results

in the low-smoothness examples, this is not necessarily a problem. As long as the estimator

can sharply pick up non-smoothness on a reliable scale (and keep the smooth examples

clear of this area), it is performing satisfactorily for its purpose.

The second-to-last test that I am portraying, shown in Figure 6.9 on page 138, highlights

136

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

30

25

20

15

10

5

0

lo
g

1
0
|q̂
n
|

SL cutoff
q̂n

Raw: s=7.8

SL: s=4.12

BD+SL: s=4.27

(b)

Figure 6.8. Modal portrait for the function sin(πx), as an example of a smooth, odd function.
Subfigure (a) shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows
the modal coefficients of a Legendre expansion of the function in (a), the processing of these
coefficients, and the unprocessed and postprocessed smoothness estimates.

a behavior of the detector that could be considered a failure mode. Shown is a constant–1

is this case–perturbed by white noise of a much smaller scale–in this case 10−3. The graph

also shows a number of further diagnostics that I will further explain below. As discussed

above, the detector ignores the constant one, and thus all it sees is white noise, of a largely

constant modal makeup, and therefore both unaided and skyline-pessimization-assisted

decay estimation–correctly–yield a smoothness value of about zero. Unfortunately, this is

often “wrong” from an application point of view. Consider the case where the solution of

the PDE under consideration has extended areas where the solution is constant. Invariably,

these areas will be contaminated by floating point noise in the least significant digits of

the solution. Ignoring the constant, the estimator will look for smoothness in the floating

point noise, and it will not find any. This would lead to spurious activations of the artificial

viscosity in areas that are smooth (constant!) by all conventional definitions.

This problem is rooted in the (correct) removal of constant-mode information from

the estimation process, causing the estimator to not have a “sense of scale”, i.e. keeping

it from noticing that the noise is “small” compared to the remainder of the solution. In

137

the following, I present one (somewhat ad-hoc) way to re-add this “sense of scale” by

distributing energy according to a “perfect modal decay”, which is defined as

|b̂n| ∼
1√∑Np−1

i=1
1

n2N

1

nN
(6.17)

for N the polynomial degree of the method, where the normalizing factor ensures that

Np−1∑
n=1

|b̂n|2 = 1.

The idea is to consider the coefficients

|q̃n|2 := |q̂n|2 + ‖qN‖2
L2(Dk)|b̂n|2 for n ∈ {1, . . . , Np − 1} (6.18)

as input to skyline pessimization instead of the “raw” coefficients |q̂n|2. The right way

of viewing this modification is as adding a baseline decay, scaled by the element-wise

norm. The desired effect of this change is to control coefficients that are spuriously small

compared to the element-wise norm. Baseline decay will not generally make measured

smoothness worse. To see this, consider

log(a2 + b2) ≥ max{log(a2), log(b2)}

with a = |q̂n| and b = ‖qN‖L2(Dk)|b̂n| in the context of (6.18). This is relevant because

decay estimation operates on a logarithmic scale, i.e. it operates on the logarithm of the

sum of squares in (6.18). In adding the baseline decay, one is setting a “baseline” minimum

coefficient magnitude, below which small coefficients should not contribute to a poor

smoothness measurement. The baseline decay therefore precisely addresses the problem

motivating it.

138

1.0 0.5 0.0 0.5 1.0
x

0.9994

0.9996

0.9998

1.0000

1.0002

1.0004

1.0006

q(
x
)

Data
Interpolant

(a)

0 2 4 6 8 10
Mode number n

14

12

10

8

6

4

2

0

lo
g 1

0
|q̂
n
|

SL cutoff

||qN ||2 b̂n
q̂n

Raw: s=0.4

SL: s=0.12

BD+SL: s=3.39

(b)

Figure 6.9. Modal portrait of the constant 1, perturbed by white noise of magnitude 10−3.
Subfigure (a) shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows
the modal coefficients of a Legendre expansion of the function in (a), the processing of these
coefficients, and the unprocessed and postprocessed smoothness estimates.

The effect of the baseline decay can be seen in Figure 6.9, where the yellow bars

indicate the magnitude of the scaled baseline decay. Unlike the flat “white-noise” fit seen

above, the small coefficients at the start of the expansion are increased to baseline level,

resulting in a smoothness estimate of about three, which better matches the expectations

set forth above.

The crucial ingredient that makes the baseline decay work is the knowledge of the

entire element-wise norm of the measured quantity qN . Conversely, it cannot help if it loses

its sense if ‖qN‖L2(Dk) is exactly or nearly zero. The case of exact zeros may be handled

specially and is easy to catch, but near-zeros are more difficult. Here, qN consists entirely

of floating point noise. This is the only case known to me in which the detector fails, and I

am not aware of a usable automatic recovery. If defined behavior is desired in this case,

the user might supply a defined minimum value for element-wise norm scaling in (6.18).

In many practical cases, such as qN = ρN in the Euler equations, this issue is fortunately

entirely irrelevant, because the density only takes positive values.

139

1.0 0.5 0.0 0.5 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

q(
x
)

Data
Interpolant

(a)

0 5 10 15 20
Mode number n

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g

10
|q̂
n
|

SL cutoff
q̂n

Raw: s=0.8

SL: s=0.56

BD+SL: s=0.57

(b)

Figure 6.10. Modal portrait for an approximant of a (discontinuous) jump function, offset
from the center of the element. Subfigure (a) shows the nodal data and its unique polynomial
interpolant. Subfigure (b) shows the modal coefficients of a Legendre expansion of the function
in (a), the processing of these coefficients, and the unprocessed and postprocessed smoothness
estimates.

For the sake of exposition, baseline decay was not introduced upfront, but only once

the need for it arose. It is obviously not wise to first spend significant time and effort

convincing oneself that a method works as designed, only to reach back and modify that

method, potentially voiding the results of past efforts. Fortunately, this criticism does not

apply to the present situation, as the results shown so far are barely changed by the addition

of the baseline decay. The reader may convince himself of this fact by examining the

estimated decay exponents given as “BD+SL” in the past graphs and comparing to the

pure-skyline values given as “SL”. In particular, observe that the baseline decay has not

changed the smoothness measurement for the case of Figure 6.6 on page 134, even though

small modal coefficients occur at the start of the expansion. In summary, the addition of

baseline decay does not invalidate any of the statements made in the text so far.

This completes the discussion of the design of the detector. Now might also be a

good time to point out a known shortcoming in its design that was already anticipated

in the motivating discussion. The issue relates to the discussion of mode scaling with

decreasing smoothness initiated earlier in this section. Consider Figure 6.10, which shows

140

decay estimation data for the same Heaviside jump function as Figure 6.3 on page 130, but

shifted to the element’s edge. The data in the figure confirms the earlier conjecture that a

function of the smoothness might result in modal decay exponents that differ by up to a

factor of two, depending on where the non-smoothness is located inside the element–the

measured smoothness exponent for the shifted Heaviside function is only 0.57, compared

to 1.05 after all corrections above. Additional confirmation comes from the fact that the

final smoothness estimates for boundary-shifted versions of the kink and the C1 spline

are s = 1.19 and s = 2.24 respectively (not shown, original versions in Figures 6.4 on

page 132 and 6.5 on page 133). This relates in striking ways to the scaling of the DG CFL

condition (6.1), and like in its case, a remedy for this issue is not yet known.

Based on the shown examples, it should be clear that even the unassisted decay fit

is a more robust smoothness estimator than the single-mode indicator (6.8), if only for

the simple reason that it considers a much broader set of modal data. But I have shown

that even this fairly robust indicator can give poor results in surprisingly common cases.

I feel that this strongly supports the statement that the decay fit indicator with skyline

pessimization and added baseline decay represents a more practical–if more expensive–way

of obtaining smoothness information on a numerical solution.

6.4.3 Ambiguities in Two and More Dimensions

As hinted in the introduction, all of the construction features of the smoothness indicator

discussed so far generalize seamlessly to multiple dimensions, except for skyline pes-

simization, which depends on an ordering of mode indices to increase modal coefficients

according to

q̄n := max
i≤n
|q̂i| for n ∈ {1, 2, . . . , Np − 1}, (6.19)

141

q̂0,0

q̂0,1

q̂0,2

q̂0,3

q̂0,4

q̂0,5

q̂1,0

q̂1,1

q̂1,2

q̂1,3

q̂1,4

q̂2,0

q̂2,1

q̂2,2

q̂2,3

q̂3,0

q̂3,1

q̂3,2

q̂4,0

q̂4,1 q̂5,0

Figure 6.11. Modal adjacency ordering for skyline pessimization in the case of a triangle (i.e.
a “2D simplex”).

where “≤” is given by the ordering. If the modal indices are captured in a tuple i =

(i1, . . . , id) ∈ Nd
0 that one may imagine as monomial orders along each of the axes, then a

number of different orderings are plausible:

Ordering by total degree i ≤ j :⇔
∑d

k=1 ik ≤
∑d

k=1 jk,

Ordering by maximum degree i ≤ j :⇔ maxdk=1 ik ≤ maxdk=1 jk,

Ordering by adjacency. This ordering arises as the transitive closure of the relation

i ≺ j :⇔ ∃k ∈ {1, . . . , d} : i+ ek = j,

where ek is the kth unit vector, (This ordering is depicted for a triangle in Figure 6.11.)

and probably many more. A further, more ad-hoc possibility, which was used in the few

two-dimensional experiments carried out in Section 6.6, is to sum up the squares of the

modal coefficients in two dimensions along their total degree and reuse the one-dimensional

skyline procedure.

All of these orderings can of course be modified to eliminate even-odd effects in the

top modes like one-dimensional skyline pessimization. Which of these is the “right” one

142

(or at least practically advantageous) is a subject of current study. In Section 6.6, I will

show promising initial results with a simple ordering by total degree, with the even-odd fix

for the top modes.

Ordering for skyline pessimization is further not the only ambiguity potential ambiguity

that arises in multiple dimensions. Since there is now significantly more modal data at

high orders (as is also shown by Figure 6.11), it is not clear that all of these modes should

receive the same weighting in the least-squares fit. That is, instead of finding c and s to

minimize ∑
m+n≤N

|q̂m,n − c(m+ n)−s|2,

one could minimize ∑
m+n≤N

|ωm,n(q̂m,n − c(m+ n)−s)|2

instead, with the weights ωm,n determined in some way. Preliminary experiments carried

out with ωm,n = 1 and ωm,n = 1/
√
m+ n showed no measurable benefit to using such a

weighting.

6.5 From Smoothness to Viscosity

6.5.1 Scaling the Viscosity

This section assumes that the output of the indicator is an estimated decay exponent s,

approximating the decay of the solution’s modal coefficients as |ûn| ∼ n−s. I am seeking

to design an activation function ν(s) whose value is the viscosity coefficient.

For the interpretation of the decay exponent s, recall the targeted scaling of the smooth-

143

1 2 3
s

0

ν0

ν

Figure 6.12. Viscosity activation map for the sensor of Section 6.4.2.

ness exponent s, where (roughly) s = 1 would indicate a discontinuous solution, s = 2

would indicate a C0 solution, s = 3 a C1 solution, and so forth. Among the chief nuisances

of polynomial approximations that this work seeks to remedy is the Gibbs phenomenon,

which occurs for discontinuous solutions (s = 1). I therefore expect to have ν(1) = νmax,

where νmax is the maximum value of ν and dictates its scaling. Merely continuous func-

tions still pose somewhat of a problem for polynomial approximation, so I arbitrarily fix

ν(2) = νmax/2, and finally I fix ν(3) = 0, as I prefer that C1 solutions should not be

modified by viscosity.

In complete analogy to the activation map (6.9) by Persson and Peraire [2006], the

following function provides a C1 ramp between these values:

ν(s) = ν0


1 s ∈ (−∞, 1),

1
2
(1 + sin(−(s− 2)π/2)) s ∈ [1, 3],

0 s ∈ (3,∞).

Note that because of the close attention paid to precise scaling of the smoothness s, I was

144

able to eliminate the ramp location and width parameters κ and s0. The resulting activation

function is shown in Figure 6.12 on the previous page.

To find an appropriate value ν0, the behavior of the diffusion term needs to be investi-

gated. To this end, I examine the fundamental solution of the diffusion equation ut = 4u,

the heat kernel. Adopting the probabilistic standard deviation σ as a measure of width,

the heat kernel after time t has a width of σ =
√

2νt. Considering some unit t of time,

the conservation law will propagate information to a distance of λ, where λ is some local

characteristic velocity. Observe that viscosity propagates the bulk of its mass at a non-linear

square-root pace, while the conservation law observes a linear speed. One therefore needs

to pick a reference time scale t as well as a reference distance at which the two propagation

distances are to coincide.

Choosing σ = h/N after t = (N/2)∆t, and approximating ∆t ≈ h/(λN2), one

obtains

ν0 =
σ2

2t
= λ

h

N
. (6.20)

This reproduces the value of Barter and Darmofal [2010] and simultaneously provides some

more detailed insight into its meaning. I would like to note that σ = h/N is probably too

ambitious a goal, as this would only smooth discontinuities to a with of about the distance

between two nodal points–likely too little as Figure 6.3 on page 130 shows. A choice of

σ = 3h/N has proven to be more realistic.

For a system of conservation laws, there remains the question of which characteristic

velocity should be chosen for λ. This choice has important implications as, e.g. in the Euler

system, contact discontinuities propagate with stream velocity, whereas shocks propagate

at sonic speeds. In a one-dimensional setting, Rieper [2010] convincingly argues that the

best course of action is to perform smoothing in characteristic variables, so that each wave

145

receives the amount of smoothing specified by the scheme, e.g. as given in (6.20). Observe

that doing so fits the mold of the inapplicable strategy portrayed in Section 6.1: It works

well in one-dimension and for low-order multi-D finite volume schemes, but it is less clear

how it might be applied in a genuinely multidimensional situation. A simple and functional

strategy is to choose λ to be the maximum characteristic velocity λmax. The simplicity of

this strategy comes at a price, however: returning to the example of the Euler equations,

contact discontinuities have their ν0 set higher than would be necessary from this analysis,

and my numerical experiments will reflect this.

Note that the λmax-based scaling is not perfect. It works, in the sense that all test

examples run successfully using it, but some can benefit from an additional ‘fudge factor’.

For example, while Burgers’ problems (Section 6.3.3) work well with an unmodified scaling

in a ’picture norm’ sense (little oscillation, least smoothing), most subsonic Euler problems

benefit from the application of an additional factor of 1/2. This is not entirely unexpected,

given the above discussion.

Connection with the Reynolds number

Further insight can be gained from working out the relationship of the scaling of ν0 with

the Reynolds number. To that end, I consider an advection-diffusion equation

ut + λux = (νux)x.

I fix characteristic length and time scales L, T and let u(x, t) = ūv(x/L, t/T). Then

ūvt
T

+ λ
ūvx
L

=
(νūvx
L2

)
x
.

146

Setting T = ū = L/λ, I obtain

vt + vx =
(ν

λL
vx

)
x
.

This gives a rough analog of the Reynolds number,

Re =
λL

ν
.

Now consider that ν ∈ [0, ν0] with the value for ν0 obtained above. Then the Reynolds

number enforced by the scheme is in the range

Re ∈ [
λL

ν0

,∞).

If one assumes that the scheme actually uses ν up to ν0, then the above expression gives

a natural upper bound to the Reynolds numbers whose corresponding flows the scheme

can resolve at a certain resolution and scaling. As a final note, observe that for the Euler

equations, the above Re needs to be multiplied by ρ to match its conventional definition.

6.5.2 Smoothing the Viscosity

The artificial viscosity ν(x) obtained so far is a per-element quantity, with no guarantees

on how it might vary across the domain. In particular, since the viscosity is constant on

each element, it will invariably be discontinuous. Figure 6.13(a) on the next page shows a

2-dimensional surface plot of what the output viscosity ν(x) might look like.

Now observe how the viscosity is employed in the equations of Section 6.3. In particu-

lar, observe that in order to maintain conservativity, the viscosity occurs inside a derivative.

Great care is required in the correct numerical solution of a diffusion equation with dis-

147

(a) A discontinuous viscosity as could be the output
of the methods of Sections 6.4.2 and 6.5.1.

(b) A version of the viscosity smoothed by the vertex-
wise P 1 maxima described in Section 6.5.2.

Figure 6.13. The viscosity parameter ν(x) before and after smoothing.

continuous viscosities using discontinuous Galerkin methods. Ern et al. [2009], Lörcher

et al. [2008], Proft and Rivière [2009] describe various precautions that need to be taken

to avoid non-conservativity and non-consistency. In my experience, however, even if

appropriate methods (according to these references) are used, discontinuous viscosities

(or “diffusivities” in these references) introduce numerical noise into the solution, whose

removal is the declared goal of this chapter.

Feistauer and Kučera [2007] also notice the issues caused by localized, discontinuous

viscosities and propose an adapted flux term to “strengthen the influence of neighbouring

elements and [improve] the behaviour of the method”. Barter and Darmofal [2010], through

numerical experiment, also arrive at the conclusion that a discontinuous viscosity causes

issues and show a marked decrease in H1 error for smooth viscosities. Since one is at

considerable liberty to choose the viscosity ν(x), I agree that it is best to choose a ν that

does not include discontinuities, to avoid this entire complex of issues.

Therefore, given that the detection infrastructure built up so far works in an element-by-

element fashion, one needs to introduce a post-processing step that generates a smoother

148

variant of the generated ν. In doing so, one again has a wide array of choices. Barter and

Darmofal [2010] propose a diffusion equation (effectively “diffusing the diffusivity”) with

time-relaxation to obtain a viscosity that is smooth in both time and space. Unfortunately,

this choice is unsuitable given the design choices laid out in Section 6.2–to achieve sufficient

smoothing of the viscosity, one needs to choose a large diffusivity for it, which results

in a very stiff system of ODEs. This may not pose much of a problem in a time-implicit

setting, however for explicit time integration as chosen here, this would lead to gross

inefficiency. One further concern is that whatever system is chosen to smooth the viscosity

should not introduce under- or overshoots of its own, as an inverse diffusion equation

(∂tu = −4u), as might arise locally if ν undershoots zero, is not well-posed, and hence

should be avoided. Unfortunately, the PDE-based viscosity of Barter and Darmofal [2010]

is unable to guarantee this.

One important question in the design of a successful smoothing method is, precisely

how smooth must the result of the smoothing be? In computational experiments relating to

the problem of artificial viscosity, I have found that there does not seem to be an advantage

to having the viscosity ν ∈ Ck for k > 0. In other words, it appears that a continuous

viscosity suffices. More smoothness necessitates more sophisticated methods, so this is

an important datum for the design process–especially since with higher smoothness and

higher-order polynomials, the risk of oscillatory behavior increases, and undershoots in the

viscosity become an issue, as mentioned above.

Another potential issue is the over- or under-response to locally clustered viscosity

requests. Assume a method that, based on the requested viscosity in each element, sums

element-wise smooth ‘stencils’, weighted by the requested viscosities. These stencils

necessarily overlap and can, at high-degree vertices, result in a smooth viscosity that is far

higher than requested by the detector. If, on the other hand, partition-of-unity-like weights

are introduced to counter this effect, then the response to a viscosity request on a single

149

element might result in a far smaller viscosity than intended.

Based on these design criteria, the successful method employed in the experiments in

the next section proceeds as follows:

1. At each vertex, collect the maximum viscosity occurring in each of the adjacent

elements.

2. Propagate the resulting maxima back to each element adjoining the vertex.

3. Use a linear (P 1) interpolant to extend the values at the vertices into a viscosity on

the entire element.

In my experience, this method is cheap, easy to implement, and it satisfies the design

requirements set forth above. Figure 6.13(b) on page 147 shows the effect of this smoothing

procedure on an example of a discontinuous viscosity on a disk.

6.6 Experience with and Evaluation of the Scheme

I would like to make one introductory remark regarding the results shown in this sec-

tion: The normalizing factor of (6.17) was omitted in the implementation with which the

experiments were carried out, which is somewhat regrettable, but because of

1 ≤

√√√√Np−1∑
i=1

1

n2N
≤ 1.01 for all Np ≥ 1, Np = N + 1,

the introduced error is negligible.

150

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

(a) Solution of the advection equation without artifi-
cial viscosity.

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

(b) Solution of the advection equation with artificial
viscosity, after short amounts of time.

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=9.33

t=18.67

(c) Solution of the advection equation with artificial
viscosity, after one and two round-trips.

Figure 6.14. Spatial shock capturing behavior of the artificial viscosity scheme on an advection
equation.

6.6.1 Advection: Basic Functionality, Interaction with Time Dis-

cretization

The first set of results I would like to discuss relates to the advection equation (Section

6.3.1). The examples in this section examine the advection of the function

u0(x) :=


1 x < 5,

0 x ≥ 5

over an interval (0, 10).

151

0 5 10 15 20
t

0.00

0.01

0.02

0.03

0.04

0.05

||ν
|| L

∞

(a) Artificial viscosity activations vs. time, in a dis-
continuous advection calculation.

0 500 1000 1500 2000
Step number

0.000

0.005

0.010

0.015

0.020

∆
t

(b) Adaptively found time step vs. step number, in a
discontinuous advection calculation.

Figure 6.15. Interaction of the shock-capturing artificial viscosity with the time discretization.

Kuzmin et al. [2005] suggest that the advection equation is particularly suited to testing

shock capturing schemes for two reasons: First, because it is the simplest PDE that can

sustain a discontinuous solution, so that the behavior of the method can be observed in a

well-understood setting, isolated from other characteristics and nonlinear effects. Second,

because discontinuities in it are not self-steepening, in analogy to contact discontinuities in

the Euler equations, it makes a challenging example to be treated with artificial viscosity:

Once a discontinuity is unduly smeared by viscosity, nothing will return it to its former,

sharp shape.

Figure 6.14(a) on the previous page displays the behavior of the unmodified discon-

tinuous Galerkin method as described in Section 6.3.1. As expected, a strong Gibbs-type

overshoot is observed, although it is worth noting that the used upwind fluxes already

provide enough dissipation of high-frequency modes to prevent the solution from becoming

useless. This example, and all examples that follow in this subsection, were run at polyno-

mial degree N = 10 on a discretization using K = 20 elements. Further note that different

time levels are vertically offset from each other in the figure for better visual discrimination.

This offset is not part of the solution itself.

152

Next, Figure 6.14(b) on page 150 displays the result of the same calculation once the

artificial viscosity machinery as described above is enabled. Discontinuities are resolved

within eight points, i.e. within less than one element (containing Np = 11 points) and have

no visible overshoots. Element boundaries are shown as dashed lines for orientation. Figure

6.14(b) displays the solution after only a brief amount of simulation time has passed. It is

naturally interesting to see whether discontinuity profiles change much during further time

evolution. Figure 6.14(c) answers this question after one and two round-trips, respectively.

Visually, the steepness of the solution is retained, and the number of points that are required

to resolve the discontinuity has also remained stable. As an expected consequence of the

clustering of the nodes towards element edges, points appear spaced closer together where

the discontinuity touches an element boundary.

Figures 6.14(b) and 6.14(c) on page 150 appear to indicate that after a brief “settling”

period the profile of the solution remains unchanged for the remainder of the calculation.

Figure 6.15(a) on the preceding page sheds a new light on this observation and the observed

increased sensitivity of the detector near element boundaries that was discussed above.

It shows the maximum viscosity ‖ν‖L∞ found anywhere on the domain, graphed versus

simulation time. If the observation of “brief-settling-then-steady-state” were entirely true,

then one would observe no sensor activations whatsoever after “settling” has occurred.

This is not what is observed here. Instead, one sees a slowly decaying train of viscosity

activation spikes. It turns out that each of these spikes coincides with a discontinuity

crossing an element boundary. This again confirms the observation that the detection

scheme is inhomogeneous in space, i.e. it judges solution smoothness differently depending

on whether a discontinuity is located in the interior of an element or at its boundary. Since

the sensor is only exposed to the non-smoothness for very short periods at a time, according

to Figure 6.15(a) it takes considerable time (t ' 12 in the example) and a number of

viscosity “spikes” until a profile is achieved that does not trip even the overly sensitive

153

version of the detector. It is to be expected that the profile is twice smoother than would be

required if the oversensitivity did not exist.

As a last observation on the behavior of the method on this exceedingly simple problem,

I would like to examine its interaction with the adaptive time stepper. The examples were

computing using the well-known embedded Runge-Kutta method of third order by Bogacki

and Shampine [1989] (“ode23” in Matlab). 6.15(b) on page 151 shows the adaptively-

chosen time step ∆t as a function of the step number. The stable advective time step

is clearly visible, as is the initial “settling” period discussed above, along with a variety

of time step reductions occurring along the way. Some of these coincide with element

transitions of discontinuities, but the situation is more ambiguous (and noisier) than in the

case of viscosity activations. The figure does make one thing amply clear, however: an

artificial-viscosity-based shock capturing scheme using explicit time stepping must use

time step adaptivity, or it will not be competitive.

6.6.2 Waves: Shock Spreading and Spurious Coupling

The next, more complicated problem for which I examine the behavior of the proposed

artificial viscosity is the wave equation, described in Section 6.3.2.

I would like to set the stage for my experimental results by considering the context of

recent work by Cockburn and Guzmán [2008], who show (under a number of additional

assumptions) that for a DG computation of a linear advection equation at second order

using a second-order total-variation-diminishing (TVD) time discretization, pollution of

the numerical solution by the shock by time T stays localized to an area of size O(
√
hT)

ahead of and an area of size O(
3
√
Th2) behind the discontinuity. Although they only show

this for a scalar advection equation, the wave equation (6.2) and its discretization may be

154

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

t

x-t EOC: Wave Sine+Jump N=5 ν=0

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

E
O

C

(a) EOC for the wave equation with a discontinuous
initial condition without artificial viscosity.

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

t

x-t EOC: Wave Sine+Jump N=5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

E
O

C

(b) EOC for the wave equation with a discontinuous
initial condition with artificial viscosity.

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

t

x-t Viscosity: Wave Sine+Jump N=5

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
u

(c) Applied artificial viscosity for the example of
Figure 6.16(b) in space and time.

Figure 6.16. Empirical order of convergence for the wave equation with discontinuous initial
conditions.

155

1.0 0.5 0.0 0.5 1.0
x

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
o
in

tw
is

e
 E

rr
o
r

Pointwise Error at t=0.0050

K=20

K=40

K=80

K=160

K=320

(a) Pointwise error in space for the wave equation
with artificial viscosity at a near-initial time–compare
the bottom of Figure 6.16(b) on the previous page.

1.0 0.5 0.0 0.5 1.0
x

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

P
o
in

tw
is

e
 E

rr
o
r

Pointwise Error at t=0.5000

(b) Pointwise error in space for the wave equation
with artificial viscosity at a near-final time–compare
the top of Figure 6.16(b) on the previous page.

Figure 6.17. Spatial pointwise error for the wave equation.

transformed into two decoupled advection equations, and hence the result applies in this

case as well.

I will study the pollution of the solution by examining its pointwise empirical order

of convergence to the known analytic solution in space and time, starting from the initial

condition

u(x, 0) = 2 + cos(5πx) + 4 · 1[−0.3,0.3](x), v(x, 0) = 0,

subject to Neumann boundary conditions, on a domain Ω = (−1, 1) up to a final time

T = 0.6, with a wave speed c = 1.

Figure 6.16 on the preceding page shows the resulting convergence plots, obtained with

and without artificial viscosity. As expected through the work of Cockburn and Guzmán

[2008], the inviscid DG scheme of Figure 6.16(a) achieves full convergence away from

the discontinuities, but also shows a slowly-growing zone of non-convergence near the

discontinuities, again matching predictions.

Unfortunately, results are not as favorable once artificial viscosity starts to act on the

156

scheme. Outside the region that interacts with the discontinuities, convergence is roughly as

before. However inside the interacting regions, convergence does improve again away from

the discontinuity, but it does not recover the full order of the scheme. This underscores

the importance of the wave equation as a test example for shock capturing schemes. Once

the PDE is rewritten in as a system of first-order conservation laws (6.2), the single added

viscosity of (6.3) induces a cross-coupling that appears to destroy accuracy. The plot of

Figure 6.16(c) on page 154, showing the amount of viscosity applied in time and space,

shows that very little viscosity suffices to degrade convergence. (The temporal oscillations

in the figure stem from the fact that the solution is a standing wave by nature and therefore

oscillatory in time.)

Note that such behavior cannot be observed in the advection equation, or, generally,

any purely scalar conservation law, since these equations have only one characteristic wave,

and hence the pollution caused by the artificial viscosity cannot spread, but propagates

along with the solution. This might leads one to suggest an obvious “fix” for the issue:

(6.2) can easily be transformed into characteristic variables, where it takes the form of two

advection equations that only couple at the boundary, such that the issue disappears [Rieper,

2010]. As I have already discussed, proposing this is as a general remedy is however a bit

disingenuous, as it cannot work properly in multiple dimensions. Another idea that one

might have to try and avoid the reduction in accuracy is to use separate viscosities for each

of the variables. According to my experiments, this does not help, as the cross-coupling of

the system persists.

Next, it seems unlikely that this problem is specific to the artificial viscosity constructed

in this chapter, or to discontinuous Galerkin methods, for that matter. It should be investi-

gated whether all artificial viscosity schemes proposed so far in the literature suffer from

this shortcoming.

157

x

u t

Figure 6.18. Space-time plot of the solution of Burgers’ equation in 1D from the initial
condition (6.21).

Further insight into the issue is available through Figure 6.17 on page 155, which shows

the pointwise error in the numerical solution at an early (Figure 6.17(a)) and a late point

in the time evolution of the solution (Figure 6.17(b)), for all mesh resolutions that were

used to obtain the convergence information of Figure 6.16. In the near-initial situation,

the influence of the discontinuities is clearly visible, but away from them, one observes

convergence of the full order, where, as also mentioned by Cockburn and Guzmán [2008],

the error is highly oscillatory. This good convergence is retained in the outer regions of

the late-time graph, but in the center, post-interaction regions, it has broken down. It is

nonetheless encouraging that convergence is still happening, albeit at a much-reduced rate.

