
June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

HIGH ORDER NUMERICAL METHODS FOR

TIME DEPENDENT HAMILTON-JACOBI EQUATIONS

Chi-Wang Shu

Division of Applied Mathematics, Brown University

Providence, Rhode Island 02912, USA

E-mail: shu@dam.brown.edu

In these lectures we review a few high order accurate numerical meth-
ods for solving time dependent Hamilton-Jacobi equations. We will start
with a brief introduction of the Hamilton-Jacobi equations, the appear-
ance of singularities as discontinuities in the derivatives of their solutions
hence the necessity to introduce the concept of viscosity solutions, and
first order monotone numerical schemes on structured and unstructured
meshes to approximate such viscosity solutions, which can be proven
convergent with error estimates. We then move on to discuss high order
accurate methods which are based on the first order monotone schemes
as building blocks. We describe the Essentially Non-Oscillatory (ENO)
and Weighted Essentially Non-Oscillatory (WENO) schemes for struc-
tured meshes, and WENO schemes and Discontinuous Galerkin (DG)
schemes for unstructured meshes.

1. Introduction and Properties of Hamilton-Jacobi

Equations

In these lectures we review high order accurate numerical methods for solv-

ing time dependent Hamilton-Jacobi equations

ϕt +H(ϕx1 , ..., ϕxd
) = 0, ϕ(x, 0) = ϕ0(x), (1)

where H is a (usually nonlinear) function which is at least Lipschitz con-

tinuous. H could also depend on ϕ, x and t in some applications, however

the main difficulty for numerical solutions is the nonlinear dependency of

H on the gradient of ϕ.

Hamilton-Jacobi equations appear often in many applications. One im-

portant application of Hamilton-Jacobi equations is the area of image pro-

cessing and computer vision, which is the main theme of this program at

47

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

48 C.-W. Shu

the Institute for Mathematical Sciences (IMS) of the National University

of Singapore. Other application areas include, e.g. control and differential

games.

It is easy to verify that global C1 solution does not exist for (1) in

the generic situation, regardless of the smoothness of the initial condition

ϕ0(x). Singularities in the form of discontinuities in the derivatives of ϕ

would appear at a finite time in most situations, thus the solutions would be

Lipschitz continuous but no longer C1. This could be verified, at least in the

one dimensional case, by observing the equivalence between the Hamilton-

Jacobi equation

ϕt +H(ϕx) = 0, ϕ(x, 0) = ϕ0(x) (2)

and the hyperbolic conservation law

ut +H(u)x = 0, u(x, 0) = u0(x) (3)

if we identify u = ϕx. Singularities for the conservation law (3) are in the

form of discontinuities in the solution u, thus u is bounded, with a bounded

total variation, but is not continuous. The study of singularities for (3) can

be performed using characteristics, see for example [23,39,25]. Such results

can be directly translated to that for the Hamilton-Jacobi equation (2) by

integrating u once. Discontinuities in u then become discontinuities for the

derivative of ϕ.

This lack of global smoothness of the solution ϕ in (1) makes it nec-

essary to define a “weak” solution for the PDE (1), that is, a solution ϕ

which may not satisfy the PDE (1) pointwise at every point. In particular,

we would only require that ϕ satisfies the PDE (1) at any point where ϕ

has continuous first derivatives. At those points where the first derivatives

of ϕ are not continuous, a different requirement is needed for the solu-

tion ϕ to be an acceptable weak solution. For the hyperbolic conservation

law (3), the requirements at the discontinuities of u include the so-called

Rankine-Hugoniot jump condition, which relates the moving speed of the

discontinuity with its strength and is derived from an integral version of

the PDE (3), and an entropy condition which singles out a unique, physi-

cally relevant weak solution from many candidates. For the Hamilton-Jacobi

equation (2) or in general (1), the requirements at the discontinuities of the

derivatives of ϕ are characterized by certain inequalities which single out

the unique, physically relevant “viscosity solution” of the Hamilton-Jacobi

equation. To be more precise, ϕ is called a viscosity sub-solution of (1) if,

for any smooth function ψ, at each local maximum point (x̄, t̄) of ϕ − ψ,

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 49

we have the inequality

ψt(x̄, t̄) +H(ψx1(x̄, t̄), ..., ψxd
(x̄, t̄)) ≤ 0.

Similarly, ϕ is called a viscosity super-solution of (1) if, for any smooth

function ψ, at each local minimum point (x̄, t̄) of ϕ − ψ, we have the in-

equality

ψt(x̄, t̄) +H(ψx1(x̄, t̄), ..., ψxd
(x̄, t̄)) ≥ 0.

ψ is called the viscosity solution to (1) if it is both a viscosity sub-solution

and a viscosity super-solution of (1). For more details, see for example [13].

For the purpose of numerical approximations to the Hamilton-Jacobi

equation (1), we would need to pay special attention to the following prop-

erties of its viscosity solution ϕ:

• The viscosity solution ϕ may contain discontinuous derivatives. In

applications, most solutions we encounter are piecewise smooth.