6.6.3 Burgers’ Equation

Moving on to the first nonlinear example of this sequence, Burgers’ Equation, stated in

Section 6.3.3, avoids the trouble described in the previous section by virtue of being a scalar

conservation law. The purpose of introducing it here is to demonstrate the performance of

the method on a simple, scalar, nonlinear example. It seems appropriate to mention at this

point that the detector of this chapter, unlike other detectors proposed in the literature, such

158

as the jump detector of Barter and Darmofal [2010], does not require positivity and can

seamlessly treat zero crossings in the solution, if the underlying conservation law permits

them.

I test the scheme on the domain Ω = (0, 150), with periodic boundary conditions and

the initial condition given by

u(x, 0) =



1
4

x ∈ R \ (−10, 20),

x
20

+ 3
4

−10 ≤ x < 0,

− x
40

+ 3
4

0 ≤ x < 20.

(6.21)

Figure 6.18 on the previous page shows the resulting numerical solution in space and time

for polynomial degree N = 5 on K = 80 elements and demonstrates the good control the

method exerts over spurious oscillations.

6.6.4 Euler’s Equations in One Dimension

In this section, I will carefully examine the behavior of the artificial viscosity method

introduced above on Euler’s equations of gas dynamics, starting with the classical exact

solution of the Riemann problem given by Sod [1978] as the first example.

Figure 6.19(a) on the following page shows computational results, again at polynomial

degree N = 5 on K = 80 elements, in direct comparison with the (L2 projection of)

the exact solution, for the density ρ and the pressure p, at the final time T = 0.25 of the

computation.

While the figure above gives an impression of the desired solution and a first impression

159

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
,
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2 proj.)

p (exact, L2 proj.)

(a) L2-projected exact and approximate numerical
solutions of Sod’s problem for polynomial degree
N = 5 in K = 80 elements.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

t

x-t EOC: Euler Sod N=5

1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

E
O

C

(b) Space-time diagram of the empirical order of con-
vergence for Sod’s problem, computed with artificial
viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

t

x-t Viscosity: Euler Sod N=5

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175
u

(c) Applied artificial viscosity for the example of
Figure 6.19(b) in space and time.

Figure 6.19. Sod’s problem with artificial viscosity: solution and x-t convergence.

160

0.45 0.50 0.55 0.60 0.65 0.70
x

0.25

0.30

0.35

0.40

0.45

ρ

N=7 K=641

N=5 K=81

(a) Close-up view of the contact discontinuity in Fig-
ure 6.19(a) on the previous page at low and high
numerical resolutions. Interpolation nodes for the
low-resolution case are shown as dots.

0.63 0.64 0.65 0.66 0.67 0.68 0.69
x

0.414

0.416

0.418

0.420

0.422

0.424

0.426

0.428

ρ

N=7 K=641

N=5 K=81

(b) Extreme close-up view of the tip of the contact
discontinuity in Figure 6.20(a), at low and high nu-
merical resolutions. Both cases exhibit spurious os-
cillation of the scale of one element. Interpolation
nodes for the low-resolution case are shown as dots.

Figure 6.20. Element-scale oscillation exhibited by the artificial viscosity scheme.

of the performance of the method, it is perhaps more enlightening to examine an analog

to the the convergence in space and time of Figure 6.16 on page 154 in the gas dynamics

setting. Figure 6.19(b) on the preceding page provides this. As above, the computation

was carried out at polynomial degree N = 5, at a variety of mesh resolutions ranging

from K = 20 to 320 elements across the domain. Like in the linear case, convergence

away from the shock region is good, while in the central, shock-interacting ‘fan’, it hardly

exceeds order 1. In particular, it is worth noting that convergence along the profile of the

smooth rarefaction wave is also no better than order 1. Given the results obtained for the

wave equation, this is not very surprising, and it confirms that the issues observed on linear

problems persist in the nonlinear case.

Figure 6.19(c) on the previous page, in analogy to Figure 6.16(c) for the wave equation,

provides a view of the detector’s reactions in space and time. Two observations may be

made: First, only the genuine (self-steepening) shock in the example actually activates the

detector, the contact discontinuity does not. This further confirms the ‘settling’ hypothesis

pursued earlier. Second, the activation of the detector is non-constant in time. The presumed

reason for this is, again, the detector’s inhomogeneity in space.

161

N = 4 N = 5 N = 7 N = 9 EOC
h/1 9.982 · 10−3 7.934 · 10−3 6.522 · 10−3 5.567 · 10−3 0.70
h/2 5.442 · 10−3 4.231 · 10−3 3.395 · 10−3 2.921 · 10−3 0.75
h/4 2.945 · 10−3 2.219 · 10−3 1.778 · 10−3 1.568 · 10−3 0.76
h/8 1.548 · 10−3 1.166 · 10−3 9.488 · 10−4 8.329 · 10−4 0.74
h/16 8.087 · 10−4 6.006 · 10−4 5.121 · 10−4 4.598 · 10−4 0.66
h/32 4.207 · 10−4 3.111 · 10−4 2.806 · 10−4 — 0.69
EOC 0.93 0.95 0.92 0.92

Table 6.1. L1 error and convergence data for the Sod problem of the Euler equations of gas
dynamics. “EOC” stands for the empirical order of convergence, obtained as a least-squares fit
to the data.

A closer look at the numerical solutions in the poorly-converged region of 6.19(b) offers

a revealing insight, shown in Figure 6.20 on the preceding page for a high-resolution case

(N = 5, K = 81) and a low-resolution case (N = 5, K = 81). On the constant parts of

the solution to the Riemann problem, I observe small “wrinkles”. Figure 6.20(a) provides

a sense of scale, while the extreme close-up of Figure 6.20(b) shows the phenomenon in

detail. In both the high- and the low-resolution case, the oscillation’s wave length roughly

agrees with the size of an element. Further, it is remarkable that the magnitude of the

oscillation appears to grow, rather than shrink, with increased resolution, which seems to

indicate that convergence below the margin provided for by the oscillation might not occur.

(Convergence will be examined in some detail below.) The phenomenon is observed on all

constant areas that are inside the fan of characteristics emanating from the shock at time

t = 0. So far, I do not understand the cause of this phenomenon, nor is it known whether

there is a connection between these wrinkles and the reduced convergence observed in

Section 6.6.2. One might speculate that, again, the spatial detector’s spatial inhomogeneity

is to blame.

Beyond the spot testing conducted so far, I have also carried out a more comprehensive

convergence study on the Euler equations applied to the Sod problem. The raw L1 error

data as well as empirical convergence order results obtained from least-squares fits are

shown in Table 6.1. The data was gathered at a variety of polynomial degrees N and

162

with K = 20 elements at the coarsest level, with uniform refinements thereafter. The

data seems to support about a full order of convergence in h = 1/K. No improvement in

convergence occurs as the order is increased. Further, the data supports less than a full

order of convergence in N , indicating that an addition of elemental resolution at present

is a more effective way of getting a more accurate solution than increasing the size of

the local approximation spaces, especially considering that the computational complexity

grows superlinearly in N . At the resolutions examined, the influence of the oscillations

(“wrinkles”) observed above does not appear to have contributed a significant part of the

error–given their observed behavior in response to resolution changes, they would likely

have represented a “bottom” to convergence at some fixed error magnitude. That issue

aside, the observed convergence data appears to be as good as one might reasonably expect.

While convergence of higher order would course be desirable, the method as it presently

stands is not designed to be able to achieve this. Through some experiments on polynomials,

I have reason to believe that convergence of order one in N is achievable and thereby a

goal for future research.

In addition to the problem of Sod [1978], which has furnished the basis for all tests so

far, I have also conducted tests using other available solutions for the Euler equations. One

such solution that is rather similar to the Sod problem is that of Lax [1954] in that it also

originates from a Riemann problem. Figure 6.21(a) on the following page demonstrates

that the scheme can successfully compute a correct solution to the problem. Lax’s problem

prominently features a contact discontinuity, which is prone to smearing, as was discussed

above. The contact discontinuity in the figure appears somewhat more smeared than the

Sod contact discontinuity at a similar scale.

A further basic benchmark test for the method applied to the one-dimensional Euler

equations was proposed by Shu and Osher [1989, Example 8] to highlight the need for

high-order methods in properly capturing the interaction of shocks with smooth wave-like

163

0 1 2 3 4
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ρ
,
p

Lax's Problem with N=5 and K=80

ρ

p

(a) Approximate numerical solution for density and
pressure of Lax’s problem for polynomial degree
N = 5 in K = 80 elements.

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
,
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

(b) Approximate numerical solution for density and
pressure of a shock-wave interaction problem for
polynomial degree N = 5 in K = 80 elements.

Figure 6.21. Solutions of classical test problems for the Euler equations using the artificial
viscosity scheme.

features. Considering the gathered convergence data, I cannot claim that the method is

of high order away from discontinuities once such areas enter the domain of influence

of a location where artificial viscosity was applied. Nonetheless, it is still instructive to

see that the method is capable of keeping the computation stable and delivering a correct

result at least in the “picture norm”, as evidenced by Figure 6.21(b). This example is

commonly considered challenging, and it is encouraging that the method is able to stabilize

the computation and give a meaningful result without excessive smearing.

As a final validation of the detector’s design on the Euler equations, it is important to

examine whether it will recognize smooth solutions and leave them untouched, preserving

high-order accuracy. I have tested this using the smooth isentropic vortex test case of Zhou

and Wei [2003] with the result that as soon as sufficient resolution is available, the detector

does not activate anywhere at any time during the solution process.

164

x

u
y

Figure 6.22. Solution of the one-dimensional Burgers equation on a two-dimensional computa-
tional domain at polynomial degree N = 5 on K ≈ 600 triangles.

6.6.5 Initial Experience in Two Dimensions

One of the core goals in the design of the smoothness detector was to be seamlessly

generalizable to multiple dimensions. This is the case, however as discussed in Section

6.4.3, several ambiguities arise in this generalization that must be settled among a number

of choices. Nonetheless, as planned, the scheme can be run even with ad-hoc choices made

in the two-dimensional application of the scheme, and provides results that are comparable,

if somewhat worse, than those in one dimension. Figure 6.22 shows the result of a two-

dimensional treatment of the one-dimensional Burgers’ problem set forth in Section 6.6.3.

As can be seen in the figure, the method does not yet dampen oscillations as effectively as

it does in one dimension, making it challenging to keep computations based on the Euler

equations stable as solutions experience undershoots below zero in pressure and density.

Such issues typically express themselves in a step size underflow of the adaptive time

stepper, which detects that no progress can be made without advancing the solution into an

invalid state. A proposed fix for this is the detection of this situation and the insertion of

“pure smoothing” cycles into the solution process to circumnavigate such issues, however no

experimental data is yet available to determine whether this provides the needed “breathing

165

room” to stabilize gas dynamics computations.

6.7 Conclusions and Future Work

What sets the shock capturing method of this chapter apart is its focus on explicit, local,

GPU-suited calculation in the context of discontinuous Galerkin methods, as explained

in Section 6.2. Despite Section 6.6’s focus on issues that still exist, I would contend that

in this niche the method is already reasonably successful and merits further study. Its

construction introduces several new concepts, such as a more precise interpretation of the

correspondence between polynomial decay and smoothness, as well as methods like skyline

pessimization, baseline decay, and P 1 viscosity smoothing. I should note that most of these

ideas arose arose from discussions I had with Tim Warburton over the course of a few

months.

The study of the method’s behavior on simple problems (such as linear waves and

transport) was–in my opinion–quite revealing, and it should be investigated in how far

other shock capturing methods are susceptible to the same problems. It would further be

interesting to see if some of the issues observed (such as the high sensitivity of the detector

at element transitions) can be remedied in some fashion.

On more complicated nonlinear problems, results were, in my estimation, encour-

aging. For example, the method manages to stabilize the computation of the shock-

wave-interaction example and other important benchmarks, without introducing excessive

smoothness. Further investigation, using the rich pool of tests available in the shock cap-

turing literature [ASC Flash Center, 2009, Slater et al., 2009, Stone, 2009, Woodward

and Colella, 1984] will doubtlessly give further insight into the method’s strengths and

166

weaknesses as well as help to further improve it.

CHAPTER SEVEN

The Vlasov-Maxwell System and DG

167

168

7.1 Introduction

The Vlasov-Maxwell system describes the evolution of collisionless plasmas and is appli-

cable in, e.g., the modelling of particle accelerators, laser-matter interaction, and certain

regimes occurring in nuclear fusion. Fundamentally, it models the interaction between

moving charge carriers and the electromagnetic field.

Let Ω be a bounded, polyhedral, open domain of interest. The Vlasov-Maxwell

system consists of two parts. First, Maxwell’s equations describe the evolution of the

electromagnetic field. In the formulation used here, Maxwell’s equations describe the time

evolution of the electric field E(x, t) and the magnetic field H(x, t) for x ∈ Ω:

∂tE −
1

ε
∇×H = −j

ε
, (7.1a)

∂tH +
1

µ
∇× E = 0, (7.1b)

∇ · E =
ρ

ε
, (7.1c)

∇ ·H = 0. (7.1d)

ε is the (electric) permittivity of the material under consideration, and µ is the (magnetic)

permeability. In this case, both will assume their known vacuum values ε = ε0 and µ = µ0.

In addition to the EM fields, the system models the evolution of a number density

f(x, p, t) on a phase space Ω × R3 in time t, where the variable p represents particle

momentum. (x, p)-space viewed as one domain is also called phase space. The behavior of

f is governed by a transport equation termed the Vlasov Equation:

∂tf + v · ∂xf + L · ∂pf = 〈Sources〉 − 〈Sinks〉. (7.2)

169

The Vlasov equation is similar in appearance to the Boltzmann Equation, which accounts

for the occurrence of collisions by source and sink terms on the right hand side of the

equation. Conversely, (7.2) does not account for collisional effects.

The quantity L in (7.2) represents a force acting on the particles. Here, this is the

Lorentz force

L(E,H) = q(E + v × µH). (7.3)

Here and throughout this chapter, I choose to work in terms of momentum p rather than par-

ticle velocity v to facilitate the inclusion of relativistic effects. One important consequence

of this choice is that the second component of phase space is truly unbounded, rather than

bounded by the speed of light c = 1/
√
µε. When particle momentum and species rest mass

m0 are known, the particle velocity is found as

v(p) =
cp√

p · p+ c2m2
0

.

The Lorentz force establishes a coupling from the electromagnetic fields to the number

density. The reverse coupling from number density to the EM field is accomplished through

the source terms j and ρ already present in (7.1). These can be computed from the known

number density f by using the particle species charge q.

ρ(x, t) = q

∫
B(O,c)

f(x, p) dv, (7.4a)

j(x, t) = q

∫
B(O,c)

vf(x, p, t) dv, (7.4b)

where B(O, c) represents the open ball around the origin O with radius c.

Observe that, at least as far as the formulation is concerned, it is trivially possible to

account for the motion of multiple species of particles simply through the introduction of

170

additional number densities f . One common case is the simulation of an electron cloud

under the assumed existence of a homogeneous, neutralizing background of ions with

∫
Ω

ρion dx =

∫
Ω

ρelectron dx.

Because of the enormous weight difference between ions and electrons, it is safe to model

the ions as immovable. They can then be accounted for in (7.4) by setting

ρ(x, t) = q

∫
B(O,c)

fel(x, p) dv + ρion, (7.5)

j(x, t) = q

∫
B(O,c)

vfel(x, p, t) dv, (7.6)

where I note that (7.6) is unchanged from the case of pure electron transport.

7.1.1 Boundary Conditions

Both the electromagnetic fields E and H and the density f must be endowed with appropri-

ate boundary conditions to form a well-posed system.

For Maxwell’s equations, one may for example adopt one of the following common

field boundary conditions on various subsets of the boundary x ∈ ∂Ω:

• Perfect Electrical Conductor, n̂× E = 0, n̂ ·H = 0, or

• Perfect Magnetic Conductor, n̂ · E = 0, n̂×H = 0, or

• Absorbing boundary conditions, realized as outgoing characteristic BCs or a perfectly

matched layer.

171

In what follows, I will approximate momentum space as truly infinite, so far-field momen-

tum boundary conditions are not needed. Near geometric obstacles or domain boundaries,

one does however need joint boundary conditions in x and p for the density f in the Vlasov

equation at points where x ∈ ∂Ω and n̂ · p < 0, where n̂ is the unit surface normal. A few

common examples include

• Specular Reflection: f(x, p, t) = f(x, p− 2(p · n̂)n̂, t),

• Absorption: f(x, p, t) = αf(x, p− 2(p · n̂)n̂, t), 0 ≤ α < 1,

• Emission: f(x, p, t) = g(x, p, t), g ≥ 0,

and combinations thereof.

7.2 Discretizing the Electromagnetic Field

One of the main motivations for this work is that the discontinuous Galerkin method (see

Section 2.1) provides a very practical discretization for the system of Maxwell’s equations

(7.1).

I refer to 2.1 for an introduction to discontinuous Galerkin discretizations and restrict

myself here to noting that I use a ‘strong-form’ DG formulation [Hesthaven and Warburton,

2002, 2007] with an upwind flux due to Mohammadian et al. [1991]:

n̂ · (FN − F ∗N) :=
1

2

 {Z}−1n̂× (Z+ JHNK− n̂× JENK)

{Y }−1n̂× (−Y + JENK− n̂× JHNK)

 . (7.7)

I have employed the conventional notations for the cross-face average {u} := (u−N +u+
N)/2

172

and jump JuK := u+
N − u

−
N . For concise notation, I use the intrinsic impedance Z :=

√
µ/ε

and admittance Y := 1/Z. Applying the principles of Section 2.1, I arrive at a discontinuous

Galerkin scheme.

7.3 Discretizing the Density

While the discretization of the electromagnetic fields as discussed above follows a known

standard procedure, the main challenge in a computational treatment of the Vlasov-Maxwell

system lies in dealing with its transport part: Because the plasmas under consideration are

so rarefied that collisions do not play a significant role, the Vlasov-Maxwell system as a

continuum model allows for particles with differing momenta at a single spatial location,

as evidenced by the presence of separate momentum axes in the pre-image space of f .

7.3.1 The Eulerian approach

If one chooses a conventional Eulerian fixed-mesh approach to the discretization of the

density f , one is automatically faced with the problem of high dimensionality. There are

three spatial and three momentum dimensions to be discretized, resulting in a total of six

dimensions. Many three-dimensional problems require the world’s largest supercomputers

to achieve adequate resolution. As a result, a six-dimensional mesh can be quite prohibitive.

Even a spatially 2D problem still has effectively four dimensions, which severely limits the

resolution.

Eulerian approaches are faced with two further problems: First, occupancy of phase

space by particles is often low except for a localized (in space and momentum) region

173

of interest, and hence f mostly evaluates to zeros or near-zeros. Second, compared with

the Boltzmann equation [see, e.g., Narayan and Klöckner, 2009], the Vlasov equation

lacks a collision term. While the collision term contributes its own set of issues that a

discretization has to solve, it does add a certain amount of regularity. This is helpful because

the Vlasov equation tends to form many fine features in its solution (a phenomenon known

as “filamentation”), each of which has sharp gradients at its boundaries. Sharp solution

gradients on the other hand can cause instabilities and spurious Gibbs-type oscillations,

which must be controlled by some method. (see Chapter 6 for somewhat related work)

These effects and, particularly, their strength, makes it seem unlikely that a non-

adaptive Eulerian scheme can yield a successful discretization of the Vlasov-Maxwell

system. Together with Akil Narayan, I have attempted such a discretization, using a tensor

product of regular discontinuous Galerkin with his generalized Wiener rational functions

[Narayan and Hesthaven, 2009] as a basis. We quickly encountered the issues mentioned

above and have yet to move past them in our efforts.

7.3.2 Particles and the Lagrangian approach

High dimensionality and lack of smoothness make direct (Eulerian) simulation of particle

transport demanding in terms of both processing power and memory. Lagrangian methods

offer a compelling alternative that may help overcome the issues explained in the previous

section, but they again come with their own set of disadvantages.

The first and perhaps most obstructive such issue is that since the scheme for Maxwell’s

equations is in all likelihood an Eulerian one, one is necessarily faced with the problem of

mapping back and forth between two representations. Second, one is faced with a choice

of object with which to approximate the density f . Objects having a true, time-dependent

174

spatial extent invariably encounter some trouble in the Lagrangian-Eulerian remapping as

the Vlasov equation may badly deform them over time. To avoid having to ‘re-normalize’

the Lagrangian object, spatially point-shape particles have been a dominant choice for the

Lagrangian approximants of f . Attempts to discretize plasma physics as described by the

Vlasov-Maxwell system through particle methods date back to the early days of computing

[Birdsall and Langdon, 1984, Hockney and Eastwood, 1988]. To emphasize the mixed

Lagrangian-Eulerian character of such methods, they are often termed ‘Particle-in-Cell’

(or PIC) methods.

Particle discretizations present perhaps the fewest immediately insurmountable com-

putational obstacles, but they are by far not free from problems. First, a finite sum of

point-shape objects is not particularly suited to approximating a density given in a contin-

uum description–one is forced to sample from the distribution, where the analogy to the

theory of probability is not spurious, but actually desired. Second, the sampling introduces

sampling noise. Third, the sampling introduces a question of resolution–which parts of f

should be sampled with how many particles? Fourth, most methods for the approximation

of PDEs (and in particular the high-order DG methods I am targeting here) depend on some

smoothness in their approximated fields. Particles are less smooth and thereby worse than

the discontinuities one might have faced in an Eulerian discretization and thereby introduce

a further form of noise into the method.

The remainder of this chapter summarizes my efforts to overcome these issues in the

described context of a DG method. The challenge is to find a particle model and a coupling

that works with high-order, unstructured DGTD field solvers. This is an unsolved problem,

consisting of two parts:

• computing (or “depositing”) a suitable DG-discretized current density based on

modeled particle movement, and

175

• computing (or “interpolating”) the Lorentz force for each particle location based on

the computed fields.

7.3.3 Rationale and Strategy for High-Order Unstructured PIC

As Section 7.4 will show, most existing work on PIC focuses on low-order methods on

Cartesian grids. This section aims to explain why I seek to adapt particle-in-cell methods to

the discontinuous Galerkin method, which I intend to operate at high order on unstructured

grids.

The main advantage of a high-order-accurate numerical scheme is that, for a small

given desired accuracy, they are more work-efficient than corresponding low-order schemes

[Hesthaven et al., 2007], assuming a certain amount of solution smoothness. Given the

noise and non-smoothness issues inherent in particle-based methods, it is not obvious

that it makes sense to ask for the small accuracies at which high-order methods excel,

and some work will have to be invested below to control these issues. But even aside

from this, a clear benefit becomes apparent for a certain, significant subset of applications.

Suppose there are well-separated regions of (mainly) electromagnetic and (mainly) particle-

driven activity. At some distance from the particle-focused region, accurate long-range

wave propagation will become more relevant to simulation success than noisy fine-scale

interactions. In such a scenario, I hope to reap the full benefit of high-order DG: accurate

approximation by relatively few points per wavelength, and less introduced phase error and

wave discretization noise.

In comparison to the use of high-order methods, the case for particle-in-cell methods on

unstructured grids is much clearer. In many problems of interest, such as in the simulation

of particle accelerator cavities (cf. Section 7.10), the somewhat complicated and curvilinear

176

surrounding geometry is the decisive factor in how electromagnetic waves propagate

and therefore needs to be modeled accurately. It will become apparent below that non-

Cartesian structured meshes, in addition to being much harder to obtain than, e.g. simplicial

unstructured ones, encounter many of the same problems of the latter. It is therefore safe to

consider only fully unstructured and Cartesian structured grids as alternatives. The latter

type of grid approximates complicated, curved geometry with at best first order in the local

mesh size, and thus makes accurate boundary representation very expensive in multiple

dimensions, unless some sort of cut-cell scheme is employed, which may in turn introduce

problems such as prohibitively small time step limitations. Unstructured (and potentially

curvilinear) meshes manage to decouple time step and local mesh size from the requirement

of accurate boundary representation, and thus promise a significant cost savings.

In addition to facilitating accurate representation of boundary geometry, unstructured

grids have a further advantage. It was mentioned above that one crucial factor to the

success of a PIC simulation is proper management of resolution. Unstructured grids make

it comparatively easy to increase mesh resolution where it is needed. This can be achieved

a-priori with great ease if the regions of interest are known ahead of time or, with little

more effort, adaptively during the run time of the method.

As the next section will show, only limited work has so far been done on bringing PIC

to high-order methods on unstructured meshes. I therefore pursue a mostly exploratory

strategy, focused on finding and evaluating the choices available for both deposition and

force interpolation. I further aim to investigate how they interact with a chosen density

representation. Once a number of choices are available, one encounters the question of

how to choose between them. Since convergence theory for particle-in-cell methods is

rudimentary even in the structured, low-order case [Victory and Allen, 1991], I will first

pursue an evaluation of methods based on their performance on a number of test problems.

Since there are very few known, exact solution that exercise the full complexity of the

177

x

y

z

(i, j, k)

Ez

Ez

Ez

Ez

Ey

Ey

Ey

Ey

Ex Ex

Ex Ex

Hz

Hz

Hy Hy

Hx

Hx

(a) Mesh arrangement for Yee’s Finite-
Difference Time-Domain scheme. [Yee,
1966]

jx

jx

jy jy

(x, y)

(x + ∆x, y + ∆y)

(b) Villasenor-Buneman assignment scheme for current
densities in FDTD-PIC [Villasenor and Buneman, 1992]

Figure 7.1. Aspects of FDTD-PIC.

Vlasov-Maxwell system, in many cases I will be evaluating the performance of a scheme

by how well it agree with known facts about the physics of the problem, as I will discuss in

Section 7.9. The further strategy will then be to choose a promising algorithm and then, if

necessary, try to improve its figures of merit by fine-tuning its details. The method obtained

from this procedure is obviously only as good as the tests I perform on it, and therefore I

will spend significant effort on assembling a reliable evaluation capability.

7.4 A Brief, Incomplete Survey of Prior Work

Traditionally, the most successful PIC methods have been those that combine Yee’s [1966]

explicit time-domain, staggered-grid centered-difference method for Maxwell’s equations

(see Figure 7.1(a)) with a charge deposition scheme by Villasenor and Buneman [1992] that

assigns current densities based on the amount of charge passing through a grid boundary

(see Figure 7.1(b)). This scheme is simple, fast, well-studied and reasonably well-validated.

It achieves perfect conservation of energy and charge (see Section 7.5 for a description of

the latter issue), is, aside from sampling error, first-order accurate in j and ρ and second-

178

order accurate in its field approximation. In the setting of accelerator simulation (see

Section 7.10), one particularly damaging consequence of the low-order approximation

and hence the mismatch between particle and wave speeds causes a phenomenon termed

numerical Cherenkov radiation [see, e.g., Zagorodnov and Weiland, 2005, and references

therein]. In addition, even this low-order scheme can suffer from the noise generated by

the non-smooth particle approximations it is often used with, resulting in “grid heating”

[Rambo, 1997]. In summary, FDTD-PIC’s applicability is significantly hampered by its

geometric inflexibility and its poor approximation properties. Both shortcomings provide

motivation for my high-order unstructured work.

One step towards mitigation of phase error and towards the run-time adaptation of mesh

resolution was made by Gjonaj et al. [2006], who have generalized the FDTD scheme above

to include high-order discontinuous Galerkin approximations on non-conforming meshes,

retaining exact charge conservation in the process. Their article provides compelling

evidence for the use of high-order schemes in PIC methods, but does not manage to shed

the geometric restriction to Cartesian meshes.

The similar bodies of work by Campos Pinto et al. [2008] and Candel et al. [2009]

are perhaps closest in spirit to my declared goal of high-order unstructured PIC, however

with one important difference: In their work, the particles interacting with a high-order

unstructured discretization are represented as point-shape entities. While they do manage

to maintain good conservation of charge (again, see Section 7.5), the noise emanating from

the point particles is significant and endangers the validity of the simulation unless some

noise control is applied.

My various approaches to the problem of unstructured high-order PIC as detailed below

179

build upon the work of Jacobs and Hesthaven [2006] and Jacobs et al. [2006]. I let

f(x, p, t) =
P∑
n=1

1

rdn
S

(
x− xn
rn

)
δ(p− pn), (7.8)

and in order to mitigate the generated noise, I following their work in deviating from the

common choice S ≡ δ and giving each particle a non-zero extent expressed by the shape

function

S(x) :=


1
N (1− ||x||2)

α ||x|| < 1,

0 otherwise,
(7.9)

This choice is justified by findings of Jacobs and Hesthaven [2006], who compared this and

many other shapes in an empirical study. The normalization N in S is chosen such that∫
Rd S = 1. In addition, this shape allows the choice of an exponent parameter α allowing a

continuum of particle shapes with varying locality and smoothness. Figure 7.2 shows a

view of S for α = 2. A few features of S are summarized below:

• S is a (truncated) polynomial, which is reasonable in a polynomial approximation of

jN and ρN .

• S ∈ Cα−1 for α ≥ 1.

• S is compactly supported.

• High values of the exponent α improve particle localization, but make the particle

more difficult to resolve in both interpolatory and L2-projection methods.

Further observe that S (and in general any scheme admitting a nonzero particle extent)

requires a choice of width rn of the nth particle. It is non-obvious what should be chosen

for this particle width, as it is imperative for proper approximability that rn scale with the

local mesh size. On the one hand, a particle is almost guaranteed to encounter cells of

180

Figure 7.2. A three-dimensional view of the polynomial particle shape function of (7.9) with
α = 2.

various sizes throughout its life. On the other hand, the size of a particle cannot be changed

during simulation without violating the consistency of the simulation (see, again, Section

7.5).

7.5 Ensuring “Charge Conservation”

In PIC literature, the somewhat unsound name “charge conservation” is attached to the

non-occurrence or near-non-occurrence of inconsistencies between the charge density as

represented in simulation state by the particle discretization and the charge density as

obtained by (7.1c), i.e. the non-violation of the equality

ε∇ · E(x, t) = q

∫
Rd
f(x, p, t)dv for all x, t. (7.10)

Taking the divergence of Ampére’s law (7.1a) yields the continuity equation

∂tρ+∇ · J = 0. (7.11)

181

By taking the time derivative of (7.10), substituting the Vlasov equation in the right hand

side, and using (7.11) on the left hand side, it is easy to see that a solution to the Vlasov-

Maxwell system satisfies (7.10) for all time if (7.10) is satisfied by the initial condition.

Available charge-conserving algorithms include conventional FDTD-PIC [Villasenor

and Buneman, 1992], higher-order DG variants thereof [Gjonaj et al., 2006], methods

on Cartesian grids having particles with extent [Esirkepov, 2001] and the point-shape

unstructured PIC methods [Campos Pinto et al., 2008, Candel et al., 2009]. For particles

with extent on unstructured or high-order discretizations (or both), methods with this

property are, to the best of my knowledge, unavailable at the time of this writing.

Charge conservation is a critical property. If it is not satisfied, pollution in the prop-

agating and non-propagating parts of the electric field may be left behind in the path of

the particle. The non-propagating parts are perhaps the most damaging, as they can add

up in place and add a significant spurious contribution in the Lorentz force (7.3). The

propagating parts of charge conservation error are somewhat less damaging–so much less

so, in fact, that turning the non-propagating parts into propagating parts has been proposed

in the literature as a fix for non-charge conserving methods. I will discuss this fix in Section

7.5.2.

Among the schemes discussed below, marked differences exist in how well (7.10) is

preserved. Based on my experience, I find it unlikely that an exactly charge conserving

method of the kind of Villasenor and Buneman [1992] will be proposed for extent-bearing

particles on unstructured grids. For high-order methods, in particular in view of Section

7.7.2, obeying (7.10) to the order of the scheme is conceivable, however. In absence of a

scheme that natively obeys (7.10), various fixes have been conceived which have been cast

in a common framework by Munz et al. [1999, 2000]. Out of the fixes yielded by their

framework, the projecting elliptic and the hyperbolic ones are likely to be the most relevant

182

in a time-explicit setting. Both are briefly explained in the two following subsections.

7.5.1 Divergence Cleaning by Helmholtz Projection

Suppose the current state of the solver involves a “polluted” electric field Ẽ, and view

E to be an as yet unspecified nearby “clean” field obeying ∇ · E = ρ/ε. One seeks to

“clean up” non-propagating components of the electric fields, which, ignoring the effects

of discretization, are irrotational and thereby the gradient of a potential φ. One therefore

writes the polluted field as

Ẽ = E +∇φ, (7.12)

where φ is a potential belonging to the ‘misplaced’ charge. Taking the divergence of this

identity and solving for φ yields a Poisson Equation for φ:

∇2φ = ∇ · Ẽ − ρ/ε, (7.13)

which is solved assuming Dirichlet conditions φ = 0 on ∂Ω. To conclude, (7.12) can be

rearranged to find the “nearby” field E = Ẽ −∇φ which obeys∇ · E = ρ/ε.

This correction technique has the distinct advantage that, whenever it is applied, it

produces an electric field exactly obeying the divergence constraint. However, in doing so,

it adds to the fully hyperbolic (and thereby parallel-computation-friendly) Vlasov-Maxwell

system a distinctly less parallelization-friendly elliptic component (7.13). It should also be

considered that the step from Ẽ to E is a relatively violent modification. Thus if magnetic

effects are to play a significant role in the problem under consideration, this method is

not suitable. Also observe that fields surrounding fast-moving (and especially relativistic)

charges gain a significant magnetic component after they are Lorentz-transformed to the

183

laboratory frame [Jackson, 1998], marking another case where this divergence correction

method is not suitable.

This technique is one out of a few proposed for divergence cleaning in the work of

Munz et al. [1999, 2000].

7.5.2 Hyperbolic Divergence Cleaning

If one subscribes to the point of view that propagating disturbances in the electromagnetic

field are “less bad” than stationary ones, one might stumble on the idea of turning the

former into the latter by adding a characteristic to the Maxwell’s system. Using a fixed

wave speed multiplier χ > 1, the following hyperbolic system achieves just that:

∂tE −
1

ε
∇×H + χ∇φ = −j

ε
(7.14a)

∂tH −
1

µ
∇× E = 0 (7.14b)

∂tφ+ χ(∇ · E − ρ/ε) = −κφ (7.14c)

This hyperbolic system admits the characteristic velocities c (2×), −c (2×), χc (1×),

−χc (1×), and 0 (1×). In comparison with the unmodified Maxwell’s system (7.1), two

characteristics of speed±χc have appeared, and one non-propagating mode has disappeared.

An alternate point of view is that an additional “cleaning wave” state variable φ has been

joined to the system, and a wave equation in E and φ has been added.

The essence of (7.14) is captured by (7.14c): A divergence error∇ · E − ρ/ε present

in the solution state acts as a source term for the “cleaning” variable φ and is turned into a

wave propagating with speed χc, achieving what one set out to do–turning static divergence

error into fast-propagating noise. In addition to propagation, the right hand side of (7.14c)

184

includes a decay term with a coefficient κ ≥ 0, whose declared goal it is to dissipate out

the divergence error as it propagates. The decay term is used in this form by Jacobs and

Hesthaven [2006].

(7.14) as a hyperbolic system is amenable to discretization by a discontinuous Galerkin

method, in particular an upwind flux in analogy to (7.7) can be derived by standard methods

[see Jacobs and Hesthaven, 2006].

Unlike Helmholtz-projection-based cleaning, this technique is usable even in the case

of relativistically fast particles, and it does not lose the hyperbolic character of the system.

It does come at a significant cost: To compute the right-hand side of (7.14c), a deposition

of ρ is necessary, which is not the case for the ordinary Vlasov-Maxwell system. Further,

since the system’s largest characteristic velocity is multiplied by a factor of χ > 1, the

largest time step that can be taken in an explicit setting is reduced by just this factor.

Again, this technique is one out of a few proposed for divergence cleaning in the work

of Munz et al. [1999, 2000].

185

7.6 Time Discretization

If one inserts a single-particle density f(x, p, t) = δ(x − xn(t))δ(p − pn(t)) into (7.2),

multiplies by a test function, and integrates over all of phase space, one obtains

0 =

∫
∂t(δ(x− xn)δ(p− pn))φ+ v · ∂x(δ(x− xn)δ(p− pn))φ

+ L · ∂p(δ(x− xn)δ(p− pn))φ dx dp

=

∫
−∂txnδ′(x− xn)δ(p− pn)φ− ∂tpnδ(x− xn)δ′(p− pn)φ

+ v · δ′(x− xn)δ(p− pn)φ

+ L · δ(x− xn)δ′(p− pn)φ dx dp

=− ∂txn∂xφ(xn, pn)− ∂tpn∂pφ(xn, pn) + v(pn) · ∂xφ(xn, pn)

+ L · ∂pφ(xn, pn).

Sorting the last equation by coefficients of ∂xφ(xn, pn) and ∂pφ(xn, pn), one obtains the

equations of particle motion

∂txn =v(pn), (7.15a)

∂tpn =L(E(xn), H(xn)). (7.15b)

If a method-of-lines approach is followed for the discretization of the field part of the

Vlasov-Maxwell system, then the resulting system together with (7.15), one obtains a

large system of ordinary differential equations describing the evolution of the semi-discrete

particle-in-cell system. This system can then be discretized using a standard ODE integrator,

resulting in a flow of data as depicted in Figure 7.3. In particular, notice that I have not

employed operator splitting in time and thereby retain the full order of accuracy of whatever

time integrator I have chosen to use.

186

Fields: EN , HN Particles: {xn}, {pn}

Interpolation Field Solve Deposition

∂tpn (∇×HN ,−∇× EN) jN

+

Time
Integrator

Div. Fix?

Figure 7.3. Data flow graph for DG-PIC.

PIC methods based on the scheme by Yee [1966] are typically used in conjunction

with Leapfrog time integrators that allow them to achieve exact conservation of total

(electromagnetic and kinetic) energy. Leapfrog integrators require a partitioning of the

system into two parts, natural candidates being each of the two staggered meshes of the

Yee scheme.

While standard discontinuous Galerkin can of course be used with Leapfrog integrators,

such use (also in conjunction with order-increasing generalizations) is, to the best of my

knowledge, relatively recent in the literature [Diaz and Grote, 2009]. Further, since the

typically employed upwind fluxes (e.g. (7.7)) add a small amount of dissipation in exchange

for excellent control of spurious modes, exact energy conservation (i.e. conservation down

to floating point accuracy) is often perceived as less valuable and Runge-Kutta integrators

have been preferred [Hesthaven and Warburton, 2007]. On the more extreme end of the

damping spectrum, fully implicit methods have recently been proposed to entirely avoid

resolving high-order modes in the electromagnetic fields [Drouin et al., 2010].

187

7.6.1 Multi-rate Time-Stepping for PIC

The time scales on which the sub-systems (7.15) and (the DG discretization of) (7.1) evolve

may differ significantly. While it is common in particle-in-cell simulations to see stiff

behavior in the particle part of the system, the Courant-Friedrichs-Lewy time step limit of

the DG-discretized Maxwell’s system scales as

∆t ∼ h

λmaxN2
, (7.16)

where λmax is the largest characteristic velocity, h is the local mesh size and N is the

approximation’s polynomial degree [Gottlieb and Tadmor, 1991, Hesthaven and Warburton,

2007]. Whatever the precise nature of each time step restriction may be at a given point in

time, it is likely that both restrictions do not agree and may in fact vary by as much as an

integer multiple. Observe that a mismatch of time step requirements becomes even more

likely if hyperbolic cleaning of Section 7.5.2 is employed, as the additional characteristic

wave introduce propagates a velocity that is typically a multiple of the speed of light that

naturally occurs in Maxwell’s equations.

Depending on the exact method parameters (and the presence of hyperbolic cleaning), it

is likely that the time step restriction (7.16) required by the DG-based field approximation

will be the more stringent of the two. Jacobs and Hesthaven [2009] present one way

of dealing with this problem by using an implicit-explicit (IMEX) Runge-Kutta method,

treating the discretized DG system in an implicit fashion by means of a sparse-factorization-

based, direct solver. This subsection presents an alternative approach.

As originally suggested by Warburton [priv. comm.] and further examined by Stock

[2009], it may make sense to employ multi-rate time stepping to save work on the compo-

nent of the system permitting the larger time step. Multi-rate time stepping methods, and

188

To \ From Particles Fields
Particles v(p) (7.15a) L(E(xn), H(xn)) (7.15b)

Fields
j = q

∫
vf dv (7.4b) (∇×HN ,−∇× EN) (7.1)

(0, 0, χ(ρ/ε)) (7.14c) (−χ∇φ, 0,−χ(∇ · E)) (7.14a)

Figure 7.4. Overview of particle-field coupling for particle-in-cell simulation. The very last
row of the table is only relevant if hyperbolic cleaning (see Section 7.5.2) is used.

in particular multi-rate linear multi-step methods, are discussed in Chapter 8. Most of the

work in PIC is in the particle-to-field and field-to-particle coupling terms, as illustrated in

Figure 7.4. One of the key contributions of Chapter 8 is to allow more control over when

and how often the expensive coupling (i.e. off-diagonal) terms in Figure 7.4 are evaluated.

Stock [2009] discusses the combination of DG-PIC with multi-rate Adams-Bashforth

methods at length, presenting comprehensive data on accuracy and application performance

impact.

7.7 Deposition methods for DG-PIC

As discussed in Section 7.3.2, once a field discretization has been fixed, the main com-

ponents of a PIC scheme are the off-diagonal coupling terms of Figure 7.4. This and the

following section discuss various choices for each of these two coupling terms, beginning

with the computation of charge and current densities ρ and j from particle quantities.

Note that, without loss of generality, this section will only discuss deposition for the

current density j. In each case below, a deposition method for ρ can be obtained by simple

analogy.

189

7.7.1 Element-wise Deposition

One of the first, and simplest, schemes that was proposed for DG-PIC is that of Jacobs and

Hesthaven [2006]. Inserting the particle discretization (7.8) into (7.4b) yields

j(x, t) =
P∑
n=1

vnqn
1

rdn
S

(
x− xn
rn

)
. (7.17)

Given this expression, the main question is how to accurately obtain a representation of it

in terms of a DG expansion. The simple solution proposed by Jacobs and Hesthaven [2006]

involves, on each element Dk, the point evaluation of (7.17) at a set of well-conditioned

nodal points {ξk,i} and the use of these nodal values as coefficients of an expansion in

Lagrange polynomials lk,i on Dk

j intp
N |Dk(x, t) :=

Np∑
i=1

lk,i(x)j(ξi, t). (7.18)

This purely interpolatory scheme is, as illustrated in Figure 7.5, crucially dependent

on the local availability of sufficient nodal resolution near the particle center. If one

chooses particle radii rn to match local mesh sizes, and if typical edge-clustering nodal sets

(such as the one by Warburton [2006]) are used, then the resolution with which (7.17) is

discretized is not homogeneous in space, which can lead to location-dependent (and often

time-oscillatory) pollution of the obtained value of j.

In trying to avoid this issue, one is led to investigate alternate possibilities for the

evaluation of (7.17) on a DG discretization, for example the exact or approximate numerical

evaluation of the L2 projection

jproj
N |Dk(x, t) :=

Np∑
i=1

φi(x)

∫
Dk

j(ξ, t)φi(ξ) dξ (7.19)

190

Particle

Figure 7.5. Element-wise deposition. The compactly supported particle is shown in red, along
with the nodal points of the mesh with which it is interacting.

for each element Dk, where {φn} is some suitable orthonormal basis on Dk that spans the

finite element space used for EN [see e.g. Dubiner, 1991, Koornwinder, 1975]. Unfortu-

nately, the use of (7.19) brings its own set of issues and is not necessarily superior to (7.18).

An exact evaluation of (7.19) is complicated by the presence of truncation to zero in the

expression for S, cf. (7.9), and likely not feasible within reasonable cost constraints. Alter-

natively, an approximate evaluation of the integrals in (7.19) by some quadrature scheme

might provide an advantage through its adjustable level of additional resolution, however it

depends on nodal evaluations just like (7.18). And even if one managed to evaluate (7.19)

exactly, the failure mode of (7.19) in the case of under-resolved particles is potentially less

benign than that of (7.18): Instead of losing mass and adding local oscillations, (7.19) will

generate non-local oscillations and a discontinuous current density. In summary, while

interpolatory deposition is certainly less expensive, it is not clear that the results obtained

by the more expensive projection method are necessarily computationally preferable.

In this work, I use the basic element-wise deposition scheme (7.18) as a published

[Jacobs and Hesthaven, 2006] baseline against which to evaluate other schemes, both with

regard to computational efficiency and figures of merit derived from the physics. I will

further discuss a few important implementation details of the element-wise deposition

191

scheme in the following subsections.

Should
∫
ρN = q be enforced?

An entirely interpolatory method like (7.18) will not manage to ensure that

∫
Ω

j intp
N (x, t) dx

?
=

∫
Ω

j(x, t) dx.

This is even clearer when broken down further

K∑
k=1

∫
Dk

Np∑
i=1

lk,i(x)ρ(ξk,i, t) dx
?
=

P∑
n=1

q

and stated for a single particle:

K∑
k=1

∫
Dk

Np∑
i=1

lk,i(x)
1

rd
S

(
ξk,i − x0

r

)
dx

?
= 1, (7.20)

for some x0 and r such that B(x0, r) ⊂ Ω.

Because S ∈ Cα−1 for the usually chosen α ∈ {2, 3, 4, . . . }, interpolation error

estimates ensure that asymptotically (for a 1D example), as h→ 0, the L∞ error in (7.20)

decreases at least as hmin(α−1,N+1). However given that the approach is targeted at about

N ≈ 4 and h ∼ r, it is safe to assume that the approximation will be in the pre-asymptotic

regime of any such estimate and hence (7.20) will be far from equality. It is obvious that

this fact alone is enough to create large divergence errors, and it is tempting to “fix” at least

the zeroth moment by numerically evaluating the left hand size of (7.20) and rescaling each

particle’s shape such that its integral matches its desired value.

However it is not just the moments of j intp
N that are wrong, shape and location are

192

approximated equally poorly. As such, one can expect to actually worsen various figures of

merit by this well-intentioned “fix”. The experimental data of Section 7.9 confirms this

expectation.

Element Finding by Mesh Connectivity

A further, more algorithmic problem encountered by element-wise deposition is finding

exactly which elements intersect with the spherical support of each particle’s shape. Because

of the scale of the problem in both the number of particles and the number of elements,

exhaustive search is prohibitive, and simple heuristics such as intersection-of-circumspheres

lead to excessive numbers of “false positives”, i.e. elements tagged for overlap with the

particle when in fact no such overlap is occurring.

I have designed a dimension-independent, fast, greedy procedure aimed at finding all

simplicial elements intersecting a spherical particle with very few “false positives”, i.e.

elements tagged for overlap with the particle when in fact no such overlap is occurring.

The procedure is illustrated in Figure 7.6(a), and it is based on an assumed prior knowledge

of the element containing each particle’s center point. It is focused on quickly making

face-based element-to-element transition decisions, based on the two geometric objects

whose intersection tests with a sphere are trivial: that of another sphere and that of a

(hyper)plane. Algorithm 7.2 exhibits the details.

Algorithm 7.2 and many other parts of a particle-in-cell scheme rely on knowledge

of which element contains each particle’s center. Therefore, this center point element

membership information, once initially established by perhaps an octree or global search,

needs to be maintained in a data-local and efficient fashion. Elaborate schemes such as the

one by Haselbacher et al. [2007] have been devised to perform this task, however in my

193

Algorithm 7.1 Maintenance of information on element membership of each particle’s
center point.
Require: Present particle position x
Require: Present particle momentum p
Require: k′ ∈ {1, . . . , K} such that Dk′ is the last element known to contain x
Ensure: Find a k such that k ∈ Dk

Compute barycentric coordinates λ(k′) of x relative to Dk′

if λ(k′)
i ≥ 0 and

∑
i λ

(k′)
i ≤ 1 then

k ← k′, i.e. x ∈ Dk′ , return.
end if
Find face F ⊂ ∂Dk′ maximizing n̂F · p > 0, where n̂F is F ’s outside unit normal vector
if there is such an F then

if F is a boundary face then
Treat particle boundary condition for x and F , return.

end if
Find index k such that Dk ∩ Dk′ = F .
Check for x ∈ Dk as above, if found, return.

end if
Find vertex ξ of Dk′ minimizing ‖x− ξ‖2

for all elements Dk adjoining ξ do
Check for x ∈ Dk as above, if so, return.

end for
{ none of the heuristics worked out }
Find Dk by exhaustive search.

194

case the simple strategy of Algorithm 7.1 has proven to be entirely sufficient.

Algorithm 7.2 find dep(k′): Recursive procedure for element finding by mesh connec-
tivity.
Require: A particle center point x and radius r
Require: A set Kp of indices k such that Dk has already been deposited, initially empty.
Require: An element index k′ known to satisfy Dk′ ∩ B(x, r) 6= ∅, initially the element

containing x.
Ensure: Kp = {k : Dk ∩B(x, r) 6= ∅}
Kp ← Kp ∪ {k′}
for all faces F ⊂ ∂Dk′ do

Find index k such that Dk ∩ Dk′ = F . If no such k exists, skip this face.
if k ∈ Kp then

skip this face.
end if
if d(P, x) > r, where P is the (infinite) (hyper)plane containing F then

skip this face.
end if
if d(C, x) > r, where C is a minimal sphere containing F then

skip this face.
end if
find dep(k)

end for

Deposition by Cartesian Node Binning

If one is content with a nodal interpolation scheme for deposition, such as (7.18) or a

quadrature version of (7.19), and if the geometry under consideration is simple enough and

has not much variation in mesh resolution, the expense of Algorithm 7.2 can be decreased

somewhat, at the expense of having to build and retain an auxiliary data structure.

Figure 7.6(b) illustrates the idea. During pre-processing, one creates a Cartesian mesh

that matches the resolution of the target interpolation mesh in such a way that a constant,

low number of interpolation nodes fall within each Cartesian grid cell. In essence, one

views the interpolation nodes as a “sea of points”, ignoring the “element” level in the

structure of the discretization. One then builds a lookup table from each Cartesian cell to

195

Particle

Depositing now

(a) Element Finding by Mesh Connectivity.

Particle

(b) Node Finding by Cartesian Binning.

Figure 7.6. Various ways of implementing element-wise deposition, as described in Section
7.7.1

.

the interpolation nodes contained within.

Then, to evaluate (7.18), one follows the simple Algorithm 7.3. In my experience,

Algorithm 7.3 can be up to twice faster than Algorithm 7.2 on suitable meshes in three

dimensions. The key to this speed increase is that lookups in a Cartesian spatial lookup

table are very cheap. There are however geometries where the method is less suitable and

can lead to either excessive memory use or poor run-time performance. These include

shapes which do not fill a significant fraction of their Cartesian bounding box, or meshes

which are very inhomogeneously refined. Some of these issues could potentially remedied

with an octree lookup, but since the margin over true element-wise deposition is only a

factor of two, it is somewhat doubtful whether this strategy would pay off. Also realize that

the algorithm deposits square supersets of the actual spherical shape of the particle, which

leads to some inefficiency.

196

Algorithm 7.3 Element-wise deposition by Cartesian node binning.

Require: A Cartesian grid o +
∑

i ∆xiαiei with finite extents 0 ≤ α ≤ αmax and ei the
ith unit vector. Further let Cα be the right-half-open grid cell at index α.

Require: A look-up table T : α 7→ I , a list of node indices such that ξi ∈ Cα.
Ensure: jdep

N ≡ j intp
N

jdep
N ← 0

for all particle indices n ∈ {1, . . . , P} do
Compute the index range α− < α+ such that B(xn, rn) ⊂

⋃
α−≤α<α+

Cα
for all α− ≤ α < α+ do

for all i ∈ T (α) do
jdep
N (ξi, t)← jdep

N (ξi, t) + qv(pn) 1
rdn
S
(
ξi−xn
rn

)
end for

end for
end for

7.7.2 Advective Deposition

Interpolatory deposition, as explored above, is very dependent on the exact distribution

of interpolation nodes within each element and across the mesh. This and the following

section represent my attempts to alleviate this dependence. The first scheme is based on the

recognition that much of the divergence error (see Section 7.5) produced by the schemes of

the previous section originates from the repeated transitions from an analytic representation

(7.17) to a polynomial representation (7.18) of the current density j and the desire to avoid

them.

In principle, this is easy enough–the only transformation that a single particle’s shape

function undergoes in time is a simple translation. If a DG-discretized representation S(n)
N

of the particle n’s shape,

S(n)(x, t) =
1

rdn
S

(
x− xn
rn

)
,

has been fixed in some way (say by interpolation), then the translation implied by (7.15a)

197

(a) Activation Stage of Advective De-
position.

(b) Post-timestep Deactivation Stage
of Advective Deposition.

Figure 7.7. The stages of advective deposition from the point of view of one particle.

can be performed on S(n) by an advection equation with constant speed v(pn):

∂tS(n) +∇ · (v(pn)S(n)) = 0, (7.21)

or, respectively on S(n)
N by a DG discretization of (7.21). Because of its reliance on the

advection equation, it seems sensible to call the resulting scheme advective deposition.

For reasons of computational expense, and because suppS(n) = B(xn, rn), it seems

appropriate to truncate the domain on which the solution to (7.21) is to be computed as

close to suppS(n)
N as is feasible, taking into account that for t > 0 suppS(n)

N 6= suppS(n).

The scheme progresses as follows: To bootstrap the computation, advective deposition

requires another depositor to establish for each particle (say, number n) a “mini-domain”⋃Kn
j=1 DMn,j

, where Mn,1, . . . ,Mn,Kn are the elements in particle n’s mini-domain, and the

approximation S(n)
N .

Once this initial data is established, S(n)
N becomes part of the time-stepped state of the

solver and thereby requires that a right-hand side be calculated for it. For the nth particle,

this right-hand side calculation progresses as drafted in Algorithm 7.4.

198

Algorithm 7.4 Update procedure for advective deposition.

Apply DG operator for ∂tS(n)
N +∇ · (v(pn)S(n)

N) = 0 on
⋃
DMn,j

with zero-inflow or
outflow boundary conditions as appropriate.
for all elements DMn,j

do
for all faces F ⊂ ∂DMn,j

do
if maxnode ξ∈F |S(n)

N (ξ)| > αactivate||S(n)||∞ then
Add cross-F neighbor of DMn,j

to mini-domain, if any.
end if

end for
end for

Observe that no particle moves faster than the speed of light and hence the discretized

advection equation obeys the same CFL condition as the system of Maxwell’s equations

(7.1). Further note that the adaptive enlargement of the mini-domain may occur in the

middle of a time step and requires some bookkeeping effort. After each time step has

completed, element DMn,j
from particle n’s mini-domain is retired if

∫
DMn,j

|S(n)
N (x)|2 dx < αdeactivate.

Figure 7.7 illustrates element activation and deactivation.

Advective deposition achieves the goal that I set out to accomplish: By working directly

on a polynomial representation of S(n)
N , it is not as dependent on evaluation node locations,

and thereby far more homogeneous in space. If there was no artificial domain truncation,

advective deposition would also achieve divergence error (see 7.5) that decays with the

same order in the local mesh size h as the error in the numerical solution of the system

of Maxwell’s equations (7.1). However even if the domain truncation for S(n)
N could be

done perfectly, the entire scheme is still very expensive, both in terms of memory and

computation:

• Unlike in element-wise deposition, the discretized S(n)
N becomes part of system state

199

and must be retained, updated and processed by the time stepper.

• The interpolatory deposition of Section 7.7.1 need to touch each nodal coefficient

roughly once per particle. The approximation of (7.21) requires many more nodal

data movements even just to carry out the element-local derivatives.

• In practice, much depends on the finite threshold values αactivate and αdeactivate. For

values of these that are small enough to ensure S(n)
N retains charge, I have observed

element counts on the order of 100 in three dimensions. For lower threshold values,

particle charge is lost surprisingly quickly.

For a minor savings of work, S(n)
N can be maintained pre-multiplied with q.

Based on the performance remarks in the previous paragraph, it is clear that, unfor-

tunately, advective deposition is not a practical scheme as-is. Luckily though, it is not a

complete write-off. First, it is valuable in showing that near-order-of-the-scheme divergence

error for particles with extent is feasible (see Section 7.9), even if this feature comes at

an uneconomical cost at present. But it may be possible to generate a current density jN

similar to the advective one at a smaller cost. Second, advective deposition has significant

untapped potential. For example, since S(n)
N becomes part of global solver state, the scheme

can trivially deal with non-uniform particle shapes. Further, one could add a spatial depen-

dency to the velocity v(pn) in (7.21). The end result of these two improvements would be a

localized fluid model that might be helpful in resolving some phase space features.

7.7.3 Cartesian Deposition

While the idea of advective deposition was to obviate the problem of varying nodal res-

olution by remaining in a polynomial representation for all time, this section presents a

200

Figure 7.8. Matching Cartesian and unstructured mesh resolution. Observe that both the
Cartesian and the unstructured mesh are refined at the center of the beam tube. The picture
shows nodal resolution in both the structured and the unstructured meshes.

different approach that addresses that problem more directly, namely by providing mostly

uniform resolution across all space.

In Cartesian deposition, deposition occurs initially on a structured, Cartesian grid.

The method uses pointwise interpolation onto nodes on a structured Cartesian grid and a

subsequent remapping onto the discontinuous Galerkin function space. The two stages of

the procedure are portrayed in Figure 7.9 on the following page. In addition to providing

an attempt at a remedy for the non-uniformity in node density, Cartesian deposition also

represents an attempt to benefit from the efficiency of algorithms running on Cartesian

grids, as was already done in the node binning method of Section 7.7.1.

The idea behind Cartesian deposition is straightforward, but its implementation faces

at least two challenges, both rooted in the fact that the Cartesian mesh may provide “too

little” resolution. First, the non-uniformity of nodal resolution is a byproduct of the need to

arrange nodes in such a way that Vandermonde matrices remain well-conditioned. Second,

if a computational mesh has been refined to provide additional resolution in areas of interest

or computational importance, this non-uniformity is entirely intentional, and deposition

201

(a) Initial (fast, per-particle) deposition onto
the Cartesian grid.

(b) Subsequent (slower, per-element) conver-
sion of Cartesian data to a local function in the
approximation space.

Figure 7.9. Stages of grid-based deposition. See also Algorithm 7.6.

onto a Cartesian overlay mesh that does not respect this additional resolution will give

poor results. One solution would be the use of a generic recursive-bisection-based adaptive

refinement for the Cartesian mesh, however this has the potential to negate the performance

gains one was hoping to achieve by moving to a structured mesh in the first place. Another

possibility is the construction of the Cartesian mesh from “bricks” of varying grid sizes, as

illustrated in Figure 7.8.

The practical execution of Cartesian deposition consists of some pre-processing, shown

in Algorithm 7.5, and the actual on-line part of the algorithm, shown in Algorithm 7.6.

There are two key observations that greatly influence Algorithm 7.6’s execution speed.

First, the second-to-innermost loop, which requires finding a set of bricks overlapping the

support B(xn, rn) of a particle’s shape function. Since this information changes relatively

slowly and (depending on the number of bricks) can be somewhat expensive to recompute,

I have found it expedient to retain it from one deposition to the next, checking before

use whether it is still current. Second, the innermost loop of the algorithm is of a very

structured nature resembling that found in codes implementing finite-difference methods.