• The weak solution ϕ may not be unique. There are extra require-

ments at the discontinuities of the derivatives of ϕ to make it the

unique, physically relevant viscosity solution.

For simplicity of notations we shall mostly concentrate on the two di-

mensional case, namely d = 2 in (1). In this case we will use x, y instead

of x1 and x2. The equation (1) is then rewritten as

ϕt +H(ϕx, ϕy) = 0, ϕ(x, y, 0) = ϕ0(x, y). (4)

2. First Order Monotone Schemes

In this section we will briefly describe first order monotone schemes for

solving the Hamilton-Jacobi equation (4), both on structured meshes and

on unstructured meshes. These first order monotone schemes will be used

as building blocks for high order schemes to be described in the following

sections.

2.1. Monotone schemes on structured rectangular meshes

We first consider monotone schemes on structured rectangular meshes. For

simplicity of notations we will assume that the mesh is uniform in x and

y. This simplification is not essential: all of the discussions below can be

applied to non-uniform Cartesian meshes with obvious modifications. We

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

50 C.-W. Shu

denote by ∆x and ∆y the mesh sizes in x and y respectively, and de-

note by ϕi,j the numerical approximation to the viscosity solution of (4),

ϕ(xi, yj , t) = ϕ(i∆x, j∆y, t). We also use the standard notations

∆x
±ϕi,j = ± (ϕi±1,j − ϕi,j) , ∆y

±ϕi,j = ± (ϕi,j±1 − ϕi,j) .

First order monotone schemes [14] are defined as schemes of the form

d

dt
ϕi,j = −Ĥ

(
∆x

−ϕi,j

∆x
,

∆x
+ϕi,j

∆x
;

∆y
−ϕi,j

∆y
,

∆y
+ϕi,j

∆y

)
(5)

where Ĥ is called a numerical Hamiltonian, which is a Lipschitz continuous

function of all four arguments and is consistent with the Hamiltonian H in

the PDE (4):

Ĥ(u, u; v, v) = H(u, v).

A monotone numerical Hamiltonian Ĥ is one which is monotonically

non-decreasing in the first and third arguments and monotonically non-

increasing in the other two. This can be symbolically represented as

Ĥ (↑, ↓; ↑, ↓) .

The scheme (5) with a monotone numerical Hamiltonian is called a mono-

tone scheme. We give here the semi-discrete (continuous in time) form of

the monotone scheme. The fully discrete scheme can be obtained by using

forward Euler in time. It is also called a monotone scheme.

It is proven in [14] that monotone schemes have the following favorable

properties:

• Monotone schemes are stable in the L∞ norm;

• Monotone schemes are convergent to the viscosity solution of (4);

• The error between the numerical solution of a monotone scheme

and the exact viscosity solution of (4), measured in the L∞ norm,

is at least half order O(
√

∆x).

The low half order error estimate is not a particular concern for viscosity

solutions containing kinks (discontinuities in the first derivatives). In fact,

it can be shown that for many cases, this half order error estimate is op-

timal. However, it is an unfortunate fact that monotone schemes cannot

be higher than first order accurate for smooth solutions. This is indeed a

serious concern, as we would hope the scheme to be high order accurate for

smooth solutions, or in smooth regions of non-smooth solutions. Monotone

schemes would not be able to achieve this.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 51

The importance of monotone schemes is that they are often used as

building blocks for high order schemes. All the high order schemes dis-

cussed in these lectures are built upon first order monotone schemes. Thus

it is important to know a few typical monotone schemes and their relative

merits.

The simplest monotone flux is the Lax-Friedrichs flux [14,32]:

ĤLF
(
u−, u+; v−, v+

)
= H

(
u− + u+

2
,
v− + v+

2

)

−1

2
αx

(
u+ − u−

)
− 1

2
αy

(
v+ − v−

)
(6)

where

αx = max
A≤u≤B

C≤v≤D

|H1(u, v)| , αy = max
A≤u≤B

C≤v≤D

|H2(u, v)| . (7)

Here Hi(u, v) is the partial derivative of H with respect to the i-th argu-

ment, or the Lipschitz constant of H with respect to the i-th argument. It

can be easily shown that ĤLF is monotone for A ≤ u ≤ B and C ≤ v ≤ D.

Another slightly different Lax-Friedrichs flux is

ĤLF
(
u−, u+; v−, v+

)
=

1

4

(
H(u−, v−) +H(u+, v−) +H(u−, v+)+

H(u+, v+)
)
− 1

2
αx

(
u+ − u−

)
− 1

2
αy

(
v+ − v−

)
(8)

where αx and αy are chosen the same way as before by (7). This flux is also

monotone for A ≤ u ≤ B and C ≤ v ≤ D.