A multitude of techniques such as vectorization has been developed to implement this type

of loop efficiently, and many of them are applicable in this instance, further contributing to

202

the efficiency of Cartesian deposition.

Algorithm 7.5 Cartesian Deposition: Computation of Cartesian-to-nodal map, accom-
plished during pre-processing.
Require: ξkν is the νth interpolation node in element Dk.
Require: Ψk is the local-to-global map for element Dk.
Require: φm is the mth element of an element-local orthonormal basis [see e.g. Dubiner,

1991, Koornwinder, 1975].
Require: Ω decomposed into bricks Bi, each containing nodes ciν arranged in a regular,

Cartesian grid.
Ensure: For each element Dk, a list Ck of Cartesian Cartesian points {c̃k1, . . . , c̃k|Ck|} and

a well-conditioned matrix Mk ∈ RNp×|Ck| mapping Cartesian values on the points Ck to
DG-nodal values on Dk.
for all elements Dk do
{ Find and number cell centers inside element }
Ck ← {c̃k1, . . . , c̃k|Ck|} ← {ciν : ciν ∈ Dk}
{ Calculate grid Vandermonde matrix Gk }
(Gk)νm ← φm(Ψ−1

k (c̃kν)) for ν ∈ {1, . . . , |Ck|} and m ∈ {1, . . . , Np}
If necessary, improve conditioning of Gk by Algorithm 7.7.
{ Compute Cartesian-to-unstructured map }
Mk ← V G+

k , where Vνm = φm(Ψ−1
k (ξkν))

end for

Second, the preprocessing stage (and its failure modes) deserve some mention. Realize

that the net effect of Algorithm 7.5 is to ensure that the result computed by Algorithm 7.6

locally on each element Dk satisfies an l2-optimality condition:

|Ck|∑
ν=1

|jN(c̃kν)− jG(c̃kν)|2 → min! (7.22)

in the notation of Algorithm 7.6. Technically, this is always possible, but in the event

that not enough data is available on the Cartesian grid to overdetermine (or at least fully

determine) jN , the solution to the least-squares problem (7.22) is non-unique, because

coefficients for too many basis functions need to be determined. I have explored three

strategies of dealing with this issue:

Basis reduction, which removes functions from the approximation basis until there is

203

Algorithm 7.6 Cartesian Deposition: Grid-based deposition and nodal unstructured remap-
ping.
Require: Ω decomposed into bricks Bi, each containing nodes ciν arranged in a regular,

Cartesian grid.
Require: Remap matrices Mk as computed by Algorithm 7.5
Ensure: jN contains an approximation of j from (7.17) on the DG grid.
{ Deposit onto Cartesian mesh }
for all particles with number n ∈ {1, . . . , P} do

for all bricks Bi overlapping B(xn, rp) do
Find bounding box of B(xn, rp) ∩Bi

for all cell centers ciν in bounding box do
jG(ciν)← jG(ciν) + qnv(pn) 1

rdn
S
(
ciν−xn
rn

)
end for

end for
end for
{ Remap from Cartesian onto DG mesh }
for all elements Dk do

jN |Dk ←Mk(jG(c̃kν))
|Ck|
ν=1

end for

enough data to fully determine the resulting basis expansion,

Domain-of-dependence enlargement, which considers a (relative to Dk) barycentrically

larger area in which to search for Cartesian points to use in the remapping,

Placement of additional, non-grid evaluation nodes, which finds points outside the Carte-

sian mesh, which, if available, would lead to an optimal reduction of the condition

number.

Domain-of-dependence enlargement encountered issues because the polynomials under

consideration start oscillating very quickly outside the simplex. The placement of additional

evaluation nodes was somewhat effective, but both expensive, and it highlighted the fact

that ill-conditioning typically occurs for “odd-shaped” simplicial elements such as slivers,

where the accuracy gain through additional resolution would be somewhat artificial. Hence,

the in my experience best strategy of coping with ill-conditioning is is basis reduction,

which is encoded in Algorithm 7.7.

204

Algorithm 7.7 Conditioning fix for grid Vandermonde matrix Gk.
Require: An element number k
Require: Ψk is the local-to-global map for element Dk

Require: φm is the mth element of an element-local orthonormal basis.
Require: A list Ck of Cartesian points {c̃k1, . . . , c̃k|Ck|} ⊂ Dk

Ensure: κ(GB) = O(1)
{ a set of “participating” basis function indices, initialized to full basis }
B ← {1, . . . , Np}
loop
{ Compute “restricted” grid Vandermonde matrix }
(GB)νj ← φBj(Ψ

−1
k (c̃kν)) for ν ∈ {1, . . . , |Ck|} and j ∈ {1, . . . , |B|}

{ Perform SVD }
UΣV T ← svd(GB), where Σij = 0 for i 6= j and |Σii| > |Σjj| for i > j
n← min(|B|, |Ck|)
if |Σ11/Σnn| > 10 then
{ GB is ill-conditioned, remove “most singular” basis function }
i← argmax{|Vjn| : j ∈ B, deg φj = max{deg φl : l ∈ B}}
B ← B \ {i}

else
Done, return.

end if
end loop

205

One closing observation is that the current density output of Algorithm 7.6 will, in

most cases, be discontinuous, unphysically providing for element interfaces that exhibit

different values of j on each side. Given that the modeled j is a sum of smooth particles,

it seems sensible to “repair” this deficiency by averaging among coincident nodal values.

The efficacy of this remedy will be assessed in Section 7.9.

Cartesian deposition provides a deposition method that is both fast and very predictable

in terms of resolution availability. It could further be extended to include specialized current

density deposition schemes such as the one by Villasenor and Buneman [1992] (see Figure

7.1(b)).

Lastly, the introduction of an auxiliary Cartesian mesh is somewhat of an embarrassment

to an unstructured method, but so far the computational effectiveness and the quality of the

results seems to justify at least retaining it within consideration.

7.8 Particle Pushing in DG-PIC

7.8.1 Interpolatory Pushing

In comparison with particle deposition, the reverse direction of the coupling (appropriately

called “particle pushing”) between (7.1) and (7.2) is rather simple–the main goal is to

evaluate, for each particle, the Lorentz force (7.3),

L(E,H, xn, pn, t) = q(E(xn, t) + v(pn)× µH(xn, t)) (7.23)

206

to use as a right-hand side in the particle equation of motion (7.15b)

∂tpn = L(E,H, xn, pn, t)

As such, computing (7.23) requires a number of point evaluations of the approximate elec-

tric field EN and the approximate magnetic field HN . Algorithmically, this is accomplished

by preparing a Vandermonde matrix

(Vij)
Np
i,j=1 := φj(ξ̂i),

where (φj)
Np
j=1 represent a per-element basis of the DG approximation space and (ξ̂i)

Np
i=1 are

node locations on the reference element I, and a vector of point evaluations

(mi)
Np
i=1 := φi(Ψ

−1
k (xn)), (7.24)

where Ψk is the local-to-global map for element Dk. Then, with α := V −Tm one has

E(xn) =

Np∑
i=1

αiE(ξki), (7.25)

where one supposes that the particle position xn ∈ Dk, and, as above (ξki)
Np
i=1 = (Ψk(ξ̂i))

Np
i=1

are the nodal locations on element Dk. Observe that this represents another place where the

information on which element contains a given particle is used, as maintained by Algorithm

7.1.

Interpolatory pushing is the method used by Jacobs and Hesthaven [2006], it generally

works well and is reasonably efficient. Both of its algorithmic halves allow the use of tricks

that increase computational efficiency:

• The method does not make assumptions on the nature of the basis (φi). Hence, as

207

long as the chosen basis spans the same space as the one used for approximation, the

computed force should not vary significantly. As a result, one may evaluate basis

sets solely on two criteria: the efficiency with which the point evaluations (7.24)

can be computed and the conditioning of the resulting Vandermonde matrix V , and

thereby, the accuracy with which α = V −Tm can be computed. While the simplicial

ONB used throughout the rest of this work [Dubiner, 1991, Koornwinder, 1975]

provides very good conditioning for a large range of polynomial orders, its evaluation

is somewhat expensive. In accordance with the work of Jacobs and Hesthaven [2006],

I have found that for the polynomial orders of interest here, a plain monomial basis

{φ̃klm(x, y, z) := xkylzm : k + l +m ≤ N}

provides a better trade-off of these two factors. If higher-order accuracy is desired

than is feasible by monomial interpolation, efficient evaluation schemes for the

Dubiner basis provide an attractive option [Kirby, 2010].

• Once the point evaluations m are available, the computation of the interpolation

coefficients α can be performed in a large batch for all particles at once, turning the

matrix-vector operation α = V −T into a matrix-matrix operation. In the context of

computations, matrix-matrix operations are generally much more efficient than their

matrix-vector counterparts, which is exploited by making this change.

7.8.2 Mean-based pushing

The point-shape, interpolatory pushing of the preceding section, and in particular the

derivation of (7.15b), made the assumption that S ≡ δ, i.e. particles occupy a single

point in space. But consider that throughout Section 7.7 in the context of deposition, this

208

assumption has been violated by the use of particles with a nonzero extent in space for

reasons of noise mitigation. It seems appropriate to examine what might happen if one

admits particles with an extent in particle pushing.

I would like to remark upfront that this change does not make the scheme entirely self-

consistent. In particular, substituting a shape function like (7.9) into the Vlasov equation

(7.2) and following the procedure of Section 7.6 yields the (somewhat obvious) observation

that, aside from points, no fixed shape is in general mapped onto itself by the Vlasov

equation. There have been efforts to design parametric classes of particles that make steps

towards being closed under the action of the Vlasov equation [Hewett, 2003]. The latter

work also discusses splitting and merging techniques when the parametric approach is

regarded as having broken down.

Even with this shortcoming, something may be gained by investigating the behavior

of a particle-in-cell scheme where particles have an extent for both deposition deposition

and pushing. My approach to the design of such a scheme is based on an analogy of an

extent-having particle with a rigid body. I assume rotational symmetry of the associated

shape function and therefore may ignore rotational motion and forcing. By examining

the Lorentz force (7.3) exerted on an infinitesimal volume dx within a rigid particle and

integrating, I arrive at the total linear force acting at the center of mass of a particle under

the influence of electromagnetic fields:

Ln =

∫
B(xn,rn)

ρn(x)[E(x) + v(pn)× µH(x)] dx. (7.26)

Linearity allows another, equivalent way of viewing (7.26). Instead of using a point

evaluation (7.25) for particle pushing as in the previous section, one uses a weighted mean

209

(a) Setting for mean-based pushing: Cloud-
shaped particle with adjacent vector-valued
fields, evaluated at element nodes.

∫
−

(b) Computation of the particle cloud mean,
assignment of the point force as the weighted
mean force.

Figure 7.10. Stages of mean-based pushing.

of the electric and magnetic fields, i.e. for example

Ēn :=
1

q

∫
B(xn,rn)

ENρn dx. (7.27)

One then uses Ēn instead of EN(xn) in (7.15b). Figure 7.10 illustrates (7.27).

Two ideas are necessary to turn (7.27) into an implementable method. First, the integral

in (7.27) may be viewed as an inner product that can be computed exactly by using either a

suitable quadrature or the mass matrix available as part of the DG discretization. Second, to

obtain an approximation of ρn, one reuses the output of the existing deposition algorithm,

though at a different level than before. In particular, this, in conjunction, with the element-

wise computation of the integral, requires that the deposition output be separable both

by particle and by element. This constraint is satisfied by non-grid-binned element-wise

deposition (Section 7.7.1), and advective deposition (Section 7.7.2), but not (cheaply) by

Cartesian deposition (Section 7.7.3).

This leads to the scheme

Ēn,N :=
1

N
∑

Dk∩B(xn,rp)6=∅

∫
Dk

EN(x)ρn(x) dx, (7.28)

210

where there are two plausible choices for the normalization N :

• the particle charge q, or

• the actually deposited particle charge

∑
Tk∩B(xn,rp)6=∅

∫
Dk

ρN dx,

noting as above that the two will not necessarily agree. Unlike in the discussion of Section

7.7.1, the second choice may be superior in this instance as, because of averaging, the exact

local charge distribution is less important than overall correct weighting, which might lead

to oscillatory effects in the magnitude of the averaged field Ēn,N .

As will be seen in the subsequent results section, numerical results of mean-based

pushing are, surprisingly, somewhat disappointing. In addition to the added expense of

evaluating the integrals in (7.28), it tends to be vulnerable to the imperfections of the

deposition method in use. As commented initially, the world view presented by mean-based

pushing is somewhat more consistent than that of other methods, but it is not actually

consistent with the governing equations. Earlier in this chapter, it was commented that

sucessful methods for the Vlasov equation should allow some form of adaptivity to account

for varying resolution needs. The first step to an adaptive scheme is, of course an indicator

of how well-resolved a solution is at present, and mean-based pushing offers one option: If

one views (7.28) as the computation of a mean as suggested above, one may also compute

an estimate of its associated standard deviation. High standard deviations indicate that

particles span areas of fields with large spatial variation in E and H , which is indicative of

an area that should likely be refined.

211

7.9 Numerical Evaluation

In addition to presenting significant obstacles to the construction of a workable numerical

scheme, the Vlasov-Maxwell system also presents significant obstacles to the validation

of such numerical treatments. I have implemented my approaches, as detailed in the

preceding sections, in the context of the discontinuous Galerkin solver hedge (see Chapter

3). Like Jacobs and Hesthaven [2006], I have successfully validated my implementation

against simple tests such with spatially and temporally non-varying fields, such as Larmor

screwlines and E ×B drifts, essentially confirming that time stepping and field-to-particle

interpolation is working as designed in all schemes of Section 7.8.

Jacobs and Hesthaven [2006] have already achieved initial validation of the scheme

consisting of per-element deposition (Section 7.7.1) and interpolatory pushing (Section

7.8.1) on nontrivial tests such as plasma waves, Landau damping, and a full magnetron

simulation. As discussed in Section 7.3.3, I consider it likely that high-order unstructured

DG-PIC methods will see their first application in areas where there are there are well-

separated regions of mainly electromagnetic and mainly particle-driven activity. I have

therefore decided to bias my tests away from full-plasma tests as performed by Jacobs and

Hesthaven [2006] and towards one area that exhibits this property, namely beam simulation

in accelerator physics. Even in absence of nontrivial analytic solutions, it fortunately is

possible to evaluate the behavior of the method by how well it matches known physical

invariants of the system. Examples of such invariants include momentum (consisting of

212

particle and field momenta)

ptot = ppart + pfield,

ppart =
P∑
n=1

|pn|2,

pfield =
1

c2
0

∫
Ω

E(x)×H(x) dx,

field and particle kinetic energy

Etot = Epart + Efield,

Epart =
P∑
n=1

(
|pn|
|v(pn)|

−m
)
c2

0,

Efield =

∫
Ω

1

2
(E(x) ·D(x) +H(x) ·B(x)) dx,

and (in certain beam physics problems) beam emittance, of which the RMS (root mean

square) variety is shown here:

ε2
y,rms = 〈(y − 〈y〉)2〉〈(y′ − 〈y′〉)2〉 − 〈(y − 〈y〉)(y′ − 〈y′〉)〉2. (7.29)

In this expression, 〈·〉 = (1/P)
∑P

n=1(·)n is a particle average, and y′ = py/pz is a phase

space coordinate common in accelerator physics [see, e.g., Wiedemann, 1993]. In this case,

z is assumed to be the longitudinal direction in which the beam travels, whereas y is one of

the transverse directions.

A further figure of merit is provided by the charge conservation identity (7.10), whose

L1 error one may use as a measure of error:

∫
Ω
|ρN(x)−∇ · (εEN(x))| dx,

|Pq|
(7.30)

213

where I have chosen to use the L1 norm for two reasons: first, because it retains the physical

unit of Coulomb and therefore gauges the amount of “misplaced” charge, and second,

because it is preferred in the field of density estimation [see, e.g. Devroye and Lugosi,

2001], which is closely related to the problem of deposition in PIC. For comparability, I

have scaled the error indicator relative to the total amount of charge present in the domain.

A further, simpler quality measure is that of comparing total intended charge with

actually deposited charge. ∣∣∫
Ω
ρ dx

∣∣
|Pq|

(7.31)

This quantity is somewhat less informative than the L1 divergence error, as the integral in

(7.30) can be peeled away and local contributions to the error examined, whereas the same

thing is impossible in (7.31). Further, the difference between (7.30) and (7.31) is indicative

of how much of the divergence error is due to oscillatory behavior, as this would tend to

not affect the quantity in (7.31). Again for comparability, I have scaled this error indicator

relative to the total amount of charge present in the domain.

Note that most of the conservation properties mentioned in this section require that the

system under consideration is closed, i.e. it has no absorbing or dissipating components.

Finally, I would like to add that the majority of the numerical evaluation to follow

should be seen as, at best, qualitative in nature. In my opinion, this is to be expected, as the

methods I am evaluating are still mostly experimental.

7.9.1 Gaussian Electron Beams

Based on the large variety of possible methods presented in Sections 7.7 and 7.8, the goal

of this subsection is to provide some initial guidance on the strengths and weaknesses of

214

Figure 7.11. Spatial setting of the Gaussian electron beam test case.

each individual method in a beam physics setting. I will base this initial assessment on the

simulation of the behavior of a simple Gaussian beam in a two-dimensional beam tube.

The test setup is depicted in Figure 7.11. The transverse wall of the (2D) beam tube is a

perfect electric conductor, and the longitudinal boundary is periodic.

Unlike for the beam distribution in Section 7.9.2, no analytic predictions regarding beam

behavior are available, so I will use the aforementioned physical invariants for evaluation.

The present section is based on a comprehensive survey of all methods at a wide variety

of parameter settings. In the interest of brevity and readability, I will only present only

the most salient results. Unless otherwise noted, all tests were run with on the mesh of

Figure 7.11, containing K = 302 elements using a field approximation of polynomial

degrees N of 3 and 5, with P = 20000 particles in the beam. The simulation is run for a

time that allows the particle beam to cross the domain once along the beam-longitudinal x

axis.

I begin my evaluation with a look at the methods’ behavior in terms of the divergence

error. This behavior is portrayed for polynomial degrees 3 and 5 in Figures 7.12(a)

and 7.12(b) on the following page, respectively. These figures are perhaps the most

important ones of the entire evaluation, as they a) depict performance on a quantity that is

crucial for successful physics modelling (see Section 7.5) and b) show methods as having

215

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

0.0

0.1

0.2

0.3

0.4

0.5
∫ Ω

|ρ
−
∇
·D
|/
Q

0

Divergence Error for N=3
Adv.
Cart. (C0) χ=2

Cart. (C0) χ=2 κ=10c0 /l

Cart. (C0)
Cart. χ=2
Cart. χ=2 κ=10c0/l
Cart.
Norm. El.wise χ=2
Norm. El.wise χ=2 κ=10c0/l
Norm. El.wise
El.wise χ=2
El.wise χ=2 κ=10c0 /l
El.wise

(a) Divergence error for N = 3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

0.0

0.1

0.2

0.3

0.4

0.5

∫ Ω

|ρ
−
∇
·D
|/
Q

0

Divergence Error for N=5
Adv.
Cart. (C0) χ=2

Cart. (C0) χ=2 κ=10c0/l

Cart. (C0)
Cart. χ=2
Cart. χ=2 κ=10c0/l
Cart.
Norm. El.wise χ=2
Norm. El.wise χ=2 κ=10c0/l
Norm. El.wise
El.wise χ=2
El.wise χ=2 κ=10c0/l
El.wise

(b) Divergence error for N = 5.

Figure 7.12. Divergence error in the 2D Gaussian beam test. Each figure shows a plot of
divergence error vs. simulation time.

performance differences of more than an order of magnitude on this particular quality

criterion. Regardless of the method, it appears that, as long as no corrective scheme is

applied, divergence error accumulates nearly linearly, which is consistent with the picture

of a beam moving through an area and leaving a trail of stationary noise behind. Because

of this linear behavior, one may evaluate deposition methods based on the rate at which

this accumulation occurs. I further observe that (as is plausible) particle pushing methods

do not have any influence on the behavior of the divergence error, so results are shown for

monomial particle pushing as a representative choice.

The first (and simplest) observation settles the question of post-deposition charge

scale correction as brought up in Section 7.7.1. The line labeled “Norm. El.wise” and

“El.wise” represent the same, element-wise deposition method, once without, and once with

normalization. Normalization appears to contribute significantly to the accumulation of

divergence error, increasing it by a factor of at least three in this instance. I shall therefore

mostly exclude it from further consideration.

Results on whether continuity enforcement for Cartesian methods is beneficial are

216

0.0 0.2 0.4 0.6 0.8 1.0
t [s] 1e 8

0.998

0.999

1.000

1.001

1.002

∫ Ω

ρ
/
Q

0

Deposited Charge for N=3

Cart.
Norm. El.wise
El.wise

(a) Deposited charge for N = 3.

0.0 0.2 0.4 0.6 0.8 1.0
t [s] 1e 8

0.0003

0.0005

0.0007

0.0009

0.0011

∫ Ω

ρ
/Q

0

+9.993e 1

Deposited Charge for N=5

Cart.
Norm. El.wise
El.wise

(b) Deposited charge for N = 5.

Figure 7.13. Deposited charge in the 2D Gaussian beam test. Each figure shows a plot of
deposited charge vs. simulation time.

somewhat inconclusive, showing a beneficial effect at N = 5 and a smaller detrimental

effect atN = 3. Similarly inconclusive results are visible for whether uncorrected Cartesian

or element-wise deposition is superior. Cartesian deposition achieves lower divergence

error by about a third at N = 3, whereas at N = 5, element-wise deposition has a small

advantage. I hypothesize that the reason is this: the case N = 5 has considerably more

expansion modes to choose from than the N = 3 one. In the low-order case, Cartesian

deposition can benefit from its nearly uniform availability of resolution, and the troublesome

grid-to-grid interpolation procedure cannot do to much damage by exciting very high-order

modes. Unfortunately then, the availability of more modes at N = 5 seems to spell trouble

for Cartesian deposition. This hypothesis about the trouble encountered by Cartesian

deposition is backed by Figure 7.13, which depicts that the overall deposited charge for

the same two cases, showing greater oscillations for Cartesian deposition at N = 5 than

at N = 3. This hypothesis also affects the case for continuity correction of Cartesian

deposition: It is based on a premise of smoothness and well-resolvedness. When that

premise holds (e.g. at N = 5 above), Cartesian deposition becomes less viable. Continuity

averaging therefore likely has no chance to be beneficial.

217

In discussing these results on Cartesian deposition, I would like to add that as nodal

resolution increases from N = 3 to N = 5, Cartesian resolution is increased proportionally

and kept at a level where the are 1.5× more Cartesian than simplicial DG nodal points.

Lastly, advective deposition lives up to its design goal at least to some extent. Of the

methods unaided by hyperbolic cleaning, it consistently achieves the smallest divergence

error. At N = 3, advective deposition is competitive even with hyperbolically-cleaned

element-wise deposition. As indicated in the section describing its construction, the reason

why advective deposition does not provide near-perfect charge conservation is of course

rooted in the need to truncate each particle’s mini-domain. Unfortunately, even at these

low threshold settings (which led to correspondingly poor charge conservation), advective

deposition is rather expensive (in these runs, often by more than a factor of three over even

the methods employing hyperbolic cleaning)–an expense that is not justified by the results

obtained.

Moving on to methods aided by the use hyperbolic cleaning, the observations become

more straightforward. A speed multiple of χ = 2 appears able to help control divergence

error atN = 3 equally well for all methods except for element-wise deposition. (Jacobs and

Hesthaven [2006] recommend χ = 10.) At N = 5, element-wise deposition is competitive

with the other methods’ post-correction divergence error. The addition of hyperbolic

cleaning further slows the accumulation of divergence error to a below-linear rate. Once

an additional decay term (denoted κ in the figure legend) is added, divergence error stops

increasing in time and plateaus at about the same level for all methods.

As a final observation on divergence error, I would like to add that it is calming that

a decrease in divergence error is observed in going from N = 3 to N = 5, confirming

that approximation properties improve as resolution increases, even taking into account the

caveat about modal resolution in Cartesian deposition above.

218

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
n
e
rg

y
 W

p
ar

t
+
W

fi
el

d
 [

J]

1e 8+6.61618e 3

Conservation of Energy for N=3

Cart. (C0) Monom.
Cart. Monom.
El.wise Mean
El.wise Monom.
Cart. (C0) Monom. χ=2
Cart. Monom. χ=2
El.wise Mean χ=2
El.wise Monom. χ=2

(a) Energy conservation for N = 3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
n
e
rg

y
 W

p
ar

t
+
W

fi
el

d
 [

J]

1e 9+6.616205e 3

Conservation of Energy for N=5

Cart. (C0) Monom.
Cart. Monom.
El.wise Mean
El.wise Monom.
Cart. (C0) Monom. χ=2
Cart. Monom. χ=2
El.wise Mean χ=2
El.wise Monom. χ=2

(b) Energy conservation for N = 5.

Figure 7.14. Energy conservation in the 2D Gaussian beam test. Each figure shows a plot of
energy vs. simulation time.

A further remark concerns the valid question of why I show results for a problem that

appears underresolved. In my view, this is legitimate, and more interesting than showing

only well-resolved results. In the simulation of realistic, challenging problems, one is very

rarely afforded the luxury of being able to use as much resolution as one would like. To me,

it is therefore most interesting to see what happens right at the boundary of underresolution

and to observe how gracefully each method decays under these circumstances.

Results for the remaining two conserved properties, energy and momentum, shown

in Figures 7.14 and 7.16 on the next page respectively, are somewhat simpler to analyze

than the divergence error above. First, and most importantly, both are already quite good,

representing ripples of a relative magnitude 10−5 and 10−4 for energy and momentum, at

N = 3, and both again reduce considerably at N = 5.

Because of the already-small magnitude of the variations in energy and momentum,

none of the following should be overvalued, but a few observations are definitely in

order. First, it is uniformly the case that hyperbolic cleaning adds significant noise to

both conserved quantities. This noise appears to be of oscillatory nature and does not

219

0.0 0.2 0.4 0.6 0.8 1.0
t [s] 1e 8

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

∫ Ω

ρ
/
Q

0
Deposited Charge for N=5

Adv.
Cart.
Norm. El.wise
El.wise

(a) Deposited charge vs. simulation time based on
the same data as Figure 7.13(b) on page 216, with
data for advective deposition included.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
e
rg

y
 W

p
ar

t
+
W

fi
el

d
 [

J]

1e 7+6.6161e 3

Conservation of Energy for N=5

Adv. Mean
Adv. Monom.
Cart. (C0) Monom.
Cart. Monom.
El.wise Mean
El.wise Monom.
Cart. (C0) Monom. χ=2
Cart. Monom. χ=2
El.wise Mean χ=2
El.wise Monom. χ=2

(b) Total Energy vs. simulation time based on the
same data as Figure 7.14(b) on the preceding page,
with data for advective deposition included.

Figure 7.15. A closer look at the performance of advective deposition.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
o
m

e
n
tu

m
 p

p
ar

t
+
p

fi
el

d
 [

N
s]

1e 16+3.52035e 11
Conservation of Momentum for N=3

Cart. (C0) Monom.
Cart. Monom.
El.wise Mean
El.wise Monom.
Cart. (C0) Monom. χ=2
Cart. Monom. χ=2
El.wise Mean χ=2
El.wise Monom. χ=2

(a) Conservation of momentum for N = 3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
o
m

e
n
tu

m
 p

p
ar

t
+
p

fi
el

d
 [

N
s]

1e 17+3.520364e 11
Conservation of Momentum for N=5

Cart. (C0) Monom.
Cart. Monom.
El.wise Mean
El.wise Monom.
Cart. (C0) Monom. χ=2
Cart. Monom. χ=2
El.wise Mean χ=2
El.wise Monom. χ=2

(b) Conservation of momentum for N = 5.

Figure 7.16. Conservation of momentum in the 2D Gaussian beam test. Each figure shows a
plot of momentum vs. simulation time.

220

appear to alter the mean. Second, the overall smaller magnitude of variation at N = 5

uncovers drifts in both momentum and energy that may prove troublesome at longer time

scales. Remarkably, mean-based pushing remains mostly free of this drift effect in energy

at N = 5. Lastly, element-wise and Cartesian deposition exhibit very similar behavior in

both of these conservation properties–while there is a visible behavior difference between

methods, this is not so great that these differences should be called significant.

I would like to conclude this broad overview of performance data for all methods by

briefly returning to observations on advective deposition. While it did provide the benefit it

was designed for, it was already found to be uneconomical for its cost above. Unfortunately,

that is not the method’s only problem. Figure 7.15 on the preceding page shows a few

more observations on advective deposition in the context of the quality measures discussed

above. First of all, Figure 7.15(a) reprises Figure 7.13 on page 216. It was stated at the

beginning of Section 7.5 that “charge conservation” is a misnomer for the effect for which

it is used. Ironically, the figure shows that advective deposition has a genuine charge

conservation problem, losing about one percent of the starting charge over the course

of the simulation run. This, in turn, has grave effects on other conservation properties,

as shown for total energy in Figure 7.15(b). Surprisingly, advective deposition coupled

with monomial pushing performs far more poorly than advective deposition coupled with

mean-based pushing, but, compared to the remaining methods, neither of them provides

even reasonable output. While these results certainly seal the fate of advective deposition,

that is not a big concern in itself, as the method was not designed to be practical on its own,

but rather as a “test balloon” for more complicated methods that endow each particle with

significant local structure. Given the results, it seems plausible that in addition to resolving

challenges that the local structure might bring with it, one of the foremost questions such a

method would have to answer is how to truncate each of its particle “mini-domains”.

221

(a) Spatial setting for the K-V Beam Physics Test.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 10

0

5

10

15

20

∫ Ω

|ρ
−
∇
·D
|/
Q

0

Cartesian χ=10.0
Cartesian χ=10.0 κ=10.0c0/l
Cartesian χ=2.0
Cartesian χ=2.0 κ=10.0c0/l
Cartesian
Element-wise χ=10.0
Element-wise χ=10.0 κ=10.0c0/l
Element-wise χ=2.0
Element-wise χ=2.0 κ=10.0c0/l
Element-wise

(b) Plot of L1 Divergence Error vs. time for K-V
Beam Physics with various methods.

Figure 7.17. Kapchinsky-Vladimirsky Beam Physics Test.

7.9.2 Kapchinsky-Vladimirsky Beam Physics

Kapchinsky and Vladimirsky [1959] described one of very few (perhaps the only) par-

ticle distributions in an electron beam for which an envelope equation–i.e. an ordinary

differential equation governing parameters of the distribution, in this case the radii–can

be derived for a fully self-consistent Vlasov-Maxwell system. Unfortunately, the particle

distribution involves sharp, noncontiguous localization in phase space, and is therefore

difficult to replicate experimentally.

The purpose of this test case is to verify accurate inter-particle forces as mediated by the

grid-based field. The electron bunch will expand from its initial size, but maintain its initial

distribution. The main observable is the RMS beam radius. An introductory treatment of

the physics of this problem may be found in the books by Lee [2004] and Chao [1993,

Chapter 1].

222

Setup for the K-V Test

The test takes place in a cylindrical, infinite tube of radius rtube, aligned with the z axis.

This is realized using a periodic mesh that should be of length greater than ltube, as below.

These and all further parameters occurring in the test are given in Table 7.1 on the following

page. The spatial setting is illustrated in Figure 7.17(a) on the previous page. I would further

like to remark that the shape of the outer beam tube cross-section is of not much importance,

as long as it is sufficiently far away from the beam to prevent boundary interactions from

having a major influence. This is so because the observed behavior is mainly a result of

the interaction of the beam with itself, and not so much with fields scattered back from the

boundary. The analytic predictions below are derived in infinite space.

Particles are distributed in transverse phase space according to the so-called Kapchinsky-

Vladimirsky (or “K-V”) distribution, which describes a uniform distribution on a spherical

surface in the four dimensions x, y, x′, y′:

x2

r2
x

+
y2

r2
y

+
(x′)2r2

x

ε2x,tot

+
(y′)2r2

y

ε2y,tot

= 1 (7.32)

where x′ = px/pz is the scaled speed. All particles have an identical velocity vz in the z

direction. The resulting x-y charge distribution is extended uniformly over a length lz in z.

This final density is then sampled randomly to obtain particle locations and momenta.

Aside from its importance to this particular test, the density resulting from (7.32)

is a good example of a phase space distribution that is rather difficult to represent in a

purely Eulerian setting and contributes to the justification of a Lagrangian treatment of the

Vlasov-Maxwell system.

With the density f fixed, the initial electromagnetic fieldsE andH are found by solving

223

Quantity Description Value
rtube Tube radius 25mm
ltube Length of periodic mesh in z 100 mm
εx,tot = εy,tot (Total) Emittance 5 mm mrad
Q Bunch charge -10 nC
rx,tot = ry,tot (Total) Transverse bunch radius 2.5 mm
lz Longitudinal bunch length 5 mm
Eel Relativistic energy of the electron, counting only vz 5.11 MeV

Note: Bunch mass is determined by finding the number of electrons from Q and
multiplying by the electron mass.

Table 7.1. Problem parameters for the Kapchinsky-Vladimirsky beam physics test of Section
7.9.2.

for the potential φ in the longitudinal rest frame of the particles and Lorentz-transforming

the result back to the laboratory frame.

Expected Results

Analytically, the total beam radii

rx,rms =
rx,tot

2
=

√√√√ 1

n

n∑
i=1

r2
x,n

and ry,tot obey the ODEs [Lee, 2004, (2.140)]

r′′x,tot +Kxrx,tot −
2Ksc,tot

rx,tot + ry,tot

−
ε2x,tot

r3
x,tot

= 0 (7.33)

r′′y,tot +Kzry,tot −
2Ksc,tot

rx,tot + ry,tot

−
ε2y,tot

r3
y,tot

= 0, (7.34)

where the “primed” derivative r′x is with respect to the distance s travelled in z, Kx and

Ky can be used to incorporate an external force and are otherwise 0, and the space charge

constant Ksc is found by

Ksc,tot = 2
Nr0

β2γ3
,

224

where in turn N is the number of particles per unit length in z, β = v/c0, c0 is the speed

of light in vacuum, γ = (1− β2)−1/2 is the Lorentz factor, and r0 is the classical electron

radius.

Computation Results and Evaluation

I examine results from a computation conducted in three dimensions on the mesh shown

in Figure 7.17(a) on page 221. The transverse walls of the beam tube are perfect electric

conductors, and the longitudinal boundary is periodic. While it is not clearly visible from

the figure, the mesh is refined in the area where the beam travels. The electromagnetic field

is discretized with P 3 polynomials and loaded with 20000 particles randomly sampled from

the distribution described above. Based on the poor results of renormalized element-wise

deposition and the expense involved in advective deposition, these two have been excluded

from this test. I have further only examined the performance of interpolatory particle

pushing. Simulation time was fixed to suffice for a full transition of the beam through the

beam tube.

As above, I will begin by examining the L1 divergence error of (7.30), shown in

Figure 7.17(b) on page 221. There are a number of things that are remarkable about

the plot. Despite being run at a resolution that would be considered moderate for pure

electromagnetic simulation (6952 elements, ∼ 30 particles per cell along the beam tube),

the problem again appears markedly underresolved–a situation that is likely typical of a

3D PIC simulation with particles of non-zero support. Perhaps the first thing to note is the

scale of the plot, which indicates that even the best-performing methods have divergence

errors on the scale of the amount of charge present in the domain, whereas worse ones have

divergence errors an order of magnitude higher. Repeating its success on underresolved

problems, Cartesian deposition with any amount of hyperbolic cleaning results in much

225

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 10

0.95

1.00

1.05

1.10

1.15

1.20

1.25
∫ Ω

ρ
/Q

0

Cartesian χ=10.0
Cartesian χ=10.0 κ=10.0c0/l
Cartesian χ=2.0
Cartesian χ=2.0 κ=10.0c0 /l
Cartesian
Element-wise χ=10.0
Element-wise χ=10.0 κ=10.0c0/l
Element-wise χ=2.0
Element-wise χ=2.0 κ=10.0c0/l
Element-wise

(a) Plot of total deposited charge divided by intended
charge vs. time for K-V Beam Physics, with various
methods.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 10

0

1

2

3

4

5

6

7

T
o
ta

l
(f

ie
ld

 a
n
d
 p

a
rt

ic
le

)
m

o
m

e
n
tu

m
 [

N
s]

1e 7+1.717e 4
Cartesian χ=10.0
Cartesian χ=10.0 κ=10.0c0/l
Cartesian χ=2.0
Cartesian χ=2.0 κ=10.0c0 /l
Cartesian
Element-wise χ=10.0
Element-wise χ=10.0 κ=10.0c0/l
Element-wise χ=2.0
Element-wise χ=2.0 κ=10.0c0/l
Element-wise

(b) Plot of total momentum vs. time for K-
V Beam Physics, with various methods.

Figure 7.18. Conservation-based measures of solution quality for K-V Beam Physics.

lower divergence error than any other methods, by a factor of around three. Further within

that group, we see that a cleaning wave speed factor χ = 10 shows a measurable benefit

over χ = 2, and that the addition of a decay term can further help control divergence

error, again leading to a reduction by a factor of around two at late times, regardless of

original method and χ. It is puzzling (but consistently found across dimensionalities) that

hyperbolic cleaning is much more effective on current densities generated by Cartesian

than by element-wise deposition. In fact, hyperbolic cleaning in this instance is actively

counterproductive for element-wise deposition. Only the case of χ = 10 with decay

in φ (κ = 10c0/l) achieves a reduction of divergence error when compared to “plain”

element-wise deposition.

A measurement of the ratio of deposited vs. intended charge, i.e. the quantity of (7.31),

is shown in Figure 7.18(a). Both Cartesian and element-wise methods show significant

oscillations in the amount of charge that arrives on the mesh, however it appears that the

Cartesian deposition achieves somewhat better control over the issue than element-wise

deposition, which, at times, deposits 20 per cent more or less charge than intended, at this

226

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 10

1.0

1.5

2.0

2.5

3.0

3.5

R
M

S
 B

e
a
m

 E
m

it
ta

n
ce

 ε
x
 [

m
m

 m
ra

d
]

Cartesian χ=10.0
Cartesian χ=10.0 κ=10.0c0/l
Cartesian χ=2.0
Cartesian χ=2.0 κ=10.0c0/l
Cartesian
Element-wise χ=10.0
Element-wise χ=10.0 κ=10.0c0/l
Element-wise χ=2.0
Element-wise χ=2.0 κ=10.0c0/l
Element-wise

(a) Plot of the emittance of electron beam vs. time
for K-V Beam Physics, with various methods.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [s] 1e 10

0.000

0.005

0.010

0.015

0.020

R
e
l.
 E

rr
o
r

o
f

R
M

S
 B

e
a
m

 R
a
d
iu

s
|r
x
−
r x
,t

h
eo

ry
|/
r x
,t

h
eo

ry

Cartesian χ=10.0
Cartesian χ=10.0 κ=10.0c0 /l
Cartesian χ=2.0
Cartesian χ=2.0 κ=10.0c0 /l
Cartesian
Element-wise χ=10.0
Element-wise χ=10.0 κ=10.0c0 /l
Element-wise χ=2.0
Element-wise χ=2.0 κ=10.0c0/l
Element-wise

(b) Plot of the relative error in the RMS K-V beam
Radius vs. time for K-V Beam Physics, with various
methods.

Figure 7.19. Physics-based measures of solution quality for K-V Beam Physics.

particular combination of resolutions, whereas deviations for Cartesian deposition stay

limited to roughly 5 per cent, again speaking to its superiority on underresolved problems.

Figure 7.19(b) shows the relative error in the main quantity of interest in this test, the

root-mean-square beam radius. Uncorrected, Cartesian deposition generates an error that is

smaller by a factor about five than element-wise deposition. Surprisingly, after applying

the maximum level of correction (χ = 10, κ = 10c0/l), the situation is reversed, and

element-wise deposition is the deposition method whose relative error displays the least

amount of worrisome upward trend. At this point I have no explanation for this behavior.

In describing the results, I should note that particle sampling error was corrected out of the

theoretical beam radius result. In other words, once the particle locations were sampled

from the distribution described by (7.32), the starting radius of the envelope equation (7.33)

was calculated from the RMS radius determined from the sampled distribution. Without this

correction, the error would have started at a non-zero value and would not have admitted

any valid conclusions.

Figure 7.19(a) displays RMS emittance, of (7.29), another measure of simulation quality,

227

that should be identically conserved in time. Unlike RMS beam radius, this criterion again

shows Cartesian deposition to yield much smaller increases, and hence better results, in

both corrected and uncorrected form.

Lastly, Figure 7.18(b) on page 225 shows a plot of beam momentum vs. time, with

results that very much mirror that of Section 7.9.1: Conservation is already quite good (if

somewhat noisy), but a downward trend (compare the upward one of the previous section)

is visible. Fortunately, given the scale of the effect, it would take a long time to actually

become troublesome even if it were to continue unabated.

In summary, it appears that particle-in-cell solution quality is quite multi-faceted. While

many results agree on which deposition and pushing methods yield better results, some

unexplained disagreements do exist. Going forward, along with further improving the

method, I am convinced that it is important to understand the factors influencing these error

measures in more detail, so as to better understand along what axes the quality of a PIC

simulation result needs to be evaluated.

7.10 A Moderate-Scale Application

As a final computational example, I would like to highlight a larger-scale computation,

whose focus was not to emphasize the performance of any given method, but to demon-

strate that the technology built for this project can already be used for moderately large

computations. While the field solver is already parallel-capable, as we have seen, the

particle-in-cell component is still very much in its experimental stage and has therefore not

been parallelized, limiting the size of the application.

The setting for the computation is an experimental 2.5-cell injector cavity under investi-

228

(a) An experimental 2.5-cell resonant cavity used in
the injector test stand at the Advanced Photon Source
(APS) at Argonne National Laboratory. Cells are
colored by their size, highlighting mesh refinement.

(b) Contour Plots of the electric field E (blue) and
the magnetic fieldH (red) at one point during the pas-
sage of an electron bunch through the experimental
ANL 2.5-cell cavity.

Figure 7.20. Application of DGTD-PIC to an experimental injector cavity developed at
Argonne National Labs.

gation at the Advanced Photon Source at Argonne National Labs, shown in Figure 7.20(a).

The simulation was not physically realistic as it was missing two components: An emission

model for the laser-target electron source at the center of the half-cell in the near end of

Figure 7.20(a) and a driving electromagnetic cavity mode that would have to be computed

separately. Instead, the simulation captures the evolution from situation where a 10nC

Kapchinsky-Vladimirsky beam (see Section 7.9.2) is launched in the center of the half-cell

towards the emitting end of the cavity at 5.11 MeV and then undergoes interaction with its

wakefield. The constrictions in the geometry cause significant beam-field interactions. One

snapshot of the simulation is shown in Figure 7.20(b), with contours of the electric field

shown in blue, and contours of the magnetic field shown in red. In the trail of the beam,

significant pollution from divergence error (see Section 7.5) is visible.

As mentioned, the purpose of this computation was not necessarily to provide physically

meaningful results, but rather to confirm that the solver technology created is capable of

tackling moderate-scale applications, in this instance 20000 particles on a mesh of 71000

tetrahedral elements at polynomial degree 3. This result gives me confidence that, once the

229

methods presented throughout this chapter have further matured, scaling of the solver will

be a solvable problem.

7.11 Conclusions and Future Work

Throughout this chapter, I have investigated methods that I hope will eventually lead to a

usable, robust coupling between charge-carrying particles and a high-order unstructured

discontinuous Galerkin scheme. The mitigation of divergence error (Section 7.5) remains

one of the foremost challenges in this endeavor. My computational experiments have shown

that the figures of merit outlined in Section 7.9 cover largely independent points of view

under which a PIC scheme should be evaluated, though at present the connection between

features of the scheme and observed error profiles is poorly understood. One of my aims

for future work is to improve this understanding, to enable users of this technology to make

informed solver choices based on which aspects of solution quality are essential to them,

and which ones are dispensable.

Another challenge in PIC is that of proper resolution management. Many different

types of resolution are available, such as mesh size, particle count, degree of approximation,

and particle radius. Some hints on connections between these are available, but a global

understanding of them, so far, is largely missing.

It is further likely that the set of criteria in Section 7.9 is not exhaustive, i.e. it does not

cover all aspects under which solution should be judged. Like in any attempt of empirical

validation, much depends on both the set of test cases and the set of measurements taken.

Both of these sets are far from finalized.

To help enlarge the size of the test set and enable a common ground of comparability

230

for implementers of numerical methods for the Vlasov-Maxwell system, I have initiated

and continue to maintain an Internet-based database of test cases. In addition to my own

contributions to this database, colleagues from Universität Stuttgart in Germany have made

use of and taken part in the creation of the repository, which can be found on the web at

http://webapp.dam.brown.edu/piki.

It has become clear throughout this chapter that DG-PIC is a challenging problem. I

hope to have contributed to the solution of this problem by offering a number of choices

for coupling methods with DG field solvers, and by discussing aspects of performance

evaluation for them.

But it is important in my view that PIC is not just a challenge for its own sake–a

competitive DG-based scheme for Vlasov-Maxwell would have a potentially broad impact

in terms of its direct plasma physics applications. In addition, the problem touches many

areas of current numerical research from ODE solvers to particle-field interaction and raises

questions whose answers are important in a much larger context.

http://webapp.dam.brown.edu/piki

CHAPTER EIGHT

Multi-rate Time Stepping: Methods and

Applications

231

232

Ti
m

e
t

Fast Slow

(a) Single-rate time stepping.
State is computed for all com-
ponents at every time step.

Ti
m

e
t

Fast Slow

(b) Multi-rate time stepping.
State for slow components is
only computed at certain inter-
vals.

Figure 8.1. The temporal setting of multi-rate time stepping. Each dot corresponds to a
computed fast or slow state.

8.1 Introduction

Most time-domain simulations involve processes on a number of different time scales. In

explicit time marching schemes, the fastest processes limit the maximal size of the time

step, necessitating that slower processes use an unnecessarily small time step. This is

wasteful. Examples of this abound, and I will discuss a few of them in Section 8.6.

It makes sense to try to avoid this waste, and numerous ways are available to do so.

First of all, most implicit time steppers can use arbitrarily large time steps, at the risk of not

resolving the fine time scales. Operator splitting techniques can be used to the same effect,

as can combined Implicit-Explicit methods [see, e.g., Ascher et al., 1995, and references

therein]. On the simpler end of the spectrum, a variety of multi-rate explicit time-steppers

for both multi-stage and multi-step schemes have been devised [Andrus, 1979, Engstler

and Lubich, 1997, Gear, 1974, Sandu and Constantinescu, 2009]. This chapter deals with a

number of versions of the latter.

To the best of my knowledge, the first mention of multi-rate multi-step time integrators

233

in the literature was by Gear [1974]. An attempt of an analysis of the method was undertaken

by Gomm [1981]. Gear and Wells [1984] then focused on building an algorithm that

would automate the application of multi-rate time stepping as much as possible. Similar

automation efforts have been a recurrent theme in the literature [Engstler and Lubich, 1997].

Inspired by discussions with Warburton [priv.comm.], and in extension of the work by Gear

and Wells [1984], Stock [2009] and I have discovered that more schemes satisfying the

order conditions exist than just the two explored in the original reference. All of these

schemes are mathematically different, and thus have somewhat different stability properties,

as will be seen in Section 8.5.

8.2 The Setting for Multi-Rate Multi-Step Methods

In order for a multi-rate scheme to make sense, at least two different time scales must be

present in the ordinary differential equation (ODE) whose initial value problem (IVP) is to

be solved. Like Gear and Wells [1984], I will assume that this time-scale separation occurs

by variable, i.e. that one may speak of “fast” variables f and “slow” variables s. Hence

one is dealing with an at least 2-variable system of ODEs. Unlike Gear and Wells [1984],

and like Warburton [2008], I will assume an additive separation of right-hand sides into

coupling and self-influencing terms, leading to a 2× 2 autonomous system of ODEs:

∂t

f(t)

s(t)


︸ ︷︷ ︸

q:=

=

aff (f) + afs(s)

asf (f) + ass(s)

 . (8.1)

To be able to solve the initial value problem, of course a set of initial values

f(0) = f0, s(0) = s0 (8.2)

234

needs to be specified. For simplicity, I will assume here that aff , afs, asf , and ass are

smooth and that the IVP consisting of (8.1) and (8.2) has a unique, smooth solution.

As will be seen in Section 8.6, such splitting is natural in many application situations.

Unfortunately, it is not always possible. If what is here labeled a ‘coupling term’ involves a

nonlinear expression of both f and s, or even if it is simply inconvenient from a software

perspective, a user of the method may choose to somewhat dilute the distinction between

self- and coupling terms by allowing one or both to depend on both f and s, resulting in

the system

∂t

f(t)

s(t)


︸ ︷︷ ︸

q:=

=

aff (f) + afs(f, s)

asf (f, s) + ass(s)

 (8.3)

or even in

∂t

f(t)

s(t)


︸ ︷︷ ︸

q:=

=

aff (f, s) + afs(f, s)

asf (f, s) + ass(f, s)

 . (8.4)

Observe that by (8.4), the name “coupling term” has become entirely meaningless mathe-

matically and continues to exist only in spirit. I would like to add that, given the knowledge

available at this writing, there is no strong reason to prefer the perceived “rigor” of (8.1)

over the “sloppiness” of (8.3) and (8.4). Accuracy results continue to hold in each case,

and Section 8.5 examines stability for a 2× 2 linear test system, with only circumstantial

evidence that similar results continue to hold for larger systems. Thus no stronger results

are available even in the “rigorous” case of (8.1). For full generality, this chapter presents

schemes applicable to all three types of systems. Below, I will refer to the occurrence of

such systems as partial and full dependency mixing ((8.3) and (8.4), respectively).

Without loss of generality, I will assume in this chapter that f and s are scalars, though

unless otherwise noted, everything I say (aside from statements about stability) generalizes

235

trivially to vector-valued f and s.

With coupling neglected, the basic assumption for a sensible application of a multi-rate

scheme is that aff requires f to be integrated with a small time step, while ass has a less

rigorous requirement for s. I make the further assumption that, in some sense, asf “shields”

the slow component s from the fast evolution of f , whereas afs is generally unconstrained.

Before beginning a discussion of multi-rate integrators, I would like to remind the reader

of the functioning principle of multi-step explicit time integrators for the approximation of

the solution y of the IVP

∂ty = f(y(t)) y(t) = y0.

For easier comparison with later modifications, the entire method is shown in Algorithm

8.1.

Algorithm 8.1 Explicit k-step time stepping method.
Require: y0: Initial condition
Require: f : Right-hand side

By some start-up method, obtain
- ykh
- start-up history: H ← ((f(y0

h), . . . , f(yk−1
h)).

for steps i = k to N − 1− k do
Construct an interpolant f̃ such that f̃(tj) = f(yjh) (j ∈ {i− k, . . . , i− 1})
yk+1
h ← ykh +

∫ ∆t

0
f̃(t)dt

H ← (H2,...,k, f(yk+1
h))

end for

By far the most common explicit multi-stage time stepping method is the Adams-

Bashforth method, which accomplishes the construction of f̃ in Algorithm 8.1 by polyno-

mial interpolation, as illustrated in Figure 8.2.

Algorithm 8.1 offers significant flexibility that can be exploited for the design of a

multi-rate scheme:

236

f̃

t

f ∫
f̃(t)

∆t

Figure 8.2. Functional principle of extrapolatory multi-step methods.

• It is possible to have separate histories for each variable.

• But not only that: Because of the linearity of the integral, it is possible to have

separate histories for different (additive) parts of the right-hand side for a single

variable.

• Once two histories have been separated, they can be used in integrations over differing

time intervals.

When I say “different histories” above, I am not only referring to the possibility of separate

storage of history data. Rather, this separate storage makes it possible to give each history

different properties–such as the intervals at which right-hand side values are computed

and saved to history, or its length and thereby the accuracy to which interpolation and

integration can be carried out.

8.3 Design Choices in Multi-Rate Multi-Step Meth-

ods

Section 8.2 indicated the availability of some freedom regarding treatment of right-hand

side histories. The next goal in this chapter is to explore the design space that these simple

237

E
v.
a
ss

ea
rl

y?
(S

/F
)

R
un
a
f
s

at
fa

st
ra

te
?

(q
)

R
e-

ex
tr

ap
ol

at
e
s?

(r
)

E
v.
a
sf

ea
rl

y?
(s

)

Sq
rs

(S
F

3s
)Yes

Sq
r

(S
F

2s
)

No

Ye
s

E
v.
a
sf

ea
rl

y?
(s

)

Sq
s

(S
F

3s
r)Yes

Sq
(S

F
2s

r)

No

No

Ye
s

R
e-

ex
tr

ap
ol

at
e
s?

(r
)

E
v.
a
sf

ea
rl

y?
(s

)

E
v.
a
f
s

ea
rl

y?
(f

)

Sr
sf

(S
F

4r
)Yes

Sr
s

(S
F

3w
)

No

Yes

E
v.
a
f
s

ea
rl

y?
(f

)

Sr
f

(S
F

1r
)Yes

Sr
(S

F
2w

)

No
NoYes

E
v.
a
sf

ea
rl

y?
(s

)

E
v.
a
f
s

ea
rl

y?
(f

)

Ss
f

(S
F

4)Yes

Ss
(S

F
3w

r)
No

Yes
E

v.
a
f
s

ea
rl

y?
(f

)

Sf
(S

F
1)Yes

S
(S

F
2w

r)

No

No

No

No

Ye
s

R
un
a
f
s

at
fa

st
ra

te
?

(q
)

E
v.
a
sf

ea
rl

y?
(s

)

R
e-

ex
tr

ap
ol

at
e
s?

(r
)

Fq
sr

(n
/a

)Yes

Fq
s

(n
/a

)

No

Yes

Fq
(F

F
s)

NoYe
s

E
v.
a
sf

ea
rl

y?
(s

)

E
v.
a
f
s

ea
rl

y?
(f

)

R
e-

ex
tr

ap
ol

at
e
s?

(r
)

Fs
fr

(n
/a

)Yes

Fs
f

(n
/a

)

No

Yes

R
e-

ex
tr

ap
ol

at
e
s?

(r
)

Fs
r

(n
/a

)Yes

Fs (n
/a

)

No
No

Yes

E
v.
a
f
s

ea
rl

y?
(f

)

R
e-

ex
tr

ap
ol

at
e
s?

(r
)

Ff
r

(n
/a

)Yes

Ff (n
/a

)

No

Yes

F
(F

F
w

)

No

No

N
o

N
o

Figure 8.3. Decision tree for the design of multi-rate multi-step schemes. A systematic name
for each scheme is given in each of the decision tree’s leaves. The nomenclature used by Stock
[2009] is given in parentheses in each leaf node.

238

observations open up for multi-rate time stepping schemes. While Gear and Wells [1984]

group by right-hand side and thereby employ only two histories of right-hand side values

for the entirety of (8.1), I choose to keep separate histories for each right-hand-side term in

(8.1), and thereby end up with four history lists. Section 8.6 will show examples of why this

is reasonable: In some applications, much of the expense of integrating the system lies in

the coupling terms, so that it makes sense to separate them out and make them individually

controllable.

For each such history of right-hand-side values, I will choose one of two of two rates,

the fast and the slow rate. The fast rate will be an integer multiple of the slow rate, and their

ratio is called the step ratio k. Suppose the time step required by aff is h̃, and the time step

required by ass is H̃ , then the hope is that k = dH̃/h̃e, and that the global “slow” time step

H can be chosen as H ≈ H̃ , giving rise to the “fast” sub-step size h = H/k. In contrast to

the sub-step, a step of size H will be called full step or simply step. While the step ratio

needs to be chosen a priori, it will remain an independent, unconstrained parameter in the

remainder of this text.

Once the two rates have been decided upon, the next question is which right-hand side

is evaluated at which rate, and which operations to perform in which order. In making

these decisions, one tries to adapt the multi-rate scheme to the problem at hand. It would of

course be desirable that none of these choices had to be made, but having to make them is

still better than not knowing that choices are available. Further, Section 8.5 will provide

some (empirical) insight into which decisions are suitable for which problems. A decision

tree of all available choices is given in Figure 8.3, and the choices are described in the

following narrative, somewhat out of tree order.

I begin by matching rates to right-hand-side terms. Two of the rate choices are obvious,

in that ass will run at the slow rate, and aff will run at the fast rate. For the off-diagonal

239

coupling terms, the choice of rate is less clear. Since the premise of the method is that the

component s will evolve slowly, it appears plausible that the term asf coupling s to the fast

term will also be evaluated at the slow rate. For the opposite coupling term, a legitimate

case can be made for both types of evaluation, and I leave this up to the user as a valid

design choice (Choice “q” in Figure 8.3).

Next, one encounters a number of ordering questions. Gear and Wells [1984] used a

coarser-grained decomposition of (8.1) and thereby have fewer choices, but do address one

ordering aspect: They allow a choice between a “fastest-first” and a “slowest-first” scheme.

This is reflected in our finer-grained model by the choice of whether to evaluate ass at the

beginning or at the end of the step. (Choice “S/F” in Figure 8.3) But this is far from the

only non-uniqueness. One can similarly ask whether asf and afs should be evaluated early.

(Choices “s” and “f”, respectively, in Figure 8.3.)

In each instance of the evaluation ordering options, one might expect the late evaluation

of slow components to be “superior” because it can make use of additional information

gained during the evaluation of the fast part. This is particularly true of the early evaluation

of afs, as it naturally relies on the fast component f , which needs to undergo an extrap-

olation of size H to the point in time at which afs is to be evaluated, even though much

of its history progresses in steps of h. Such an extrapolation is unusually large in terms

of conventional multi-step methods. If however the dependence of afs on f is sufficiently

weak, this may not present much of an issue. Unusually long extrapolations also occur if

dependency mixing is encountered, as this again creates an early dependence on values of

f . Despite their unusualness, schemes with early evaluation of slow components should

not be simply disregarded. The computational experiments of Section 8.5 present evidence

that their stability properties are not necessarily inferior, and in some cases even superior,

to their fast-early counterparts.

240

Lastly, one additional option is available if one or more of ass and afs are evaluated

early (Choices “S” and “f” in Figure 8.3): Since the evaluation of ass and afs depends on

a value of s, an extrapolation must be performed to make it available. This extrapolation

depends on historic values of ass and asf . If, in addition, a need for a late value of s exists,

either through dependency mixing or late evaluation of one of afs or ass, one may wish

to let later right-hand-side evaluations benefit from updated data and, in order to do so,

perform a “fresh” extrapolation of s. This choice of re-extrapolating is represented as “r” in

Figure 8.3 and was, in slightly modified form, already present in the dissertation of Wells

[1982].

This section concludes a brief, first exposition of the choices to be made. I am postpon-

ing a more comprehensive study of the available methods to the end of the next section,

when the tools to accurately describe them will be available.

8.4 Notation and Building Blocks

A close look at Algorithm 8.1 reveals the building blocks from which single-rate multi-step

schemes are built. Multi-rate schemes are built from the same basic building blocks, taking

into account the greater number of right-hand side functions and histories of right-hand

side values. The present section specifies each of those building blocks and introduces

a graphical representation that helps uniquely specify a scheme and allows users of the

method to quickly gain an overview over the steps performed by the method.