The Godunov type monotone flux is defined as [5]:

ĤG
(
u−, u+; v−, v+

)
= extu∈I(u−,u+) extv∈I(v−,v+) H(u, v) (9)

where

I(a, b) = [min(a, b),max(a, b)]

and the function ext is defined by

extu∈I(a,b) =

{
mina≤u≤b if a ≤ b,

maxb≤u≤a if a > b.

As pointed out in [5], since in general

min
u

max
v

H(u, v) 6= max
v

min
u
H(u, v),

we will generally obtain different versions of the Godunov type fluxes ĤG

by changing the order of the min and the max.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

52 C.-W. Shu

The local Lax-Friedrichs flux is defined as

ĤLLF
(
u−, u+; v−, v+

)
= H

(
u− + u+

2
,
v− + v+

2

)

−1

2
αx(u−, u+)

(
u+ − u−

)
− 1

2
αy(v−, v+)

(
v+ − v−

)
(10)

where

αx(u−, u+) = max
u∈I(u−,u+)

C≤v≤D

|H1(u, v)| ,

αy(v−, v+) = max
A≤u≤B

v∈I(v− ,v+)

|H2(u, v)| . (11)

It is proven in [32] that the local Lax-Friedrichs flux ĤLLF is monotone

for A ≤ u ≤ B and C ≤ v ≤ D. The local Lax-Friedrichs flux ĤLLF has

smaller dissipation than the (global) Lax-Friedrichs flux ĤLF .

It would seem that a more local Lax-Friedrichs flux could be

ĤLLLF
(
u−, u+; v−, v+

)
= H

(
u− + u+

2
,
v− + v+

2

)

−1

2
αx(u−, u+; v−, v+)

(
u+ − u−

)
− 1

2
αy(u−, u+; v−, v+)

(
v+ − v−

)

where

αx(u−, u+; v−, v+) = max
u∈I(u−,u+)

v∈I(v− ,v+)

|H1(u, v)| ,

αy(u−, u+; v−, v+) = max
u∈I(u−,u+)

v∈I(v− ,v+)

|H2(u, v)| .

This would be easier to compute and also would have even smaller dissipa-

tion than the local Lax-Friedrichs flux ĤLLF defined in (7). Unfortunately,

it is shown in [32] that ĤLLLF is not a monotone flux.

Another very useful monotone flux is the Roe flux with entropy fix [32]:

ĤRF
(
u−, u+; v−, v+

)
=





H(u∗, v∗) Case 1;

H
(
u−+u+

2 , v∗
)
− 1

2α
x(u−, u+) (u+ − u−) Case 2;

H
(
u∗, v

−+v+

2

)
− 1

2α
y(v−, v+) (v+ − v−) Case 3;

ĤLLF (u−, u+; v−, v+) Case 4.

(12)

where Case 1 refers to the situation when H1(u, v) and H2(u, v) do not

change signs in the region u ∈ I(u−, u+) and v ∈ I(v−, v+); Case 2 refers

to the remaining situations and when H2(u, v) does not change sign in the

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 53

region A ≤ u ≤ B and v ∈ I(v−, v+); Case 3 refers to the remaining situa-

tions and when H1(u, v) does not change sign in the region u ∈ I(u−, u+)

and C ≤ v ≤ D; and finally Case 4 refers to all remaining situations. Here

u∗ and v∗ are defined by upwinding

u∗ =

{
u−, if H1(u, v) ≥ 0;

u+, if H1(u, v) ≤ 0;
v∗ =

{
v−, if H2(u, v) ≥ 0;

v+, if H2(u, v) ≤ 0.

This Roe flux with local Lax-Friedrichs entropy fix is easy to code and

has almost as small a numerical viscosity as the (much more complicated)

Godunov flux, hence it is quite popular.

All the monotone fluxes considered above apply to a general Hamilto-

nian H . There are also simple monotone fluxes which apply to H of certain

specific forms. The most noticeable example is the Osher-Sethian flux [31],

which applies to Hamiltonians of the form H(u, v) = f(u2, v2) where f is a

monotone function of each argument:

ĤOS
(
u−, u+, v−, v+

)
= f(ū2, v̄2) (13)

where ū2 and v̄2 are implemented by

ū2 =

{
(min(u−, 0))2 + (max(u+, 0))2, if f(↓ , ·)
(min(u+, 0))2 + (max(u−, 0))2, if f(↑ , ·)

v̄2 =

{
(min(v−, 0))2 + (max(v+, 0))2, if f(· , ↓)

(min(v+, 0))2 + (max(v−, 0))2, if f(· , ↑) .

This numerical Hamiltonian is purely upwind and easy to program, hence it

should be used whenever possible. However, we should point out that not all

HamiltoniansH can be written in the form f(u2, v2) with a monotone f . For

example, H(u, v) =
√
au2 + cv2 is of this form for constants a and c, hence

we can use the Osher-Sethian flux for it, but H(u, v) =
√
au2 + 2buv + cv2

is not of this form, hence Osher-Sethian flux does not apply and we must

program a Godunov type monotone flux if we would like a purely upwind

flux.