RHS history

Integration time
t = (n+ 1)Ht = nH

241

fast-to-slow coupling (asf)
slow self-term (ass)

slow-to-fast coupling (afs)
fast self-term (aff)

Figure 8.4. Color key for the right-hand sides involved in the multi-rate multi-step scheme of
the system (8.1).

The starting state of each multi-rate AB is summarized by the points in time for which

historic values of the right-hand-side functions a are available. Each value is shown

as a colored point in a two-dimensional diagram. The points are color-coded for the

right-hand-side components they belong to. A color key can be found in Figure 8.4.

The diagram’s horizontal axis represents simulation time. The vertical axis uses large

increments to indicate computational order and small increments to denote structure within

each computational step. Therefore, the depiction of the initial history state yields an easy

way of distinguishing schemes that propagate afs at a fast rate (Choice “q” in Figure 8.3).

Note that at the outset of a time integration, the initial data f0 and s0 of (8.2) are

available, but no full history as pictured above. To obtain this history, a single-rate,

potentially multi-stage method of the same approximation order as the started multi-rate

multi-step method may be used.

For the purpose of easier visualization, I will show all schemes (or parts thereof) at a

sub-step ratio of k = 3, and a uniform history length of two, which would let the illustrated

scheme’s local truncation error decay as H2.

s̃

f̃

Integration time
t = (n+ 1)Ht = nH

The key ingredient in single-rate multi-step time integration methods is the construction

242

of a function interpolating the right-hand-side values obtained previously and the use

of that approximate right-hand side function to compute the integral shown in Figure

8.2, whose value can then be used to advance the state y (in the notation of the Figure).

Somewhat sloppily, I will call this entire process (including the evaluation of the integral)

the extrapolation of a certain time state using specified right hand side data.

To perform an extrapolation, one needs to decide on a basis in which to express the

interpolant. A common choice is that of polynomials, which, in the case of single-rate

multi-step methods, leads to the well-known Adams-Bashforth methods [Bashforth and

Adams, 1883]. Given that the methods I am targeting in this chapter are designed to have

an order of accuracy no greater than perhaps six, polynomials are an adequate choice. For

this reason, the methods of this chapter may also be called multi-rate Adams-Bashforth (or

MRAB) methods.

I would now like to direct the reader’s attention to the specifics of extrapolation in a

multi-rate method, for which I would like to refer to the illustration above. Because of the

split structure of (8.1), each advancement of the state f or s requires the evaluation of two

extrapolations of the type of Figure 8.2, one for the self-influencing component, and one

for the coupling component. The history data used in a state advancement is (as above)

shown as colored dots obeying the color key of Figure 8.4, connected by a dotted line of

the same color. Note that there are two stacked history lines, with the coupling term found

at the top, and the self-term found at the bottom. This set of history data then determines

the function to be integrated (the sum of the two interpolants). Next, one needs to know the

interval over which the integration is performed, or, equivalently, the stretch of time over

which state is advanced. This information is indicated by a red, straight line for the fast

state f , and a blue, curving line for the slow state s. The last piece of information contained

in the symbolized extrapolation in the diagram is the equivalent of a variable assignment.

This variable will always be f for the fast state and s for the slow state s, but modifiers

243

such as tildes may be present if storing additional state is required by the scheme. The

purpose of these “variable assignments” is that their values may be conveniently referred to

in upcoming steps of the method. Unfortunately, the present notation somewhat obscures

the keeping of this state in favor of other information–but in practice I have not found this

to be a major obstacle to the use of the diagrams for understanding MRAB methods.

Lastly, I would like to note that MRAB schemes are linear methods, and once the

history positions and the integration interval are known, extrapolation is most efficiently

carried out as a linear combination of history values and state, with coefficients that are

trivially precomputable.

s

f

Integration time
t = (n+ 1)Ht = nH

A somewhat more complicated example of a pair of extrapolations is shown in the above

diagram. It illustrates two additional details that are captured by the notation.

The first such thing is illustrated in the extrapolation of the slow state s, above, and is

genuinely unique to multi-rate methods. It presents the case where one set of history data

(out of the self- and coupling terms) has progressed beyond the point in time at which the

resultant state is needed. In some sense, the scheme is moving backwards in time. This

occurs in all the slowest-first (“S”) schemes, to varying extents. In terms of stability, which

will be discussed in more detail in Section 8.5, this might be beneficial, as interpolation is,

from a numerical point of view, a more stable operation than extrapolation.

The last notable feature of the extrapolation notation is the highlighting of the final

state. Recall that the purpose of the time integrator is to advance the two states f and s in

244

time. As such, at the end of each step, not just history is carried forward to the next step,

but also one purposefully chosen set of states f and s. These step-final states are shown

with appropriately-colored circles around them, as shown for f above.

ass(s̃, f̃)

Integration time
t = (n+ 1)Ht = nH

If one views the extrapolation discussed so far as the “mortar” that turns existing history

values into new state, then the “bricks” are supplied by right-hand-side evaluations, which,

compared to extrapolations, are fairly simple objects. They are represented in the notation

as an encircled, colored history dot at a certain time that, additionally, indicates in a formula

which right-hand side is evaluated with which arguments, drawn from the state space of

variable assignments discussed earlier.

RHS history

Integration time
t = (n+ 1)Ht = nH

At the conclusion of a multi-rate step, after a potentially complicated, looping combi-

nation of extrapolations and right-hand-side evaluations, history state reaches the same

configuration in which it started, advanced by H in time, and the next time step can begin.

It was already observed in the previous section that a MRAB scheme can have significant

internal structure and embodies a number of design choices. Now that the tools to precisely

specify an MRAB scheme are available, I would like to revisit the design decision tree in

Figure 8.3 and the decisions axes described in the previous section. The first observation

that I would like to make that the tree does not include every possible combination of

choices, in particular:

245

No re-extrapolation of s (“r”) if no early evaluation occurs. If no early evaluations oc-

cur, s is only computed once, late.

No early evaluation of afs (“f”) in fast-afs (“q”) schemes. Since fast-afs implies that

afs is evaluated at each sub-step, “early” evaluation loses its meaning.

Next, I would like to add that the design choices discussed in this chapter are those that, in

my opinion, seemed promising. In other words, more freedom exists than is exploited by

the enumeration–for example, instead of always using the newest available history data,

which can sometimes lead to “retrograde” state updates (as discussed above), one might

choose to use older history data for some of these updates, or one might choose to run one

of the coupling histories at yet another different rate. Therefore, while I have tried to cast as

wide a net as is practical, I make no claim regarding the exhaustiveness of the enumeration

of methods.

Now that an exact visual representation of MRAB schemes is available, it is of course

interesting to see what the schemes designed previously look like in terms of that repre-

sentation. Since there are 22 schemes overall, I shall here present a representative subset

that shows the main features, so as to not unnecessarily clutter up the presentation in this

chapter. The majority of the schemes is shown (in slightly different notation) by Stock

[2009]. Further, a comprehensive survey containing all methods can be generated by a

script included with the DG solver hedge (see Chapter 3) and is also available from the

author upon request.

The brief tour of MRAB schemes begins with the perhaps simplest choice, the scheme

“F”, shown in Figure 8.5 on page 247. It delays all evaluations to the latest possible point

and runs afs at a slow rate. Next, the scheme “Sq” introduces one early evaluation (that

of ass), runs afs at a fast rate and therefore features some retrograde extrapolations. (see

246

Identical schemes
Sf, Ffr, Ff

S, F
Ssf, Fsf
Ss, Fs

Table 8.1. Scheme reduction for unmixed dependencies. The schemes in each row are
mathematically identical if no dependency mixing (cf. (8.3) and (8.4)) is occurring.

Figure 8.6 on page 248) Lastly, “Srsf” performs the maximum number of evaluations early

and introduces the re-extrapolation for the late evaluation of aff (instead of re-using the

early value s̃). (see Figure 8.7 on page 249)

In concluding my comments on the available design choices, I would like to point out

one further fact about the range of schemes presented above. When no dependency mixing

(cf. (8.3) and (8.4)) occurs, a few of the schemes in Figure 8.3 become mathematically

equivalent. These schemes are listed in Table 8.1. As a result, for the entirely unmixed

system (8.1), 17 of the 22 choices remain distinguishable.

8.5 Accuracy and Stability

Two characteristics critically determine the practical applicability of an explicit time

stepping method–its order of accuracy and its stability properties. Both will be discussed in

this section for the methods above.

Before I begin this discussion, I would like to remark that for all results shown within

this section I will let each component operate at the same approximation order for the sake of

simplicity. This assumption is not necessary, and if the user deems it advantageous to break

it, this is not difficult to achieve, as the only modification applies to the coefficients used

in the extrapolation (and, of course, their number). In particular, the software supporting

247

RHS history

s

f

aff (s, f)

s

f

aff (s, f)

s

f

aff (s, f)

afs(s, f)

asf (s, f)

ass(s, f)

Integration time
t = (n+ 1)Ht = nH

Execution order

Figure 8.5. Graphical representation of the “F” multi-rate multi-step scheme, exemplifying the
scheme notation introduced in Section 8.4.

248

RHS history

s̃

f̃

ass(s̃, f̃)

s

f

aff (s, f)

afs(s, f)

s

f

aff (s, f)

afs(s, f)

f

aff (s̃, f)

afs(s̃, f)

asf (s̃, f)

Integration time
t = (n+ 1)Ht = nH

Execution order

Figure 8.6. Graphical representation of the “Sq” multi-rate multi-step scheme, exemplifying
the scheme notation introduced in Section 8.4.

249

RHS history

s̃

f̃

ass(s̃, f̃)

asf (s̃, f̃)

afs(s̃, f̃)

s

f

aff (s, f)

s

f

aff (s, f)

s

f

aff (s, f)

Integration time
t = (n+ 1)Ht = nH

Execution order

Figure 8.7. Graphical representation of the “Srsf” multi-rate multi-step scheme, exemplifying
the scheme notation introduced in Section 8.4.

250

this chapter (part of hedge, see Chapter 3) allows different orders to be specified for each

right-hand side.

The local truncation error for all of the methods described above decays as Hp+1

given sufficient solution smoothness, where p is the order of the polynomial used in the

extrapolation. Notably, some multi-rate multi-step methods in the literature [Sandu and

Constantinescu, 2009] fail to achieve this due to their design. Gear and Wells [1984]

remark that “the analysis of constant step size methods is straightforward but notationally

tedious”. Since they are further rather unsurprising given the construction of the method,

I will move on to the more interesting, but in many senses more difficult, property of the

schemes, stability, remarking that Stock [2009] shows actual convergence data for a subset

of the methods presented here, and that analogous data was obtained for the remainder of

methods.

While many stability results are available for multi-rate Runge-Kutta methods [e.g.

Andrus, 1993, Kværnø, 2000], stability results applicable to multi-rate multi-step methods

appear much less abundant.

The compelling, simple stability theory of single-rate methods and the main difficulty

encountered in transferring it to multi-rate methods is aptly summarized by Gear and Wells

[1984]: Consider a (potentially linearized) system ∂ty = Ay. Transform A to Jordan

normal form J = SAS−1. Then a single time step of a single-rate time integrator can

be rewritten as yn+1 = R(HA)y with a single-argument (potentially rational) function R.

Necessarily, if J is diagonal, then SR(HA)S−1 will also be diagonal, and if J is triangular,

then so will be SR(HA)S−1. Further, diagonal entries of this matrix will coincide with the

mapping of the eigenvalues under R(H·), i.e.

R((HJ)ii) = (SR(HA)S−1)ii for all i.

251

Hence, aside from minor deviations in the case of non-diagonalizable A, the mapping R

provides a complete description of the stability of a single-rate method, or, equivalently,

nearly complete information about the stability of the system can be obtained by studying

the behavior of the time integrator on the simple scalar ODE ∂ty = λy. However in a

multi-rate method, any rational function describing the action of the method necessarily

has multiple arguments, and therefore the system’s diagonalizer (triangularizer) does not

typically diagonalize (triangularize) the method’s matrix representation. What is particularly

upsetting about the failure of this line of reasoning is that it limits the hope that a small

placeholder system (such as ∂ty = λy above) can convey complete information on the

stability of the method.

Gear and Wells [1984] comment at length on their inability to obtain anything more

than a non-quantitative stability result based on a continuity argument. Some work on

stability is also available for implicit first-order multi-rate schemes [Skelboe and Andersen,

1989]. Gomm [1981] obtains an explicit expression for the stability polynomials and the

transfer matrix of the method applied to a 2× 2 test system in terms of the z- and Laplace

transforms, but has to rely on numerical evidence to discover actual information about the

stable time step.

To shed a more detailed light on the method’s stability, I have undertaken a new,

comprehensive numerical study on the stability of MRAB methods. Like Gomm [1981],

I rely on the study of a 2 × 2 model system. I would like to remark that I can make no

statement regarding whether these results are in any way representative of the behavior

that can occur for larger systems. As such, the value of this study lies in exploring the

behaviors occurring in a simple case, although it is certainly my hope that, e.g. the system

with eigenvalues (λ1, λ2) = (i, i) will be a model of discretized hyperbolic PDE, or the

system with eigenvalues (λ1, λ2) = (i,−1) will model such a PDE with some dissipation.

252

My selection of a 2 × 2 model system differs from that chosen by Gomm [1981]. I

am aiming to explore the limits of stability in a way that is congruent with the successful

theory of stability regions for single-rate systems. Linear systems of ODEs whose solutions

stay bounded in time are characterized by eigenvalues λ with <λ ≤ 0. Therefore, the major

phenomena modeled by these systems are exponential decay and oscillation, corresponding

to the negative real and the imaginary components of eigenvalues. I will be studying

systems of the type

∂t

f(t)

s(t)


︸ ︷︷ ︸

q:=

= S

λ1 0

0 µλ2


︸ ︷︷ ︸

D:=

S−1

f(t)

s(t)

 , (8.5)

where I choose the eigenvalues from (λ1, λ2) ∈ {(−1,−1), (−1, i), (i,−1), (i, i)} to cap-

ture the behavior of two coupled decay systems, combined decay-oscillation systems, and

two coupled oscillating systems. I choose the rate ratio µ from µ ∈ [0.1, 1] to ensure

that the second component s is indeed the one that evolves at a slow rate. The matrix of

eigenvectors S is chosen as

S(α, β) :=

cos(α) cos(α + β)

sin(α) sin(α + β)

 ,

with α ∈ (0, π) and β ∈ (0, π). (The reduction to (0, π) in both cases is admissible because

S(α, β)DS−1(α, β) = S(α + π, β)DS−1(α + π, β) = S(α, β + π)DS−1(α, β + π)

for all α, β.) For an enumeration of the parameter space consisting of (λ1, λ2, µ, α, β),

for each of the methods of Figure 8.3, and for a variety of step ratios k, a stable time

step is found by bisection, where a time step size is deemed “unstable” if it reaches

‖(f, s)T‖2 ≥ 10 after 120 time steps from an initial condition of (f, s) = (1, 1)/
√

2.

253

This amounts to determining, by means of the power method, whether the linear operator

connecting the state of the multi-rate method at one time step to the state at the next

time step possesses an eigenvalue of magnitude greater than one. Convergence in the

power method is dependent on the ratio of the two dominant eigenvalues of that operator,

and hence may be rather poor. I have experimentally determined that, after 120 time

steps, qualitative behavior is captured and about two digits of the stable ∆t appear to have

converged. Nonetheless, it should be remembered that stability results here are approximate.

All experiments are performed with AB3 schemes.

Fully evaluated, an equivalent form of (8.5) reads

∂t

f(t)

s(t)

 =

− (µλ2−λ1) sin(β+2α)+(−µλ2−λ1) sinβ
2 sinβ

(µλ2−λ1) cos(β+2α)+(µλ2−λ1) cosβ
2 sinβ

(µλ2−λ1) cos(β+2α)+(λ1−µλ2) cosβ
2 sinβ

(µλ2−λ1) sin(β+2α)+(µλ2+λ1) sinβ
2 sinβ


︸ ︷︷ ︸

A:=

f(t)

s(t)

 . (8.6)

An alternative interpretation of (8.5) is shown in Figure 8.8(a) on page 255. It empha-

sizes the alignment of the eigenvectors relative to the fast/slow split directions enforced

by (8.1). Depending on the eigenvalues (λ1, λ2), the system models exponential decay or

oscillation along each of the directions of its two eigenvectors. Figure 8.8(a) also clarifies

that it is sensible to examine relatively small values of α to ensure that the alignment of the

fast component with the eigenvector of the large eigenvalue λ1 is maintained.

From Figure 8.8(a), it is already clear that the angular layout of the system’s eigenvectors

will play a crucial role in determining the behavior of the system, and hence the stability of

the method. Plots like Figure 8.8(b) are used to illustrate this behavior. For a given method,

254

(λ1, λ2) Stable ∆t
(−1,−1) 0.587
(−1, i) 0.587
(i,−1) 0.715
(i, i) 0.713

Table 8.2. Maximal stable time steps for single-rate Adams-Bashforth methods on the 2× 2
test system.

sub-step ratio k, overall angle α, and eigenvalues λ1 and λ2, they show the effect of varying

β and µ, where β is shown in the azimuthal direction, and µ is shown radially. Depending

on all these parameters, the stable time step is shown, found empirically as described above.

For ease of comparison with single-rate methods, Table 8.2 summarizes the stable time

step of the single-rate AB3 method depending on (λ1, λ2), where I would like to note that

this timestep is (largely) independent of α, β, and µ.

The first, simple result of my experiments was already shown by Gear and Wells [1984]:

In the case of a triangular system, which is achieved for α = 0 (cf. (8.6)), stability of the

entire multi-rate method becomes equivalent to the simultaneous stability of each method

for each component. Figure 8.8(b) on the following page illustrates this–the dependency

on β has vanished, aside from cases where β is close to {0, π}, where the eigenvectors

are very nearly linearly dependent and the specification of the system in the form (8.5)

becomes meaningless.

Figure 8.8(b) allows one more observation. It shows stability data for a method with a

sub-step ratio k = 2. Remarkably, about the same stability is observed for all systems whose

velocity ratio µ meets or exceeds µ ≤ 1/k. This is good news: Even if one underestimates

the velocity of the fast system, one still gets the full benefit of the multi-rate method one is

applying.

It turns out that many of the system’s most salient stability features appear to be found

255

f : fast

s: slow

1
α

βµ

(a) Geometric layout of the eigenvectors of (8.5).

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(i,i) k=2 α=0.000π

1.040

0.880

1.200
1.360

1.440

stable H

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

(b) Maximal stable time steps for triangular system
with α = 0.

Figure 8.8. Interpretation of and first stability results on the MRAB test system (8.5).

along the direction β ≈ α + π/2. When rewritten as β − α = π/2, this condition has a

striking interpretation that can be seen from Figure 8.8(a): In this case, the eigenvector

for µλ2 lines up exactly with the slow axis. It is unsurprising that the method maximizes

stability in this situation.

To see the practical effect of this angular relationship, I would like to direct the reader’s

attention to Figure 8.9(a) on the next page. The lobe of peak stability extending along

β = α + π/2 (which, due to the small value of α, is nearly aligned with the vertical

axis of the page) extends up to a value of µ / 1/k = 0.5, where I note that the figure

shows an experiment where k = 2. This confirms the earlier finding in the case of

α = 0: As long as k ≥ 1/µ, multi-rate methods achieve their design efficiency gain. It is

again somewhat remarkable that, even for “faster” systems (i.e. smaller µ) that could be

considered “mismatched” to the scheme, stability remains at least as good as in the case

of µ = 1/k. Further, one observes that the most stable lobe does not quite stretch out to

µ = 1/k–in fact, there is a rapid drop somewhat short of that point. As a result, it seems

advisable to choose k slightly larger than d1/µe.

256

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(i,−1) k=2 α=0.050π

0.880

0.720 0.560

0.400

1
.0

4
0

1.200

1
.3

6
0

stable H

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Maximal stable time steps for a oscillation-decay
system.

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(i,i) k=2 α=0.050π

0.800

0.960

1.120

1.
28

0

1
.5

2
0

1.
36

0

stable H

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) Maximal stable time steps for a oscillation-
oscillation system.

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(−1,−1) k=2 α=0.050π

0.800

0.640

0.960
1.120

1.200

1.360

stable H

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

(c) Maximal stable time steps for a decay-decay sys-
tem.

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(−1,i) k=2 α=0.050π

1.000

0.800

1
.2

0
01.4001.600

stable H

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(d) Maximal stable time steps for a decay-oscillation
system.

Figure 8.9. Eigenvalue dependency of the stable time step for multi-rate AB methods.

257

Still viewing Figure 8.9(a), it can be seen that by varying β while keeping µ ≤ 0.5,

stability decays as the eigenvector belonging to the small eigenvalue µλ2 loses alignment

with the slow component of the method. This is expected. However two further observations

are less so: First, even in this more complicated example, the stable time step decays

monotonically (in β and µ) from its maximal value. For the most part, the worst-case time

step is exhibited by the single-time-scale system represented by µ = 0, at the outer edge of

the diagram. In that sense, the method is free of “traps” or “surprises”. Second, a lobe of

reduced, but still good stability stretches along the areas of β ∈ (π/2, π) that even captures

regions of small µ. The origin of this lobe is unknown, though it is plausible that when µ is

small, the method might prefer eigenvectors that are “more linearly dependent”.

The lobe is however not robust to changes in the eigenvalues (λ1, λ2). In fact, while

Figure 8.9(a) represented a system with (λ1, λ2) = (i,−1), 8.9(b) on the preceding page

depicts the analogous plot for the case of (λ1, λ2) = (i, i). While conceptually (and

numerically) similar to 8.9(a), the aforementioned “lobe” here stretches in the opposite

direction of where it stretched before. Again, the origin of this is unknown, and until it is

found, this feature should not be relied upon in practical uses of the method.

Figures 8.9(d) and 8.9(c) show stability data for the two remaining cases of (λ1, λ2) =

(−1,−1) and (λ1, λ2) = (−1, i). It is striking how different the stability behavior of the

method is in each of the four cases. Further, since only the major (imaginary and negative

real) directions are captured by this experiment, it should be expected that still different

phenomena are found in areas not coinciding with these directions, though one would hope

(perhaps justified by the shape of single-rate AB3 stability regions) that the behavior along

the axes shown here is indicative of the in-between areas.

Two further observations concerning the response of the method to changing eigenvalues

is in order: First, by the (relative) similarity between Figures 8.9(b) and 8.9(a) and between

258

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(i,i) k=2 α=0.050π

0.960

0.800

1.120

1.
20

0

1.
36

0

1
.5

2
0

stable H

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) Maximal stable time steps for Fq MRAB with
sub-step ratio of k = 2. (identical to Figure 8.9(b))

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(i,i) k=5 α=0.050π

1.000

1.000

1.2001.800
2.2002.8003

.6
0
0

stable H

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

(b) Maximal stable time steps for Fq MRAB with
sub-step ratio of k = 5.

Figure 8.10. Sub-step ratio dependency of the stable time step for multi-rate AB methods.

Figures 8.9(c) and 8.9(d), it appears that the dominant eigenvalue λ1 determines stability,

whereas λ2 only changes a few details. Second, the method appears to be more stable along

the imaginary axis than along the negative-real one–the “plateau” of stable H is located at

around H = 1.5 in the oscillatory (imaginary) cases and around H = 1.3 in the decay (neg.

real) cases. Interestingly, the same observation can be made about the single-rate results in

Table 8.2.

The single-rate data of Table 8.2 allow another interesting comparison, one that deter-

mines whether the use of multi-rate methods is justified at all. Fortunately, this appears to

be the case, as the stable “plateau” time steps reached by MRAB3, given by H = 1.5 and

H = 1.3 for the oscillation- and decay-dominated cases above are more than 1.9 times the

size of their single-rate counterparts, where the expected theoretical optimum would be a

factor of two for the methods of sub-step ratio k = 2 examined here.

An obvious extension of this line of inquiry is whether results continue to be as good

for greater sub-step ratios k. Figure 8.10 aims to shed light on this issue. The diagrams

of Figure 8.10(a) and Figure 8.10(b) show stability for the same set of parameters, with

one change–the sub-step ratio k has been increased from 2 to 5. Remarkably, the low

259

π/2

 π

β

0.1 1.0µ

Fq MRAB on (λ1 ,λ2) =(i,i) k=5 α=0.050π

1.000

1.2001.800
2.2002.8003

.6
0
0

stable H

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

(a) Maximal stable time steps for Fq MRAB with a
sub-step ratio of k = 5 (identical to Figure 8.10(b)).

π/2

 π

β

0.1 1.0µ

Ssf MRAB on (λ1 ,λ2) =(i,i) k=5 α=0.050π

1.000

0.800

1
.2

0
0

2.200
2.800

3.
40

0

stable H

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

(b) Maximal stable time steps for Ssf MRAB with a
sub-step ratio of k = 5.

Figure 8.11. Method dependency of the stable time step for multi-rate AB methods.

contours lines for ∆t ∈ [0.7, 1.2] are virtually unchanged between both figures. For small

µ / 1/k, again a plateau emerges, with a stable ∆t of 3.6, which, at a factor of 4.86 over

the single-rate ∆t, confirms the scalability of MRAB methods to high sub-step ratios k.

In addition, I further deem it important and fortunate that the region of high stability for

k = 5 covers roughly the same range in β as the one for k = 2.

The next question concerns the robustness of the scaling and angular stability when

changing from the one method (“Fq”) on which all results so far were based, to another.

Figure 8.11(a) carries forward the “Fq”, k = 5 diagram of Figure 8.10(b) for immediate

visual comparison with Figure 8.11(b), which shows stability data for the “Ssf” method on

the same parameters. While almost the same stable maximal H as for “Fq” is reached, the

range of β values for which that is so is much smaller. In that sense, while the behavior

across methods is qualitatively similar, significant quantitative differences do occur.

Everything discussed so far is necessarily a “peephole” perspective of the behavior of

MRAB methods, aimed at providing the reader with a coarse overview of the behavior to

be expected. Findings in this chapter are based on a full parameter sweep, varying each

of the parameters through its entire range, and I have chosen them in such a way that any

260

Table 8.3. Minimal, average, and maximal stable time steps ∆t data across MRAB methods at
sub-step ratio k = 2, for inner (matched) and outer (mismatched) regions.

(a) Aggregate stability data for a sub-step ratio
of k = 2. Base data set is restricted by α = 0.05,
β ∈ [0.3π, 0.7π] and µ ≤ 0.5.

Scheme min ∆t ∆t max ∆t
Fsr 1.046 1.246 1.532
Fqsr 1.021 1.285 1.588
Ff 1.012 1.287 1.61
Ffr 1.012 1.287 1.61
Sf 1.012 1.287 1.61
Fq 0.942 1.269 1.566
Sq 0.926 1.265 1.637
Fsfr 0.922 1.215 1.58
F 0.872 1.2 1.591
S 0.872 1.2 1.591
Fsf 0.787 1.21 1.55
Ssf 0.787 1.21 1.55
Fqs 0.759 1.178 1.595
Fs 0.754 1.111 1.433
Ss 0.754 1.111 1.433
Sqs 0.737 1.172 1.588
Sqrs 0.615 1.086 1.534
Srs 0.611 1.084 1.525
Sqr 0.61 1.107 1.582
Srf 0.61 1.101 1.552
Sr 0.609 1.079 1.568
Srsf 0.525 1.016 1.509

(b) Aggregate stability data for a sub-step ratio
of k = 2. Base data set is restricted by α = 0.05,
β ∈ [0.3π, 0.7π] and µ ≥ 0.5.

Scheme min ∆t ∆t max ∆t
Fsr 0.562 0.906 1.469
F 0.561 0.892 1.448
S 0.561 0.892 1.448
Fsfr 0.555 0.909 1.464
Ff 0.551 0.922 1.456
Ffr 0.551 0.922 1.456
Sf 0.551 0.922 1.456
Fqsr 0.55 0.92 1.47
Sq 0.545 0.922 1.454
Fq 0.545 0.926 1.453
Fsf 0.524 0.891 1.455
Ssf 0.524 0.891 1.455
Fqs 0.523 0.887 1.494
Sqs 0.514 0.873 1.46
Fs 0.514 0.858 1.42
Ss 0.514 0.858 1.42
Srs 0.319 0.563 1.012
Sqrs 0.316 0.561 0.988
Sr 0.316 0.561 0.967
Sqr 0.316 0.56 0.973
Srf 0.315 0.561 0.98
Srsf 0.313 0.573 1.291

parameter not specifically discussed above had, according to my observation, only limited

influence on the result being stated. Next, I would however like to make use of the breadth

of the obtained data and move on to a more global analysis of the parameter sweep results.

To do so, I will present statistics on the stable time step that aggregate data from the

entire sweep, with an emphasis on providing guidance in the choice of the method. Since

the method is usually the only parameter that is not prescribed by the user’s problem, I

anticipate that guidance in this decision might be helpful. To present a meaningful subset

of the data, in all that follows, I let α = 0.05 and β ∈ [0.3π, 0.7π], in accordance with what

261

Table 8.4. Minimal, average, and maximal stable time steps ∆t data across MRAB methods,
for sub-step ratios k = 3 and k = 4.

(a) Aggregate stability data for a sub-step ratio
of k = 3. Base data set is restricted by α = 0.05,
β ∈ [0.3π, 0.7π] and µ ≤ 0.333.

Scheme min ∆t ∆t max ∆t
Fqsr 1.421 1.872 2.406
Ff 1.28 1.797 2.266
Ffr 1.28 1.797 2.266
Sf 1.28 1.797 2.266
Fq 1.274 1.773 2.277
Sq 1.252 1.745 2.282
Fsr 1.244 1.673 2.246
F 1.134 1.557 2.188
S 1.134 1.557 2.188
Fsfr 1.048 1.571 2.227
Fsf 1.005 1.597 2.22
Ssf 1.005 1.597 2.22
Sqrs 0.908 1.562 2.293
Sqr 0.907 1.589 2.286
Srf 0.902 1.574 2.217
Fs 0.901 1.252 2.086
Ss 0.901 1.252 2.086
Sr 0.896 1.476 2.192
Srs 0.864 1.501 2.246
Fqs 0.836 1.375 2.311
Sqs 0.805 1.341 2.271
Srsf 0.695 1.3 2.21

(b) Aggregate stability data for a sub-step ratio
of k = 4. Base data set is restricted by α = 0.05,
β ∈ [0.3π, 0.7π] and µ ≤ 0.25.

Scheme min ∆t ∆t max ∆t
Fqsr 1.553 2.409 2.998
Ff 1.304 2.221 2.95
Ffr 1.304 2.221 2.95
Sf 1.304 2.221 2.95
Fsr 1.297 2.057 2.919
Fq 1.293 2.215 2.95
Sq 1.258 2.177 2.95
Sqrs 1.222 1.978 2.937
Sqr 1.164 1.999 2.95
Srf 1.153 1.997 2.947
Fsf 1.147 1.84 2.88
Ssf 1.147 1.84 2.88
F 1.145 1.819 2.888
S 1.145 1.819 2.888
Sr 1.127 1.793 2.885
Srs 1.088 1.837 2.894
Fsfr 0.989 1.771 2.88
Fs 0.935 1.495 2.29
Ss 0.935 1.495 2.29
Srsf 0.805 1.478 2.875
Fqs 0.789 1.522 2.875
Sqs 0.748 1.436 2.944

262

was seen about sensible applications for MRAB. Despite the behavioral differences found

between different values of (λ1, λ2), the statistical data in this section crudely aggregates

all of these.

The data is shown in Tables 8.3 on page 260 and 8.4 on the previous page. It shows

the minimal, average, and maximal stable time steps found empirically across subsections

of the parameter domain. Table 8.3(a) presents such an aggreate for a sub-step ratio of

k = 2, with the base data restricted to an appropriate subset of angles α, β, for µ ≤ 1/k

and µ ≥ 1/k. Table 8.4 presents the same type of data for sub-step ratios of k = 3 and

k = 4, for µ ≤ 1/k.

Of the three values presented per method, the “average” one, ∆t should be viewed with

the most suspicion, as it depends on a weighting of a parameter space discretization1. The

minimum and maximum values for ∆t are of course also discretization-dependent, but less

so than the average.

While crude, the data appears to admit a few conclusions. First, the data reinforces

the mathematical identity of the schemes tagged as equivalent in the no-mixing case by

Table 8.1. Second, the rankings are rather similar, with the exception of the slow-mismatch

case k = 2, µ ≥ 1/k of Table 8.3(b). Here, and to some extent also in the matched case

µ ≤ 1/k for k = 2 (Table 8.3(a)), methods that include the features “S” and “r” rank poorly,

occupying all six bottom ranks. Closer inspection with the help of the azimuthal plots from

above reveals that for single-rate ODEs with µ near 1, these methods have a considerably

smaller time step than all other methods. In fact, for each of (λ1, λ2) ∈ {(−1,−1), (i, i)}

and µ = 1, all methods except for the “Sr” ones exhibited the exact same stable time step.

Also, the observed stability plateaus for the “Sr” family are considerably smaller than for

1The parameter space discretization used to generate these results is as follows: α ∈ [0, π], 20 equispaced
points, β ∈ (π/(N + 1), Nπ/(N + 1)), N = 20 equispaced points, µ ∈ [0.1, 10], 10 equispaced points,
(λ1, λ2) ∈ {(−1,−1), (−1, i), (i,−1), (i, i)}.

263

other methods. While this group of methods appears moderately competitive on k ∈ {3, 4},

these observations cast a shadow of doubt over them, making it hard to recommend them

for any practical application.

The method “F”, as shown in Figure 8.5 is perhaps the most ‘natural’ of all, with a

simple, short, and straightforward order of operations. It is therefore fairly likely that, given

a basic understanding of MRAB, a user would pick this method. Alternatively, guided by

the work by Gear and Wells [1984], a user might also try the “Ss” scheme, equivalent to

their “slowest-first” method. Unfortunately, especially as k increases, both of these are not

among the more stable schemes found in this investigation.

Schemes involving the feature “q” (“Run afs at fast rate”) are significantly expensive

than non-“q” ones. Despite this added expense, only one “q” scheme (“Fqsr”) features

prominently at the top of the ranking, especially for high k. It depends on the expense

involved in evaluating the coupling term afs if the extra stability is worth the effort.

This leads to a more general point: The methods presented in this chapter vary somewhat

in their expense. When evaluating stable time steps, the expense needed to reach this level

of stability should also be taken into account, and factored into the ranking. However, such

an expense ranking can only properly be performed in the context of an actual application,

where an exact cost for each of the right-hand sides is known. Further, it appears plausible

from my experiments that if an appropriate method is chosen, then near-optimal multi-rate

efficiency (of nearly 90% on the simple 2× 2 test problem) can be achieved. Therefore, I

expect that multi-rate methods are beneficial on nearly all ODE systems with time scales

separated by a factor of two or more.

In this section, it was my aim to shed light on the stability properties of the multitude

of methods introduced in this chapter. To do so in an economical manner, I have restricted

264

myself to a simple 2× 2 test problem. An obvious next step would be to confirm the data

gained in this section on a larger test problem.

8.6 Applications

The motivation for multi-rate time-stepping almost always comes from an application

problem in which multiple time scales occur. It is the goal of this section to explore some

examples of such problems, and, if available, provide results on their use with the multi-rate

Adams-Bashforth methods of this chapter.

8.6.1 Domain Decomposition in the Treatment of Conserva-

tion Laws by Discontinuous Galerkin Methods

Given a hyperbolic conservation law and a mesh of a polyhedral domain Ω, discontinuous

Galerkin (DG) methods (see Section 2.1), unlike most other finite element methods, are

amenable to discretization in time by explicit time integrators without the use of mass

lumping. This is due to the block-diagonal nature of their mass matrix, which may be

inverted in an element-by-element fashion. Therefore, any explicit time stepper may be

used to advance a DG solution in time, and this section seeks to explain why multi-rate

steppers are a particularly promising choice.

The method’s Courant-Friedrichs-Lewy condition requires a time step that scales as

∆t ∼ h

N2
,

265

where h is the local mesh size and N is the approximation’s polynomial degree [Gottlieb

and Tadmor, 1991, Hesthaven and Warburton, 2007]. In many applications, it is sensible to

vary h and N across Ω to provide geometric or approximative resolution where it is needed,

or to accommodate artifacts of poor mesh generation. Hence the time step requirement

will also vary across the domain. Once mesh geometry and desired local approximation

order are known, Ω may be partitioned according to the time step requirements of its

constituent elements and cast in the mixed-dependency form of (8.3), with the numerical

fluxes at inter-domain boundaries taking the role of the coupling terms. If the numerical

flux expression in use is expressible as a sum of interior and exterior contributions, then the

system may also be cast in the unmixed form (8.1). This is the case for all linear problems,

in addition to many flux schemes for nonlinear problems, such as the global Lax-Friedrichs

or Rusanov fluxes. It is not known which of the two splittings is preferable, if any.

Similar premises were explored by Diaz and Grote [2009], using a Leapfrog-like

method, by Liu et al. [2009], using various Runge-Kutta methods, by Lörcher et al. [2008],

using space-time expansions, and many others [Cohen et al., 2006, Remacle et al., 2002].

The application of MRAB to locally time-stepped DG originated with Warburton [2008],

and quantitative results were published by Gödel et al. [2009b]. They report reductions of

computational effort by a factor of six when comparing a multi-rate third-order Adams-

Bashforth scheme to its single-rate counterpart, and a still respectable reduction by a factor

of three when compared to a Runge-Kutta method achieving fourth (instead of third) order

accuracy. It is remarkable that, in further work, they were able to balance processing

loads in a parallel computation in such a way that much of the efficiency gain from the

sequential case was retained [Gödel et al., 2009a]. The discontinuous Galerkin solver

hedge discussed earlier in this thesis (see Chapter 3) has facilities for sequential MRAB

time integration and should be able to reproduce the results by [Gödel et al., 2009b].

266

8.6.2 Velocity-Space Decomposition in Eulerian Vlasov-Maxwell

Schemes

A slightly different situation in which multi-rate Adams-Bashforth time stepping may be

helpful is encountered in the Eulerian discretization of the Vlasov-Maxwell system (see

Section 7.3.1).

The Vlasov equation (7.2), as part of the larger Vlasov-Maxwell system, models

variable-velocity transport along spatial and momentum axes. If the discretization of the

density (which is the quantity of interest in the Vlasov equation) is can be decomposed

along the momentum direction, then the resulting semi-discrete system is a profitable

target for a treatment with MRAB, because in all explicit discretizations of hyperbolic

conservation laws such as (7.2), the maximal possible time step is (as above) governed

by the Courant-Friedrichs-Lewy condition, which implies that the time step is inversely

proportional to the characteristic velocity. Quite naturally, spatial velocities in (7.2) vary

quite drastically as one moves along the momentum axis. If the system can be split along

the momentum direction, then high- and low-velocity parts can be separated and the whole

system cast into one of the forms (8.1), (8.3), or (8.4), depending on the used discretization.

Note that it is likely that the condition that the system can be split along the momentum

direction is likely to be violated. In Section 7.3.1, I have argued that it is unlikely that a

non-adaptive Eulerian discretization would enjoy much success on a Vlasov-like equation.

Unfortunately, the non-uniform refinement present in such a scheme can easily spoil

splittability, unless the splitting is artificially upheld by purposeful placement of refinement

and coarsening boundaries. On the other hand, if spectral methods (such as the ones by

Narayan and Hesthaven [2009]) are used along the momentum direction and an FFT or an

FFT-like transform method is used to compute the right-hand side, then not much work can

267

be saved by the variable splitting imposed by a MRAB discretization–computing a partial

right-hand side incurs nearly the same effort as computing it in its entirety.

8.6.3 Multi-Rate Time Stepping for Particle-in-Cell Methods

Yet another situation is encountered in particle-in-cell methods as discussed in Chapter

7, where the state maintained by the method is, by its very nature, partitioned into two

components–the particles and the electromagnetic field.

This application of multi-rate multi-step time stepping is discussed in depth in the work

by Stock [2009], however a few salient aspects are emphasized in Section 7.6.1.

8.7 Conclusions

In this chapter, I have worked out in detail the design choices and stability properties of

two-rate Adams-Bashforth time integrators, as well as highlighted a number of applications

where their use is beneficial. In some of these applications, more than two rates are present.

For example, Gödel et al. [2009b] have used three- and four-rate schemes with good success.

I have shown that a rather large array of design choices exists in two-rate methods, an even

larger number of possibilities will exist in methods with more rates. For two-rate methods,

if one were to choose a method largely at random, the odds of that method being “good

enough” are quite high. It is not known whether the same holds for three and more rates,

and thus the issue would merit closer investigation.

Further, I will be working towards finding a concise theoretic result that captures some

of the behavior observed empirically in this chapter. While there are naturally many more

268

moving parts in a multi-rate method than in a single-rate one, the ultimate goal would be

to have a stability result for multi-rate schemes that is as concise and expressive as that

available for single-rate ones.

CHAPTER NINE

Conclusions

269

270

Throughout the course of this thesis, I have touched upon a rather varied collection of

subjects, all of which are unified by the goal of obtaining tangible improvements for users

of discontinuous Galerkin methods or enabling some uses in the first place.

The main contributions made in this thesis are the following:

• Discontinuous Galerkin schemes on graphics processors. (joint with T. Warbur-

ton, Chapter 5) Two goals are pursued here: First, I have described a concrete set of

implementation strategies for DG methods on particular hardware as well as quanti-

fied and commented on the obtained results. I have further described a parameter set

along which the methods explained are expected to be adaptable to a broad set of

future hardware through automated tuning.

Second, I seek to show through this contribution that, with the emergence of mass-

market massively parallel compute hardware, the set of criteria by which numerical

methods should be evaluated has shifted–dealing advantages to methods that are

computationally adaptable and (typically) of higher order accuracy. I view the

chapter as a convincing advertisement for the point of view that practical large-scale

implementation effects are neither trivial nor negligible.

• GPU-capable viscous shock capturing for nonlinear conservation laws. (joint with

T. Warburton, Chapter 6) This contribution seeks to pick up the gauntlet thrown

down by the emergence of GPUs in the context of shock-capturing methods for

gas dynamics, by adopting the premise that the resulting design should be easily

adaptable to such machines. Starting from work by Persson and Peraire [2006], its

chief contribution is a more precise understanding of how shock detection might be

performed on strictly per-element data, and how effective an artificial-viscosity based

stabilization of DG methods based on such knowledge can be.

• Particle-field couplings for high-order unstructured DG-PIC. (Chapter 7) In my

271

discussion of the options for the deposition and interpolation halves of a successful

PIC scheme, I first and foremost hope to have aptly described the challenges faced

by any method that seeks to combine high-order accuracy, geometric flexibility, and

freedom from noise. To varying degrees, the methods I have proposed outperform the

state of the art in a reasonably well-understood subset of cases, based on a number of

quality measures I have proposed. Certainly, the results presented here are those of a

work in progress more than a practical method. Nonetheless I hope that my results

might inform future approaches to DG-PIC.

• Refined classification of multi-rate Adams-Bashforth ODE solvers, based on

work by Gear and Wells [1984]. (joint with A. Stock and T. Warburton, Chapter 8)

The contribution of this chapter is threefold: First, it sheds light on the ease with

which multiple time scales may be captured in explicit time integrators. Second,

it gives the user of such methods a certain amount of additional control through

increased choice of methods. Third, and last, it strives to give an overview of

observed stability behavior and help with choosing the most suitable one among

the discussed multi-rate Adams-Bashforth methods. The value of the survey–in

my opinion–is that it provides a stepping stone on the way to a refined study and,

ultimately, better understanding of the stability of multi-rate methods.

In addition, the following contributions I have made are not quantitative but rather of a

methodical or software nature:

• Tools for metaprogramming on GPU architectures. (Chapter 4) The key realiza-

tion here is that run-time code generation, while already a known concept for decades,

enjoys drastically increased benefits on massively parallel machines such as GPUs.

By providing suitable tools and demonstrating their use and usefulness, this work

describes a new, seamless, and simple way to combine the hybrid model proposed in

272

Chapter 1 with truly high-performance, massively parallel execution.

• High-performance translators for a discontinuous Galerkin scheme language.

(Chapter 3) This project highlights a way in which computational codes can be built

that preserves both abstraction and high performance. In its feature set, flexibility,

and achieved performance, it is, to the best of my knowledge, novel and unique.

• Software modules for scientific computation in Python. (Chapter 1) One com-

ponent of enabling the widest reproducibility of computational research is the free

availability of the tools on which it is built. By highlighting one such tool set, proving

its capabilities through my work, and releasing additional components under liberal

licenses, I hope to contribute to this effort.

Needless to say, all the work I have described was heavily influenced by the insights,

constant guidance, and advice of my advisor Jan Hesthaven, who deserves much of the

credit for these results.

Throughout the chapters of this book, I have taken care to outline unresolved questions

and directions for future research. LeVeque [2009] remarks that each piece of computational

infrastructure tends to generate interesting research questions in a much larger quantity than

it generates answers. In making my results, tools, and future research directions available

to all, the best possible outcome and my highest hope for this work is that I might be able

to inspire others to join me in pursuing answers to the set of questions laid out.

Bibliography

D. Abrahams, R. Grosse-Kunstleve, B. Goals, E. Classes, and O. Overloading. Building
hybrid systems with Boost.Python. C++ Users Journal, 21(7):29–36, 2003.

J. F. Andrus. Numerical Solution of Systems of Ordinary Differential Equations Separated
into Subsystems. SIAM Journal on Numerical Analysis, 16(4):605–611, August 1979.
doi: 10.1137/0716045.

J. F. Andrus. Stability of a multi-rate method for numerical integration of ODE’s. Computers
& Mathematics with Applications, 25(2):3–14, 1993. doi: 10.1016/0898-1221(93)90218-
K.

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified Analysis of Discontinuous
Galerkin Methods for Elliptic Problems. SIAM Journal on Numerical Analysis, 39(5):
1749–1779, 2002. doi: 10.1137/S0036142901384162.

ASC Flash Center. Flash user’s guide, version 3.2. Technical report, University of Chicago,
2009. URL http://flash.uchicago.edu/. Retrieved Apr 11, 2010.

U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton. Implicit-explicit methods for time-
dependent partial differential equations. SIAM Journal on Numerical Analysis, 32(3):
797–823, 1995. doi: 10.1137/0732037.

B. Bagheri and L. R. Scott. About Analysa. Technical Report 2004-09, University of
Chicago Computer Science, 2004.

G. E. Barter and D. L. Darmofal. Shock capturing with PDE-based artificial viscosity for
DGFEM: Part I. Formulation. Journal of Computational Physics, 229(5):1810 – 1827,
2010. doi: 10.1016/j.jcp.2009.11.010.

T. Barth and T. Knight. A Streaming Language Implementation of the Discontinuous
Galerkin Method. Technical Report 20050184165, NASA Ames Research Center, 2005.

F. Bashforth and J. C. Adams. An attempt to test the theories of capillary action: by
comparing the theoretical and measured forms of drops of fluid. With an explanation of

273

http://dx.doi.org/10.1137/0716045
http://dx.doi.org/10.1016/0898-1221(93)90218-K
http://dx.doi.org/10.1016/0898-1221(93)90218-K
http://dx.doi.org/10.1137/S0036142901384162
http://flash.uchicago.edu/
http://dx.doi.org/10.1137/0732037
http://dx.doi.org/10.1016/j.jcp.2009.11.010

274

the method of integration employed in constucting the tables which give the theoretical
forms of such drops. University Press, 1883.

F. Bassi and S. Rebay. Accurate 2D Euler computations by means of a high order dis-
continuous finite element method. In XIVth ICN MFD, Bangalore, India, July 1994.
Springer.

F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order accurate
discontinuous finite element method for inviscid and viscous turbomachinery flows. In
R. Decuypere and G. Dibelius, editors, 2nd European Conference on Turbomachinery
Fluid Dynamics and Thermodynamics, page 99–108, Antwerpen, Belgium, March 1997.
Technologisch Instituut.

N. Bell and M. Garland. Efficient Sparse Matrix-Vector Multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, NVIDIA Corporation, December 2008.

N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In SC ’09: Proceedings of the 2009 ACM/IEEE conference on
Supercomputing, New York, NY, USA, 2009. ACM.

C. K. Birdsall and A. B. Langdon. Plasma Physics Via Computer Simulation. McGraw-Hill,
1984. ISBN 0750310251.

P. Bogacki and L. F. Shampine. A 3(2) pair of Runge-Kutta formulas. Applied Mathematics
Letters, 2(4):321 – 325, 1989. doi: 10.1016/0893-9659(89)90079-7.

P. Borwein and T. Erdélyi. Polynomials and Polynomial Inequalities. Springer, first edition,
September 1995. ISBN 0387945091.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.
Brook for GPUs: stream computing on graphics hardware. In Int. Conf. on Computer
Graphics and Interactive Techniques, pages 777–786. ACM New York, NY, USA, 2004.

A. Burbeau, P. Sagaut, and C. H. Bruneau. A Problem-Independent Limiter for High-Order
Runge-Kutta Discontinuous Galerkin Methods. Journal of Computational Physics, 169
(1):111 – 150, 2001. doi: 10.1006/jcph.2001.6718.

E. Burman. On nonlinear artificial viscosity, discrete maximum principle and hyper-
bolic conservation laws. BIT Numerical Mathematics, 47(4):715–733, 2007. doi:
10.1007/s10543-007-0147-7.

M. Campos Pinto, S. Jund, S. Salmon, and E. Sonnendrücker. Charge conserving FE-
PIC codes on general grids. Technical Report HAL-00311429, IRMA, University of
Strasbourg, 2008.

A. Candel, A. Kabel, L. Lee, Z. Li, C. Ng, G. Schussman, K. Ko, I. Ben-Zvi, and J. Kewisch.
Parallel 3D Finite Element Particle-in-Cell Simulations with PIC3P. Technical Report
SLAC-PUB-13671, SLAC Linear Accelerator Center, June 2009.

http://dx.doi.org/10.1016/0893-9659(89)90079-7
http://dx.doi.org/10.1006/jcph.2001.6718
http://dx.doi.org/10.1007/s10543-007-0147-7
http://dx.doi.org/10.1007/s10543-007-0147-7

275

M. H. Carpenter and C. A. Kennedy. Fourth-order 2N-storage Runge-Kutta schemes.
Technical report, NASA Langley Research Center, 1994.

B. Catanzaro, S. Kamil, Y. Lee, K. Asanović, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,
and A. Fox. SEJITS: Getting Productivity and Performance With Selective Embedded
JIT Specialization. In PMEA ’09: Programming Models for Emerging Architectures,
2009.

A. W. Chao. Physics of Collective Beam Instabilities in High Energy Accelerators. Wiley-
Interscience, 1993. ISBN 0471551848.

H. R. Childs, E. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. Whitlock, and
N. Max. A Contract Based System For Large Data Visualization. In IEEE Visualization,
page 25. IEEE Computer Society, 2005. ISBN 0-7803-9462-3. URL http://doi.
ieeecomputersociety.org/10.1109/VIS.2005.3.

B. Cockburn and J. Guzmán. Error estimates for the Runge–Kutta discontinuous Galerkin
method for the transport equation with discontinuous initial data. SIAM Journal on
Numerical Analysis, 46(3):1364–1398, 2008. doi: 10.1137/060668936.

B. Cockburn and C. Shu. TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws II: general framework. Mathematics of
Computation, 52(186):411–435, 1989. doi: 10.2307/2008474.

B. Cockburn and C.-W. Shu. The Runge-Kutta Discontinuous Galerkin Method for Conser-
vation Laws V: Multidimensional Systems. Journal of Computational Physics, 141(2):
199 – 224, 1998. doi: 10.1006/jcph.1998.5892.

B. Cockburn, S.-Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One-dimensional systems. Jour-
nal of Computational Physics, 84(1):90 – 113, 1989. doi: 10.1016/0021-9991(89)90183-
6.

B. Cockburn, S. Hou, and C.-W. Shu. The Runge-Kutta Local Projection Discontinuous
Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional Case.
Mathematics of Computation, 54(190):545–581, 1990. doi: 10.2307/2008501.

G. Cohen, X. Ferrieres, and S. Pernet. A spatial high-order hexahedral discontinuous
Galerkin method to solve Maxwell’s equations in time domain. Journal of Computational
Physics, 217(2):340 – 363, 2006. doi: 10.1016/j.jcp.2006.01.004.

L. Dalcı́n, R. Paz, and M. Storti. MPI for Python. J. Par. Dist. Comp., 65(9):1108–1115,
September 2005. doi: 10.1016/j.jpdc.2005.03.010.

L. Dalcı́n, R. Paz, M. Storti, and J. D’Elı́a. MPI for Python: Performance improvements
and MPI-2 extensions. Journal of Parallel and Distributed Computing, 68(5):655 – 662,
2008. doi: 10.1016/j.jpdc.2007.09.005.

http://doi.ieeecomputersociety.org/10.1109/VIS.2005.3
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.3
http://dx.doi.org/10.1137/060668936
http://dx.doi.org/10.2307/2008474
http://dx.doi.org/10.1006/jcph.1998.5892
http://dx.doi.org/10.1016/0021-9991(89)90183-6
http://dx.doi.org/10.1016/0021-9991(89)90183-6
http://dx.doi.org/10.2307/2008501
http://dx.doi.org/10.1016/j.jcp.2006.01.004
http://dx.doi.org/10.1016/j.jpdc.2005.03.010
http://dx.doi.org/10.1016/j.jpdc.2007.09.005

276

W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonté, J. H. Ahn, N. Jayasena, U. J.
Kapasi, A. Das, and J. Gummaraju. Merrimac: Supercomputing with streams. In
Proceedings of the ACM/IEEE SC2003 Conference (SC’03), volume 1, 2003.

J. de Guzman. The Boost Spirit Parser Generator Framework, 2008. URL http://
spirit.sourceforge.net/.

L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, first
edition, 2001. ISBN 0387951172.

J. Diaz and M. J. Grote. Energy conserving explicit local time stepping for second-order
wave equations. SIAM Journal on Scientific Computing, 31(3):1985–2014, 2009. doi:
10.1137/070709414.

V. Dolejsı́, M. Feistauer, and C. Schwab. On some aspects of the discontinuous Galerkin
finite element method for conservation laws. Mathematics and Computers in Simulation,
61(3-6):333 – 346, 2003. doi: 10.1016/S0378-4754(02)00087-3.

J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal
of Computational and Applied Mathematics, 6(1):19 – 26, 1980. doi: 10.1016/0771-
050X(80)90013-3.

M. Drouin, L. Gremillet, J.-C. Adam, and A. Héron. Particle-in-cell modeling of relativistic
laser-plasma interaction with the adjustable-damping, direct implicit method. Journal of
Computational Physics, 229(12):4781 – 4812, 2010. doi: 10.1016/j.jcp.2010.03.015.

M. Dubiner. Spectral methods on triangles and other domains. Journal of Scientific
Computing, 6:345–390, December 1991. doi: 10.1007/BF01060030.

C. Engstler and C. Lubich. Multirate extrapolation methods for differential equations with
different time scales. Computing, 58(2):173–185, June 1997. doi: 10.1007/BF02684438.

A. Ern, A. Stephansen, and P. Zunino. A discontinuous Galerkin method with weighted
averages for advection-diffusion equations with locally small and anisotropic diffusivity.
IMA Journal of Numerical Analysis, 29(2):235, 2009. doi: 10.1093/imanum/drm050.

T. Z. Esirkepov. Exact charge conservation scheme for particle-in-cell simulation with an
arbitrary form-factor. Computer Physics Communications, 135(2):144 – 153, 2001. doi:
10.1016/S0010-4655(00)00228-9.

M. Feistauer and V. Kučera. On a robust discontinuous Galerkin technique for the solution
of compressible flow. Journal of Computational Physics, 224(1):208 – 221, 2007. doi:
10.1016/j.jcp.2007.01.035.

P. Fischer, J. Lottes, D. Pointer, and A. Siegel. Petascale algorithms for reactor hydrodynam-
ics. Journal of Physics: Conference Series, 125(1):012076, 2008. doi: 10.1088/1742-
6596/125/1/012076.

http://spirit.sourceforge.net/
http://spirit.sourceforge.net/
http://dx.doi.org/10.1137/070709414
http://dx.doi.org/10.1137/070709414
http://dx.doi.org/10.1016/S0378-4754(02)00087-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/j.jcp.2010.03.015
http://dx.doi.org/10.1007/BF01060030
http://dx.doi.org/{10.1007/BF02684438}
http://dx.doi.org/10.1093/imanum/drm050
http://dx.doi.org/10.1016/S0010-4655(00)00228-9
http://dx.doi.org/10.1016/S0010-4655(00)00228-9
http://dx.doi.org/10.1016/j.jcp.2007.01.035
http://dx.doi.org/10.1016/j.jcp.2007.01.035
http://dx.doi.org/10.1088/1742-6596/125/1/012076
http://dx.doi.org/10.1088/1742-6596/125/1/012076

277

J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz. Adaptive local refinement with octree load balancing for the parallel solution of
three-dimensional conservation laws. Journal of Parallel and Distributed Computing, 47
(2):139 – 152, 1997. doi: 10.1006/jpdc.1997.1412.

D. Friedman and D. Wise. The Impact of Applicative Programming on Multiprocessing. In
International Conference on Parallel Processing, pages 263–272, 1976.

M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. IEEE,
93(2):216–231, 2005. doi: 10.1109/JPROC.2004.840301. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

C. W. Gear. Multirate methods for ordinary differential equations. Technical Report
UIUCDCS-F–74-880, University of Illinois at Urbana-Champaign, 1974.

C. W. Gear and D. R. Wells. Multirate linear multistep methods. BIT Numerical Mathemat-
ics, 24(4):484–502, December 1984. doi: 10.1007/BF01934907.

C. Geuzaine and J. Remacle. Gmsh: a three-dimensional finite element mesh generator
with built-in pre-and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331, 2009. doi: 10.1002/nme.2579.

E. Gjonaj, T. Lau, S. Schnepp, F. Wolfheimer, and T. Weiland. Accurate modelling of
charged particle beams in linear accelerators. New Journal of Physics, 8(11):285, 2006.
doi: 10.1088/1367-2630/8/11/285.

D. Göddeke, R. Strzodka, and S. Turek. Accelerating double precision FEM simulations
with GPUs. In Proceedings of ASIM, 2005.

W. Gomm. Stability analysis of explicit multirate methods. Mathematics and Computers
in Simulation, 23:34–50, March 1981. doi: 10.1016/0378-4754(81)90005-7.

D. F. M. Goodman and R. Brette. Brian: a simulator for spiking neural networks in Python.
Frontiers in Neuroinformatics, 2, 2008. doi: 10.3389/neuro.11/005.2008.

D. Gottlieb and E. Tadmor. The CFL condition for spectral approximations to hyperbolic
initial- boundary value problems. Mathematics of Computation, 56(194):565–588, 1991.
doi: 10.2307/2008395.

A. Grundmann and H. M. Möller. Invariant Integration Formulas for the n-Simplex by
Combinatorial Methods. SIAM Journal on Numerical Analysis, 15(2):282–290, 1978.
doi: 10.1137/0715019.

J.-L. Guermond and R. Pasquetti. Entropy-based nonlinear viscosity for Fourier approxi-
mations of conservation laws. Comptes Rendus Mathematique, 346(13-14):801 – 806,
2008. doi: 10.1016/j.crma.2008.05.013.