2.2. Monotone schemes on unstructured meshes

In many situations it is more convenient and efficient to use an unstructured

mesh rather than a structured one described in the previous section. We can

similarly define the concept of monotone schemes on unstructured meshes,

which again serve as building stones for higher order schemes. In this section

we only present the Lax-Friedrichs type monotone scheme on unstructured

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

54 C.-W. Shu

meshes of Abgrall [2]. Other monotone schemes can also be defined on

unstructured meshes.

The equation (4) is solved in a general domain Ω, which has a trian-

gulation Th consisting of triangles. The nodes are named by their indices

0 ≤ i ≤ N , with a total of N + 1 nodes. For every node i, we define the

ki+1 angular sectors T0, · · · , Tki
meeting at the point i; they are the inner

angles at node i of the triangles having i as a vertex. The indexing of the

angular sectors is ordered counterclockwise. ~nl+ 1
2

is the unit vector of the

half-line Dl+ 1
2

= Tl
⋂
Tl+1, and θl is the inner angle of sector Tl, 0 ≤ l ≤ ki;

see Figure 1.

i

Tl+1

Tl

Tl−1

nl+1/2

θl

Fig. 1. Node i and its angular sectors.

We denote by ϕi the numerical approximation to the viscosity solution

of (4) at node i. (∇ϕ)0, · · · , (∇ϕ)ki
will respectively represent the numerical

approximation of ∇ϕ at node i in each angular sector T0, · · · , Tki
.

The Lax-Friedrichs type monotone Hamiltonian for arbitrary triangu-

lations developed by Abgrall in [2] is a generalization of the Lax-Friedrichs

monotone Hamiltonian for Cartesian meshes described in the previous sec-

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 55

tion. This monotone Hamiltonian is given by

Ĥ((∇ϕ)0, · · · , (∇ϕ)ki
) = H




ki∑
l=0

θl(∇ϕ)l

2π




−α
π

ki∑

l=0

βl+ 1
2

(
(∇ϕ)l + (∇ϕ)l+1

2

)
· ~nl+ 1

2
(14)

where

βl+ 1
2

= tan

(
θl
2

)
+ tan

(
θl+1

2

)

α = max{ max
A≤u≤B
C≤v≤D

|H1(u, v)|, max
A≤u≤B
C≤v≤D

|H2(u, v)|}.

Here H1 and H2 are again the partial derivatives of H with respect to

ϕx and ϕy, respectively, or the Lipschitz constants of H with respect to

ϕx and ϕy, if H is not differentiable. [A,B] is the value range for (ϕx)l,

and [C,D] is the value range for (ϕy)l, over 0 ≤ l ≤ ki for the local Lax-

Friedrichs Hamiltonian, and over 0 ≤ l ≤ ki and 0 ≤ i ≤ N for the global

Lax-Friedrichs Hamiltonian.

The Ĥ in (14) defines a monotone Hamiltonian. It is Lipschitz contin-

uous in all arguments and is consistent with H , i.e., Ĥ(∇ϕ, · · · ,∇ϕ) =

H(∇ϕ). It is proven in [2] that the numerical solution of the monotone

scheme using this numerical Hamiltonian converges to the viscosity solu-

tion of (4), with the same half order convergence rate in the L∞ norm for

regular triangulations, namely for such triangulations where the ratio be-

tween the radii of the smallest circle outside a triangle and the largest circle

inside the triangle stays bounded during mesh refinement.

3. High Order ENO and WENO Schemes on Structured

Rectangular Meshes

In this section we describe the high order ENO (essentially non-oscillatory)

and WENO (weighted ENO) schemes on structured rectangular meshes for

solving the two dimensional Hamilton-Jacobi equations (4). Schemes for

higher spatial dimensions are similar. We will only consider spatial dis-

cretizations in this section. Time discretization will be described in section

6.

We first explain the meaning of “high order” when the solution contains

possible discontinuities for its derivatives. In such situations high order

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

56 C.-W. Shu

accuracy refers to a formal high order truncation error in smooth regions

of the solution. Thus in general we can only expect high order accuracy in

smooth regions away from derivative singularities. However, typically high

order methods also have a sharper resolution for the derivative singularities.

Thus high order methods are also referred to as “high resolution” schemes,

especially when applied to conservation laws.

3.1. High order ENO schemes

High order ENO schemes for solving Hamilton-Jacobi equations were de-

veloped in [31] for the second order case and in [32] for the more general

cases, based on ENO schemes for solving conservations laws [17,37,38]. We

refer to the lecture notes of Shu [36] for more details of ENO and WENO

schemes.

The key idea of ENO schemes is an adaptive stencil interpolation proce-

dure, which automatically obtains information from the locally smoothest

region, and hence yields a uniformly high-order essentially non-oscillatory

approximation for piecewise smooth functions.