N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics processors. J.
Comp. Phys., 227:8290–8313, September 2008. doi: 10.1016/j.jcp.2008.05.023.

http://dx.doi.org/10.1006/jpdc.1997.1412
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1007/BF01934907
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1088/1367-2630/8/11/285
http://dx.doi.org/10.1016/0378-4754(81)90005-7
http://dx.doi.org/10.3389/neuro.11/005.2008
http://dx.doi.org/10.2307/2008395
http://dx.doi.org/10.1137/0715019
http://dx.doi.org/10.1016/j.crma.2008.05.013
http://dx.doi.org/10.1016/j.jcp.2008.05.023

278

N. Gödel, N. Nunn, T. Warburton, and M. Clemens. Accelerating Multi-GPU Based
Discontinuous Galerkin FEM Computations for Electromagnetic Radio Fre-quency
Problems. ACES Journal: Special Issue on GPU Accelerated CEM Computations,
2009a. submitted.

N. Gödel, S. Schomann, T. Warburton, and M. Clemens. Local timestepping discontinuous
Galerkin methods for electromagnetic RF field problems. In Proceedings of the Third
European Conference on Antennas and Propagation (EUCAP 2009), pages 2149–2153,
Berlin, Germany, 2009b.

M. Harris. Optimizing parallel reduction in CUDA. Technical report, Nvidia Corporation,
Santa Clara, CA, 2007. URL http://developer.download.nvidia.com/
compute/cuda/1_1/Website/projects/reduction/doc/reduction.
pdf. Retrieved Apr 14, 2010.

R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the
compressible Navier-Stokes equations. International Journal for Numerical Methods in
Fluids, 51(9):1131–1156, 2006. doi: 10.1002/fld.1134.

A. Haselbacher, F. Najjar, and J. Ferry. An efficient and robust particle-localization
algorithm for unstructured grids. Journal of Computational Physics, 225(2):2198 – 2213,
2007. doi: 10.1016/j.jcp.2007.03.018.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.

J. S. Hesthaven and T. Warburton. Nodal High-Order Methods on Unstructured Grids: I.
Time-Domain Solution of Maxwell’s Equations. J. Comp. Phys., 181:186–221, Septem-
ber 2002. doi: 10.1006/jcph.2002.7118.

J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications. Springer, first edition, November 2007. ISBN 0387720650.

J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-Dependent
Problems. Cambridge University Press, 2007. ISBN 0521792118.

D. W. Hewett. Fragmentation, merging, and internal dynamics for PIC simulation with
finite size particles. Journal of Computational Physics, 189(2):390 – 426, 2003. doi:
10.1016/S0021-9991(03)00225-0.

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. CRC Press,
1988. ISBN 0852743920.

J. D. Jackson. Classical Electrodynamics. Wiley, third edition, July 1998. ISBN
047130932X.

G. Jacobs and J. Hesthaven. Implicit-explicit time integration of a high-order particle-in-cell
method with hyperbolic divergence cleaning. Computer Physics Communications, 180
(10):1760–1767, October 2009. doi: 10.1016/j.cpc.2009.05.020.

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://dx.doi.org/10.1002/fld.1134
http://dx.doi.org/10.1016/j.jcp.2007.03.018
http://dx.doi.org/10.1006/jcph.2002.7118
http://dx.doi.org/10.1016/S0021-9991(03)00225-0
http://dx.doi.org/10.1016/S0021-9991(03)00225-0
http://dx.doi.org/10.1016/j.cpc.2009.05.020

279

G. B. Jacobs and J. S. Hesthaven. High-order nodal discontinuous Galerkin particle-in-cell
method on unstructured grids. Journal of Computational Physics, 214(1):96–121, 2006.
doi: 10.1016/j.jcp.2005.09.008.

G. B. Jacobs, J. S. Hesthaven, and G. Lapenta. Simulations of the weibel instability with
a High-Order discontinuous galerkin Particle-In-Cell solver. 44 th AIAA Aerospace
Sciences Meeting and Exhibit, pages 1–11, 2006.

J. Jaffre, C. Johnson, and A. Szepessy. Convergence of the discontinuous Galerkin finite
element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci., 5
(3):367–386, 1995.

V. John and E. Schmeyer. Finite element methods for time-dependent convection–diffusion–
reaction equations with small diffusion. Computer Methods in Applied Mechanics and
Engineering, 198(3-4):475–494, 2008. doi: 10.1016/j.cma.2008.08.016.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. URL http://www.scipy.org/.

I. Kapchinsky and V. Vladimirsky. In Proceedings of the Conference on High Energy
Accelerators and Instrumentation, page 274, Geneva, 1959. CERN.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irreg-
ular Graphs. SIAM J. Sci. Comp., 20:359–392, 1999. doi: 10.1137/S1064827595287997.

D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime code generation. Technical
Report UWCSE 91-11-04, University of Washington Department of Computer Science
and Engineering, November 1991.

R. C. Kirby. Singularity-free evaluation of collapsed-coordinate orthogonal polyno-
mials. ACM Trans. Math. Softw., 37(1):1–16, 2010. ISSN 0098-3500. doi:
10.1145/1644001.1644006.

R. M. Kirby and S. J. Sherwin. Stabilisation of spectral/hp element methods through
spectral vanishing viscosity: Application to fluid mechanics modelling. Computer
Methods in Applied Mechanics and Engineering, 195(23-24):3128 – 3144, 2006. doi:
10.1016/j.cma.2004.09.019.

R. M. Kirby, T. C. Warburton, I. Lomtev, and G. E. Karniadakis. A discontinuous Galerkin
spectral/hp method on hybrid grids. Applied Numerical Mathematics, 33(1-4):393 – 405,
2000. doi: 10.1016/S0168-9274(99)00106-3.

A. Klöckner. The CodePy C Code Generation Library, 2009. URL http://mathema.
tician.de/software/codepy.

A. Klöckner, N. Pinto, Y. Lee, B. C. Catanzaro, P. Ivanov, and A. Fasih. Pycuda: Gpu
run-time code generation for high-performance computing. Technical Report 2009-
40, Scientific Computing Group, Brown University, Providence, RI, USA, November
2009a. URL http://www.dam.brown.edu/scicomp/reports/2009-40/.
submitted.

http://dx.doi.org/10.1016/j.jcp.2005.09.008
http://dx.doi.org/10.1016/j.cma.2008.08.016
http://www.scipy.org/
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1145/1644001.1644006
http://dx.doi.org/10.1145/1644001.1644006
http://dx.doi.org/10.1016/j.cma.2004.09.019
http://dx.doi.org/10.1016/j.cma.2004.09.019
http://dx.doi.org/10.1016/S0168-9274(99)00106-3
http://mathema.tician.de/software/codepy
http://mathema.tician.de/software/codepy
http://www.dam.brown.edu/scicomp/reports/2009-40/

280

A. Klöckner, T. Warburton, J. Bridge, and J. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors. J. Comp. Phys., 228:7863–7882, 2009b. doi:
10.1016/j.jcp.2009.06.041.

T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. Theory
and Applications of Special Functions, pages 435–495, 1975.

S. Krakiwsky, L. Turner, and M. Okoniewski. Acceleration of finite-difference time-domain
(FDTD) using graphics processor units (GPU). In Microwave Symposium Digest, 2004
IEEE MTT-S International, volume 2, pages 1033–1036 Vol.2, 2004. ISBN 0149-645X.
doi: 10.1109/MWSYM.2004.1339160.

L. Krivodonova. Limiters for high-order discontinuous galerkin methods. Journal of
Computational Physics, 226(1):879–896, 2007. doi: 10.1016/j.jcp.2007.05.011.

D. Kuzmin, R. Löhner, and S. Turek. Flux-corrected transport. Springer, 2005.

A. Kværnø. Stability of multirate Runge-Kutta schemes. Int. J. Differ. Equ. Appl., 1A(1):
97–105, 2000.

H. P. Langtangen. Python Scripting for Computational Science. Springer, 3rd edition,
February 2009. ISBN 3540739157.

A. Lapidus. A detached shock calculation by second-order finite differences. Journal of
Computational Physics, 2(2):154 – 177, 1967. doi: 10.1016/0021-9991(67)90032-0.

P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical compu-
tation. Communications on Pure and Applied Mathematics, 7(1):159–193, 1954. doi:
10.1002/cpa.3160070112.

S. Y. Lee. Accelerator Physics. World Scientific, 2004. ISBN 9812562001.

C. Lejdfors and L. Ohlsson. Implementing an embedded GPU language by combining
translation and generation. In Proceedings of the 2006 ACM symposium on Applied
computing, pages 1610–1614, 2006.

C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors. Domain-Specific Program
Generation. Number 3016 in Lecture Notes in Computer Science. Springer-Verlag, 2004.

P. Lesaint and P. Raviart. On a finite element method for solving the neutron transport
equation. Mathematical aspects of finite elements in partial differential equations, pages
89–123, 1974.

R. J. LeVeque. Python tools for reproducible research on hyperbolic problems. Computing
in Science and Engineering, 11:19–27, 2009. doi: 10.1109/MCSE.2009.13.

W. Li, X. Wei, and A. Kaufman. Implementing Lattice Boltzmann computation on graphics
hardware. The Visual Computer, 19:444–456, 2003.

http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://dx.doi.org/10.1109/MWSYM.2004.1339160
http://dx.doi.org/10.1016/j.jcp.2007.05.011
http://dx.doi.org/10.1016/0021-9991(67)90032-0
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1109/MCSE.2009.13

281

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia Tesla: A Unified Graphics
and Computing Architecture. IEEE Micro, 28:39–55, 2008. doi: 10.1109/MM.2008.31.

L. Liu, X. Li, and F. Hu. Nonuniform Time-step Runge-Kutta Discontinuous Galerkin
Method for Computational Aeroacoustics. In Proc. of the 15th AIAA/CEAS Aeroacoustics
Conference, Miami, FL, USA, 2009.

A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Trans-
actions on Mathematical Software, 37(2), 2010. URL http://www.dspace.cam.
ac.uk/handle/1810/221918/. To appear.

F. Lörcher, G. Gassner, and C.-D. Munz. An explicit discontinuous Galerkin scheme
with local time-stepping for general unsteady diffusion equations. J. Comp. Phys., 227:
5649–5670, 2008. doi: 10.1016/j.jcp.2008.02.015.

C. Mavriplis. Adaptive mesh strategies for the spectral element method. Computer Methods
in Applied Mechanics and Engineering, 116(1-4):77 – 86, 1994. doi: 10.1016/S0045-
7825(94)80010-3.

J. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, August 1962.

M. McCool and S. Du Toit. Metaprogramming GPUs with Sh. A K Peters, Wellesley MA,
2004.

M. McCool and RapidMind Inc. Data-parallel programming on the Cell BE and the GPU
using the RapidMind development platform. In Proc. GSPx Multicore Applications
Conference, 2006.

A. Medovikov. High order explicit methods for parabolic equations. BIT Numerical
Mathematics, 38:372–390, 1998. doi: 10.1007/BF02512373.

A. H. Mohammadian, V. Shankar, and W. F. Hall. Computation of electromagnetic
scattering and radiation using a time-domain finite-volume discretization procedure.
Computer Physics Communications, 68(1-3):175 – 196, 1991. doi: 10.1016/0010-
4655(91)90199-U.

C. Munz, R. Schneider, E. Sonnendrücker, and U. Voss. Maxwell’s equations when the
charge conservation is not satisfied. Comptes Rendus de l’Academie des Sciences - Series
I - Mathematics, 328(5):431–436, March 1999. doi: 10.1016/S0764-4442(99)80185-2.

C. D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß. Divergence Correction
Techniques for Maxwell Solvers Based on a Hyperbolic Model. Journal of Computational
Physics, 161(2):484–511, July 2000. doi: 10.1006/jcph.2000.6507.

A. C. Narayan and J. S. Hesthaven. A generalization of the Wiener rational basis functions
on infinite intervals. Part I - Derivation and properties. Technical Report 2009-22, Scien-
tific Computing Group, Brown University, Providence, RI, USA, May 2009. (submitted).

http://dx.doi.org/10.1109/MM.2008.31
http://www.dspace.cam.ac.uk/handle/1810/221918/
http://www.dspace.cam.ac.uk/handle/1810/221918/
http://dx.doi.org/10.1016/j.jcp.2008.02.015
http://dx.doi.org/10.1016/S0045-7825(94)80010-3
http://dx.doi.org/10.1016/S0045-7825(94)80010-3
http://dx.doi.org/10.1007/BF02512373
http://dx.doi.org/10.1016/0010-4655(91)90199-U
http://dx.doi.org/10.1016/0010-4655(91)90199-U
http://dx.doi.org/10.1016/S0764-4442(99)80185-2
http://dx.doi.org/10.1006/jcph.2000.6507

282

A. C. Narayan and A. Klöckner. Deterministic numerical schemes for the Boltzmann
equation. Technical Report 2009-39, Scientific Computing Group, Brown University,
Providence, RI, USA, November 2009.

Nvidia Corporation. NVIDIA CUDA 2.2 Compute Unified Device Architecture Program-
ming Guide. Nvidia Corporation, Santa Clara, USA, April 2009.

T. Oliphant. Guide to NumPy. Trelgol Publishing, Spanish Fork, UT, July 2006.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell. A survey of General-Purpose computation on graphics hardware. Computer
Graphics Forum, 26(1):80–113, 2007. doi: 10.1111/j.1467-8659.2007.01012.x.

P. Persson and J. Peraire. Sub-Cell Shock Capturing for Discontinuous Galerkin Methods.
In Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, volume 112, 2006.

N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening approach
to discovering good forms of biologically inspired visual representation. PLoS Comput
Biol, 5(11):e1000579, November 2009. doi: 10.1371/journal.pcbi.1000579.

O. Pironneau, F. Hecht, A. Le Hyaric, and K. Ohtsuka. FreeFEM++. Laboratoire Jacques-
Louis Lions, Université Pierre et Marie Curie, Paris, third edition, 2010.

J. Proft and B. Rivière. Discontinuous Galerkin Methods For Convection-Diffusion Equa-
tions For Varying And Vanishing Diffusivity. Int. J. Num. Anal. Mod., 6(4):533–561,
2009.

C. Prud’homme. A domain specific embedded language in C++ for automatic differen-
tiation, projection, integration and variational formulations. Sci. Prog., 14(2):81–110,
2006.

P. W. Rambo. Numerical heating in hybrid plasma simulations. Journal of Computational
Physics, 133(1):173 – 180, 1997. doi: 10.1006/jcph.1997.5678.

W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation.
Technical report, Los Alamos Scientific Laboratory, Los Alamos, 1973.

J. Remacle, K. Pinchedez, J. Flaherty, and M. Shephard. An efficient local time stepping-
discontinuous Galerkin scheme for adaptive transient computations. Computer Methods
in Applied Mechanics and Engineering, 2002. to appear.

J. Reynders, P. Hinker, J. Cummings, S. Atlas, S. Banerjee, W. Humphrey, K. Keahey,
M. Srikant, and M. Tholburn. POOMA: A Framework for Scientific Simulation on
Parallel Architectures. In G. Wilson and P. Lu, editors, Parallel Programming using
C++. MIT Press, 1996. doi: 10.1.1.43.7428.

F. Rieper. On the dissipation mechanism of upwind-schemes in the low Mach number
regime: A comparison between Roe and HLL. Journal of Computational Physics, 229
(2):221–232, 2010. doi: 10.1016/j.jcp.2009.09.043.

http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1371/journal.pcbi.1000579
http://dx.doi.org/10.1006/jcph.1997.5678
http://dx.doi.org/10.1.1.43.7428
http://dx.doi.org/10.1016/j.jcp.2009.09.043

283

A. Ronacher. The Jinja 2 Templating Engine, 2009. URL http://jinja.pocoo.
org/2/.

A. Sandu and E. Constantinescu. Multirate explicit Adams methods for time integration of
conservation laws. Journal of Scientific Computing, 38(2):229–249, February 2009. doi:
10.1007/s10915-008-9235-3.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee:
a many-core x86 architecture for visual computing. ACM Trans. Graph., 27(3):1–15,
2008. ISSN 0730-0301. doi: 10.1145/1360612.1360617.

J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator.
Applied Computational Geometry Towards Geometric Engineering, pages 203–222, 1996.
doi: 10.1007/BFb0014474.

C. Shu. Total-variation-diminishing time discretizations. SIAM Journal on Scientific and
Statistical Computing, 9:1073, 1988. doi: 10.1137/0909073.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes, ii. Journal of Computational Physics, 83(1):32 – 78, 1989. doi:
10.1016/0021-9991(89)90222-2.

H. Si and K. Gaertner. Meshing Piecewise Linear Complexes by Constrained Delaunay
Tetrahedralizations. In Proc. of the 14th International Meshing Roundtable, pages
147–163. Springer, 2005.

S. Skelboe and P. U. Andersen. Stability Properties of Backward Euler Multirate Formulas.
SIAM Journal on Scientific and Statistical Computing, 10(5):1000–1009, 1989. doi:
10.1137/0910059.

J. Slater, J. Dudek, K. Tatum, et al. The NPARC Alliance Verification and Valida-
tion Archive., 2009. URL http://www.grc.nasa.gov/WWW/wind/valid/
archive.html. Retrieved Apr 11, 2010.

G. A. Sod. A survey of several finite difference methods for systems of nonlinear hyper-
bolic conservation laws. Journal of Computational Physics, 27(1):1 – 31, 1978. doi:
10.1016/0021-9991(78)90023-2.

W. Stein and D. Joyner. Sage: System for algebra and geometry experimentation. ACM
SIGSAM Bulletin, 39(2):61–64, 2005. doi: 10.1145/1101884.1101889.

A. Stock. Development and application of a multirate multistep AB method to a discontinu-
ous Galerkin method based particle-in-cell scheme. Technical Report 2009-34, Scientific
Computing Group, Brown University, Providence, RI, USA, October 2009.

J. M. Stone. Athena test archive, 2009. URL http://www.astro.princeton.
edu/˜jstone/tests/. Retrieved Apr 11, 2010.

http://jinja.pocoo.org/2/
http://jinja.pocoo.org/2/
http://dx.doi.org/10.1007/s10915-008-9235-3
http://dx.doi.org/10.1007/s10915-008-9235-3
http://dx.doi.org/10.1145/1360612.1360617
http://dx.doi.org/10.1007/BFb0014474
http://dx.doi.org/10.1137/0909073
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1137/0910059
http://dx.doi.org/10.1137/0910059
http://www.grc.nasa.gov/WWW/wind/valid/archive.html
http://www.grc.nasa.gov/WWW/wind/valid/archive.html
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1145/1101884.1101889
http://www.astro.princeton.edu/~jstone/tests/
http://www.astro.princeton.edu/~jstone/tests/

284

J. Stratton, S. Stone, and W. Hwu. MCUDA: An Efficient Implementation of CUDA
Kernels on Multi-cores. Technical report, University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL, USA, March 2008.

E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM
Journal on Numerical Analysis, 26(1):30–44, 1989. doi: 10.1137/0726003.

D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism to program GPUs
for general-purpose uses. In Proceedings of the 2006 ASPLOS Conference, volume 40,
page 325–335, 2006.

The International Electrotechnical Commission. Letter symbols to be used in electrical tech-
nology - Part 2: Telecommunications and electronics. Technical report, The International
Electrotechnical Commission, Geneva, Switzerland, November 2000.

The Khronos OpenCL Working Group. The OpenCL 1.0 Specification. Khronos Group,
Beaverton, OR, December 2008.

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction. Springer, 3rd edition, April 2009. ISBN 3540252029.

S. Tu and S. Aliabadi. A slope limiting procedure in discontinuous Galerkin finite element
method for gasdynamics applications. International Journal of Numerical Analysis and
Modeling, 2(2):163–178, 2005.

G. van Rossum et al. The Python programming language, 1994. URL http://python.
org.

Various authors. Comparison of Nvidia graphics processing units — Wikipedia,
The Free Encyclopedia, 2008. URL http://en.wikipedia.org/w/
index.php?title=Comparison_of_Nvidia_graphics_processing_
units&oldid=248858931. [Online; accessed 9-November-2008].

T. L. Veldhuizen. C++ Templates are Turing Complete. Technical report, Indiana University
Computer Science, 2003.

T. L. Veldhuizen and M. E. Jernigan. Will C++ be faster than Fortran? In Proceedings
of the 1st International Scientific Computing in Object-Oriented Parallel Environments
(ISCOPE’97), Lecture Notes in Computer Science. Springer-Verlag, 1997.

S. Venkatasubramanian. The graphics card as a stream computer. In SIGMODDIMACS
Workshop on Management and Processing of Data Streams, 2003.

H. D. Victory and E. J. Allen. The convergence theory of Particle-in-Cell methods for
multidimensional Vlasov-Poisson systems. SIAM Journal on Numerical Analysis, 28(5):
1207–1241, October 1991. ISSN 00361429. doi: 10.1137/0728065.

J. Villasenor and O. Buneman. Rigorous charge conservation for local electromagnetic field
solvers. Computer Physics Communications, 69(2-3):306–316, 1992. doi: 10.1016/0010-
4655(92)90169-Y.

http://dx.doi.org/10.1137/0726003
http://python.org
http://python.org
http://en.wikipedia.org/w/index.php?title=Comparison_of_Nvidia_graphics_processing_units&oldid=248858931
http://en.wikipedia.org/w/index.php?title=Comparison_of_Nvidia_graphics_processing_units&oldid=248858931
http://en.wikipedia.org/w/index.php?title=Comparison_of_Nvidia_graphics_processing_units&oldid=248858931
http://dx.doi.org/10.1137/0728065
http://dx.doi.org/10.1016/0010-4655(92)90169-Y
http://dx.doi.org/10.1016/0010-4655(92)90169-Y

285

J. von Neumann and R. Richtmyer. A method for the numerical calculation of hydrodynamic
shocks. Journal of Applied Physics, 21:232–237, 1950. doi: 10.1063/1.1699639.

T. Warburton. An explicit construction of interpolation nodes on the simplex. J. Eng. Math.,
56:247–262, 2006. doi: 10.1007/s10665-006-9086-6.

T. Warburton. Accelerating the Discontinuous Galerkin Time-Domain Method. In Pro-
ceedings of the Workshop “Non-standard Finite Element Methods”, number 36/2008 in
Oberwolfach Reports. Mathematisches Forschungsinstitut Oberwolfach, 2008.

T. Warburton and T. Hagstrom. Taming the CFL Number for Discontinuous Galerkin
Methods on Structured Meshes. SIAM J. Num. Anal., 46:3151–3180, 2008. doi:
10.1137/060672601.

T. Warburton, I. Lomtev, Y. Du, S. Sherwin, and G. Karniadakis. Galerkin and discon-
tinuous Galerkin spectral/hp methods. Computer Methods in Applied Mechanics and
Engineering, 175(3-4):343 – 359, 1999. doi: 10.1016/S0045-7825(98)00360-0.

J. Wedekind, B. Amavasai, K. Dutton, and M. Boissenin. A machine vision extension for
the Ruby programming language. In Int. Conf. on Information and Automation, pages
991–996, 2008. doi: 10.1109/ICINFA.2008.4608143.

D. Wells. Multirate Linear Multistep Methods for the Solution of Systems of Ordinary
Differential Equations. PhD thesis, University of Illinois at Urbana-Champaign, 1982.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of software
and the ATLAS project. Par. Comp., 27:3–35, 2001. doi: 10.1016/S0167-8191(00)00087-
9.

H. Wiedemann. Particle Accelerator Physics: Basic Principles and Linear Beam Dynamics.
Springer-Verlag, Berlin, 1993. ISBN 3540565507.

P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow
with strong shocks. Journal of Computational Physics, 54(1):115–173, 1984. doi:
10.1016/0021-9991(84)90142-6.

Z. Xu, Y. Liu, and C.-W. Shu. Hierarchical reconstruction for discontinuous Galerkin
methods on unstructured grids with a WENO-type linear reconstruction and partial
neighboring cells. Journal of Computational Physics, 228(6):2194 – 2212, 2009. doi:
10.1016/j.jcp.2008.11.025.

Z. Xu, J. Xu, and C.-W. Shu. A high order adaptive finite element method for solving
nonlinear hyperbolic conservation laws. Technical Report 2010-14, Scientific Computing
Group, Brown University, Providence, RI, USA, Apr. 2010.

K. Yee. Numerical solution of inital boundary value problems involving Maxwell’s equa-
tions in isotropic media. Antennas and Propagation, IEEE Transactions on, 14(3):
302–307, 1966. doi: 10.1109/TAP.1966.1138693.

http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1007/s10665-006-9086-6
http://dx.doi.org/10.1137/060672601
http://dx.doi.org/10.1137/060672601
http://dx.doi.org/10.1016/S0045-7825(98)00360-0
http://dx.doi.org/10.1109/ICINFA.2008.4608143
http://dx.doi.org/10.1016/S0167-8191(00)00087-9
http://dx.doi.org/10.1016/S0167-8191(00)00087-9
http://dx.doi.org/10.1016/0021-9991(84)90142-6
http://dx.doi.org/10.1016/0021-9991(84)90142-6
http://dx.doi.org/10.1016/j.jcp.2008.11.025
http://dx.doi.org/10.1016/j.jcp.2008.11.025
http://dx.doi.org/10.1109/TAP.1966.1138693

286

I. Zagorodnov and T. Weiland. TE/TM field solver for particle beam simulations without
numerical Cherenkov radiation. Phys. Rev. ST Accel. Beams, 8(4):042001, April 2005.
doi: 10.1103/PhysRevSTAB.8.042001.

Y. C. Zhou and G. W. Wei. High resolution conjugate filters for the simulation of flows.
Journal of Computational Physics, 189(1):159 – 179, 2003. doi: 10.1016/S0021-
9991(03)00206-7.

K. B. Ølgaard, A. Logg, and G. N. Wells. Automated Code Generation for Discontinuous
Galerkin Methods. SIAM Journal on Scientific Computing, 31(2):849–864, 2008. doi:
10.1137/070710032.

http://dx.doi.org/10.1103/PhysRevSTAB.8.042001
http://dx.doi.org/10.1016/S0021-9991(03)00206-7
http://dx.doi.org/10.1016/S0021-9991(03)00206-7
http://dx.doi.org/10.1137/070710032
http://dx.doi.org/10.1137/070710032

	Vitae
	Acknowledgments
	Introduction
	About this Thesis
	The Scientific Method and the Computational Experiment
	An Argument for Hybrid Codes
	Assembling a Set of Tools
	Reproducibility for Results in this Thesis

	Preliminaries
	The Discontinuous Galerkin Method
	Implementing DG

	GPU Hardware: A Brief Introduction
	Specifics of Nvidia hardware

	A Code-Generating Discontinuous Galerkin Solver
	On the Design of a Discontinuous Galerkin PDE Solver
	A Language for Discontinuous Galerkin Methods
	Fluxes and Flux-Local Binding
	Common Subexpression Elimination
	An Example
	Discussion

	The Processing Pipeline
	Type Inference and Operator Specialization
	Optimizations
	Target-Specific Rewriting

	The Virtual Machine
	The Compilation Step
	The Execution Model

	Conclusions

	Code Generation on Graphics Processors
	Introduction
	GPU Software Creation
	Problems Solved by GPU Run-Time Code Generation
	Automated Tuning
	The Cost of Flexibility
	High-Performance Abstractions
	GPUs and the Need for Flexibility

	PyCUDA: A Scripting-Based Approach to GPU RTCG
	Abstractions in PyCUDA
	Code Generation with PyCUDA
	PyOpenCL: OpenCL and GPU RTCG

	Successful Applications
	Conclusions

	Discontinuous Galerkin Methods on Graphics Processors
	Introduction
	DG on the GPU: Design
	DG on the GPU: Implementation
	How to read this Section
	Flux Lifting
	Flux Extraction
	Element-Local Differentiation

	Experimental Results
	Further Results: Double Precision, Distributed Computation

	Conclusions

	Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method
	Introduction
	Basic Design Considerations
	Applications and Equations
	Advection Equation
	Second-Order Wave Equation
	Burgers' Equation
	Euler's Equations of Gas Dynamics

	A Smoothness-Estimating Detector for the Selective Application of Artificial Viscosity
	Detection Methods in the Literature
	Estimating Solution Smoothness
	Ambiguities in Two and More Dimensions

	From Smoothness to Viscosity
	Scaling the Viscosity
	Smoothing the Viscosity

	Experience with and Evaluation of the Scheme
	Advection: Basic Functionality, Interaction with Time Discretization
	Waves: Shock Spreading and Spurious Coupling
	Burgers' Equation
	Euler's Equations in One Dimension
	Initial Experience in Two Dimensions

	Conclusions and Future Work

	The Vlasov-Maxwell System and DG
	Introduction
	Boundary Conditions

	Discretizing the Electromagnetic Field
	Discretizing the Density
	The Eulerian approach
	Particles and the Lagrangian approach
	Rationale and Strategy for High-Order Unstructured PIC

	A Brief, Incomplete Survey of Prior Work
	Ensuring ``Charge Conservation''
	Divergence Cleaning by Helmholtz Projection
	Hyperbolic Divergence Cleaning

	Time Discretization
	Multi-rate Time-Stepping for PIC

	Deposition methods for DG-PIC
	Element-wise Deposition
	Advective Deposition
	Cartesian Deposition

	Particle Pushing in DG-PIC
	Interpolatory Pushing
	Mean-based pushing

	Numerical Evaluation
	Gaussian Electron Beams
	Kapchinsky-Vladimirsky Beam Physics

	A Moderate-Scale Application
	Conclusions and Future Work

	Multi-rate Time Stepping: Methods and Applications
	Introduction
	The Setting for Multi-Rate Multi-Step Methods
	Design Choices in Multi-Rate Multi-Step Methods
	Notation and Building Blocks
	Accuracy and Stability
	Applications
	Domain Decomposition in the Treatment of Conservation Laws by Discontinuous Galerkin Methods
	Velocity-Space Decomposition in Eulerian Vlasov-Maxwell Schemes
	Multi-Rate Time Stepping for Particle-in-Cell Methods

	Conclusions

	Conclusions