We first summarize the ENO interpolation procedure, which is used for

building ENO schemes to solve the Hamilton-Jacobi equations (4). Given

point values f(xj), j = 0,±1,±2, ... of a (usually piecewise smooth) func-

tion f(x) at discrete nodes xj , we associate an r-th degree polynomial

P f,rj+1/2(x) with each interval [xj , xj+1], constructed inductively as follows:

(1) We start with a first degree polynomial interpolating at the two bound-

ary nodes of the target interval [xj , xj+1] and denote the left-most point

in its stencil by k1
min:

P f,1j+1/2(x) = f [xj] + f [xj , xj+1](x− xj), k1
min = j;

(2) If km−1
min and P f,m−1

j+1/2 (x) are both defined, then let

a(m) = f [xkm−1
min

, ..., xkm−1
min +m], b(m) = f [xkm−1

min −1, ..., xkm−1
min +m−1],

and

(a) If |a(m)| ≥ b(m), then c(m) = b(m), kmmin = km−1
min − 1; otherwise

c(m) = a(m), kmmin = km−1
min ,

(b) The ENO polynomial of the next higher degree is defined by

P f,mj+1/2(x) = P f,m−1
j+1/2 (x) + c(m)

km−1
min +m−1∏

i=km−1
min

(x− xi).

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 57

In the procedure above, f [· , · · · , ·] are the standard Newton divided dif-

ferences defined inductively as

f [xi] = f(xi); f [xi, ..., xi+m] =
f [xi+1, ..., xi+m] − f [xi, ..., xi+m−1]

xi+m − xi
.

Note that we start from the first degree polynomial P f,1 with a stencil

of two points, which would generate a first order monotone scheme in the

procedure below.

Clearly, the ENO interpolation procedure starts with a base stencil con-

taining 2 grid points, then adaptively adds one point to the stencil at each

stage, which is either the left neighboring point or the right neighboring

point to the current stencil depending on which would yield a smaller (in

magnitude) divided difference together with points in the current stencil.

It can be shown that this ENO interpolation procedure can generate

high order approximation yet avoids spurious oscillations, in the sense of

yielding a total variation of the interpolant being at most O(∆xr) larger

than the total variation of the piecewise smooth function f(x) being inter-

polated. Thus the ENO procedure is especially suited for problems with

singular but piecewise smooth solutions, such as solutions to conservation

laws or Hamilton-Jacobi equations.

High order ENO schemes use monotone fluxes described in section 2.1

as building blocks and the ENO interpolation procedure described above to

compute high order approximations to the left and right derivatives. The

algorithm can be summarized as follows:

(1) At any node (xi, yj), fix j to compute along the x-direction, by using

the ENO interpolation procedure, to obtain

u±i,j =
d

dx
Pϕ,ri±1/2,j(xi). (15)

(2) Similarly, at the node (xi, yj), fix i to compute along the y-direction,

by using the ENO interpolation procedure, to obtain

v±i,j =
d

dy
Pϕ,ri,j±1/2(yj). (16)

(3) Form the semi-discrete r-th order ENO scheme

d

dt
ϕi,j = −Ĥ(u−i,j , u

+
i,j ; v

−
i,j , v

+
i,j). (17)

This semi-discrete ENO scheme will be discretized in time by the high

order strong stability preserving Runge-Kutta time discretizations, to be

described in section 6.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

58 C.-W. Shu

Numerical results obtained with these ENO schemes can be found in

[31] and [32] and will be not be presented here.

3.2. High order WENO schemes

WENO schemes are designed based on ENO schemes. Both ENO and

WENO schemes use the idea of adaptive stencils in the interpolation pro-

cedure based on the local smoothness of the numerical solution to auto-

matically achieve high order accuracy and a non-oscillatory property near

discontinuities. ENO uses just one (optimal in some sense) out of many

candidate stencils when doing the interpolation, as is described in the pre-

vious section, while WENO uses a convex combination of all the candidate

stencils, each being assigned a nonlinear weight which depends on the local

smoothness of the numerical solution based on that stencil. WENO im-

proves upon ENO in robustness, better smoothness of fluxes, better steady

state convergence, better provable convergence properties, and more effi-

ciency. For more details regarding WENO schemes, we again refer to the

lecture notes [36].

High order WENO schemes for solving Hamilton-Jacobi equations were

developed in [20], based on WENO schemes for solving conservations laws

[30,21]. The framework of WENO schemes for solving Hamilton-Jacobi

equations is similar to that of ENO schemes described in the previous sec-

tion. The only difference is the interpolation procedure to obtain u±
i,j and

v±i,j .

Let us look at the fifth order WENO interpolation procedure to obtain

u−i,j as an example. When the third order ENO interpolation procedure (see

the previous section) is used, we can easily work out the algebra to obtain

the three possible interpolations to u−i,j :

u−,0i,j =
1

3

∆+
x ϕi−3,j

∆x
− 7

6

∆+
x ϕi−2,j

∆x
+

11

6

∆+
x ϕi−1,j

∆x
,

u−,1i,j = −1

6

∆+
x ϕi−2,j

∆x
+

5

6

∆+
x ϕi−1,j

∆x
+

1

3

∆+
x ϕi,j
∆x

, (18)

u−,2i,j =
1

3

∆+
x ϕi−1,j

∆x
+

5

6

∆+
x ϕi,j
∆x

− 1

6

∆+
x ϕi+1,j

∆x
,

depending on which of the three possible stencils

{xi−3, xi−2, xi−1, xi}, {xi−2, xi−1, xi, xi+1}, {xi−1, xi, xi+1, xi+2}

(where yj is omitted in the stencil as it is the same for all three stencils) are

chosen by the ENO stencil choosing procedure based on the magnitudes of

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 59

the divided differences. Recall that ∆+
x ϕi,j = ϕi+1,,j − ϕi,j is the standard

forward difference operator in x. If the third order ENO scheme is used, one

of the u−,mi,j for m = 0, 1 or 2 is used as u−i,j . The WENO procedure however

uses a convex combination of all three u−,mi,j for the final approximation u−i,j :

u−i,j = w0u
−,0 + w1u

−,1 + w2u
−,2 (19)

where ws ≥ 0 are the nonlinear weights obeying w0 + w1 + w2 = 1. The

weights ws are chosen to satisfy the following two properties:

(1) In smooth regions, {w0, w1, w2} should be very close to the so-called

optimal linear weights {0.1, 0.6, 0.3}:

w0 = 0.1 +O(∆x2), w1 = 0.6 +O(∆x2), w2 = 0.3 +O(∆x2),

which makes u−i,j defined by (19) fifth order accurate in approximating
∂ϕ
∂x (xi, yj) in smooth regions;

(2) When stencil s contains a singularity (discontinuity in the x derivative)

of ϕ, the corresponding weight ws should be very close to zero, so

that the approximation u−i,j emulates an ENO approximation where

“bad” stencils make no contributions. In the choice of weights in [20]

ws = O(∆x4) when stencil s contains a singularity.

The key ingredient in designing a nonlinear weight to satisfying the two

properties listed above is a smoothness indicator, which is a measurement

of how smooth the function being interpolated is inside the interpolation

stencil. The recipe used in [20] is similar to that in [21] for conservation laws,

namely the smoothness indicator is a scaled sum of the squares of the L2

norms of the second and higher derivatives of the interpolation polynomial

on the target interval. These smoothness indicators work out to be

IS0 = 13(a− b)2 + 3(a− 3b)2,

IS1 = 13(b− c)2 + 3(b+ c)2,

IS2 = 13(c− d)2 + 3(3c− d)2,

where

a =
∆2
xϕi−2,j

∆x
, b =

∆2
xϕi−1,j

∆x
, c =

∆2
xϕi,j
∆x

, d =
∆2
xϕi+1,j

∆x
(20)

are the second order differences, defined by ∆2
xϕi,j = ϕi+1,j−2ϕi,j+ϕi−1,j .

With these smoothness indicators, the nonlinear weights are then defined

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

60 C.-W. Shu

by

w0 =
w̃0

w̃0 + w̃1 + w̃2
, w1 =

w̃1

w̃0 + w̃1 + w̃2
, w2 =

w̃2

w̃0 + w̃1 + w̃2
,

with

w̃0 =
1

(ε+ IS0)2
, w̃1 =

6

(ε+ IS1)2
, w̃2 =

3

(ε+ IS2)2
,

where ε is a small number to prevent the denominator to become zero and

is typically chosen as ε = 10−6. Finally, after some algebraic manipulations,

we obtain the fifth order WENO approximation to u−i,j as

u−i,j =
1

12

(
−∆+

x ϕi−2,j

∆x
+ 7

∆+
x ϕi−1,j

∆x
+ 7

∆+
xϕi,j
∆x

− ∆+
x ϕi+1,j

∆x

)

−ΦWENO(a, b, c, d)

where

ΦWENO(a, b, c, d) =
1

3
w0 (a− 2b+ c) +

1

6

(
w2 −

1

2

)
(b− 2c+ d)

with a, b, c, d defined by (20).

By symmetry, the approximation to the right derivative u+
i,j is given by

u+
i,j =

1

12

(
−∆+

x ϕi−2,j

∆x
+ 7

∆+
x ϕi−1,j

∆x
+ 7

∆+
xϕi,j
∆x

− ∆+
x ϕi+1,j

∆x

)

+ΦWENO(e, d, c, b)

with b, c, d defined by (20) and e defined by

e =
∆2
xϕi+2,j

∆x
.

The procedure to obtain v±i,j is similar. Finally, we can form the semi-

discrete fifth order WENO scheme as

d

dt
ϕi,j = −Ĥ(u−i,j , u

+
i,j ; v

−
i,j , v

+
i,j). (21)

This semi-discrete WENO scheme will be discretized in time by the high

order strong stability preserving Runge-Kutta time discretizations, to be

described in section 6. WENO schemes of different orders of accuracy can be

defined along the same lines. For example, the third order WENO scheme

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 61

is given by (21) with u−i,j on the left-biased stencil {xi−2, xi−1, xi, xi+1}
defined by

u−i,j =
1

2

(
∆+
x ϕi−1,j

∆x
+

∆+
x ϕi,j
∆x

)

−w−

2

(
∆+
x ϕi−2,j

∆x
− 2

∆+
x ϕi−1,j

∆x
+

∆+
x ϕi,j
∆x

)

where

w− =
1

1 + 2r2−
, r− =

ε+ (∆2
xϕi−1,j)

2

ε+ (∆2
xϕi,j)

2
.

By symmetry, the approximation to u+
i,j on the right-biased stencil

{xi−1, xi, xi+1, xi+2} is defined by

u+
i,j =

1

2

(
∆+
x ϕi−1,j

∆x
+

∆+
x ϕi,j
∆x

)

−w+

2

(
∆+
x ϕi+1,j

∆x
− 2

∆+
x ϕi,j
∆x

+
∆+
x ϕi−1,j

∆x

)

where

w+ =
1

1 + 2r2+
, r+ =

ε+ (∆2
xϕi+1,j)

2

ε+ (∆2
xϕi,j)

2
.

Numerical results obtained with these WENO schemes can be found in

[20] and will be not be presented here.

4. High Order WENO Schemes on Unstructured Meshes

In this section we describe high order WENO schemes for solving the

two dimensional Hamilton-Jacobi equations (4) on unstructured triangu-

lar meshes. We will concentrate on the third order WENO scheme in [42].

For the fourth order WENO schemes, see [42] for details. We again use the

first order monotone flux described in section 2.2 as building blocks.

The semi-discrete high order WENO scheme is given by:

d

dt
ϕi(t) + Ĥ((∇ϕ)0, · · · , (∇ϕ)ki

) = 0 (22)

where Ĥ is the monotone flux described in section 2.2. The WENO proce-

dure to obtain approximations to the sectional derivatives (∇ϕ)0, ..., (∇ϕ)ki

will be described in detail below. The semi-discrete scheme (22) will be dis-

cretized in time by the high order strong stability preserving Runge-Kutta

time discretizations, to be described in section 6.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

62 C.-W. Shu

First we discuss how to construct a high-order approximation to ∇ϕ
in every angular sector of every node, see Figure 1. Let P k denote the

set of two-dimensional polynomials of degree less than or equal to k. We

use Lagrange interpolations as follows: given a smooth function ϕ, and a

triangulation with triangles {40,41, . . . ,4M} and nodes {0, 1, 2, . . . , N},
we would like to construct, for each triangle 4i, a polynomial p(x, y) ∈ P k,

such that p(xl, yl) = ϕ(xl, yl), where (xl, yl) are the coordinates of the three

nodes of the triangle 4i and a few neighboring nodes. p(x, y) would thus

be a (k + 1)th-order approximation to ϕ on the cell 4i.

Because a kth degree polynomial p(x, y) has K = (k+1)(k+2)
2 degrees of

freedom, we need to use the information of at least K nodes. In addition

to the three nodes of the triangle 4i, we may take the other K − 3 nodes

from the neighboring cells around triangle 4i. We rename these K nodes

as Si = {M1,M2, . . . ,MK}, Si is called a big stencil for the triangle 4i.

Let (xi, yi) be the barycenter of 4i. Define ξ = (x−xi)/hi, η = (y−yi)/hi,
where hi =

√
|4i| with |4i| denoting the area of the triangle 4i, then we

can write p(x, y) as:

p(x, y) =
k∑

j=0

∑

s+r=j

asrξ
sηr.

Using the K interpolation conditions:

p(Ml) = ϕ(Ml), l = 1, 2, · · · ,K,

we get a K × K linear system for the K unknowns asr. The normalized

variables ξ, η are used to make the condition number of the linear system

independent of mesh sizes.

It is well known that in two and higher dimensions such interpola-

tion problem is not always well defined. The linear system can be very

ill-conditioned or even singular, in such cases we would have to add more

nodes to the big stencil Si from the neighboring cells around triangle 4i

to obtain an over-determined linear system, and then use the least-square

method to solve it. We remark that this ill-conditioning may come from

both the geometric distribution of the nodes, for which we could do noth-

ing other than changing the mesh, and from the choice of basis functions

in the interpolation. For higher order methods, a closer to orthogonal basis

rather than ξsηr would be preferred, such as the procedure using barycen-

tric coordinates in [1] and [3]. However, for third and fourth order cases,

ξsηr can be used for simplicity.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 63

After we have obtained the approximation polynomial p(x, y) on the

triangle 4i, ∇p will be a kth-order approximation for ∇ϕ on 4i. Hence we

get the high-order approximation ∇p(xl, yl) to ∇ϕ(xl, yl), for any one of

the three vertices (xl, yl) of the triangle 4i, in the relevant angular sectors.

A scheme is called linear if it is linear when applied to a linear equation

with constant coefficients. We need a third-order approximation for ∇ϕ to

construct a third-order linear scheme, hence we need a cubic polynomial

interpolation. A cubic polynomial p3 has 10 degrees of freedom. We will

use some or all of the nodes shown in Figure 2 to form our big stencil. For

extremely distorted meshes the number of nodes in Figure 2 may be less

than the required 10. In such extreme cases we would need to expand the

choice for the big stencil, see [42] for details. For our target triangle 40,

which has three vertices i, j, k and the barycenter G, we need to construct

a cubic polynomial p3, then ∇p3 will be a third-order approximation for

∇ϕ on 40, and the values of ∇p3 at points i, j and k will be third-order

approximations for ∇ϕ at the angular sector 40 of nodes i, j and k. We

label the nodes of the neighboring triangles of triangle 40 as follows: nodes

1, 2, 3 are the nodes (other than i, j, k) of neighbors of 40, nodes 4, 5, 6, 7,

8, 9 (other than 1, 2, 3, i, j, k) are the nodes of the neighbors of the three

neighboring triangles of 40. Notice that the points 4, 5, 6, 7, 8, 9 do not

have to be six distinct points. For example the points 5 and 9 could be the

same point.

The interpolation points are nodes taken from a sorted node set. An

ordering is given in the set so that, when the nodes are chosen sequentially

from it to form the big stencil S0, the target triangle 40 remains central to

avoid serious downwind bias which could lead to linear instability. Referring

to Figure 2, the interpolation points for the polynomial p3 include nodes

i, j, k and the nodes taken from the sorted set: W = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
The detailed procedure to determine the big stencil S0 for the target triangle

40 is given below.

Procedure 1: The choice of the big stencil for the third-order scheme.

(1) Referring to Figure 2, we form a sorted node set: W =

{1, 2, 3, 4, 5, 6, 7, 8, 9}. In extreme cases when this set does not contain

enough distinct points, we may need to add more points from the next

layer of neighbors.

(2) To start with, we take S0 = {i, j, k, 1, 2, 3, 4, 5, 6, 7}. Use this stencil S0

to form the 10 × 10 interpolation coefficient matrix A.

(3) Compute the reciprocal condition number c of A. This is provided by

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

64 C.-W. Shu

i j

k
1

G

4

2

5

9

3

6

7

8

Fig. 2. The nodes used for the big stencil of the third-order scheme.

most linear solvers. If c ≥ δ for some threshold δ, we have obtained

the final stencil S0. Otherwise, add the next node in W (i.e. node 8) to

S0. Use the 11 nodes in S0 as interpolation points to get the 11 × 10

least square interpolation coefficient matrix A. Judge the reciprocal

condition number c again. Continue in doing this until c ≥ δ is satisfied.

It seems that δ = 10−3 is a good threshold after extensive numerical

experiments [42]. Notice that, since we have normalized the coordinates,

this threshold does not change when the mesh is scaled uniformly in

all directions. For all the triangulations tested in [42], at most 12 nodes

are needed in S0 to reach the condition c ≥ δ.

We now have obtained the big stencil S0 and its associated cubic poly-

nomial p3. For each node (xl, yl) in 40, ∇p3(xl, yl) is a third-order approxi-

mation to ∇ϕ(xl, yl). In order to construct a high-order WENO scheme, an

important step is to obtain a high-order approximation using a linear com-

bination of lower order approximations. We will use a linear combination

of second-order approximations to get the same third-order approximation

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 65

to ∇ϕ(xl, yl) as ∇p3(xl, yl), i.e., we require

∂

∂x
p3(xl, yl) =

q∑

s=1

γs,x
∂

∂x
ps(xl, yl),

∂

∂y
p3(xl, yl) =

q∑

s=1

γs,y
∂

∂y
ps(xl, yl)

(23)

where ps are quadratic interpolation polynomials, and γs,x and γs,y are the

linear weights for the x-directional derivative and the y-directional deriva-

tive respectively, for s = 1, · · · , q. The linear weights are constants depend-

ing only on the local geometry of the mesh. The equalities in (23) should

hold for any choices of the function ϕ.

Notice that to get a second-order approximation for the derivatives

∇ϕ(xl, yl), we need a quadratic interpolation polynomial. According to the

argument in [19], the cubic polynomial p3(x, y) has four more degrees of

freedom than each quadratic polynomial ps(x, y), namely x3, x2y, xy2, y3.

For the six degrees of freedom 1, x, y, x2, xy, y2, if we take ϕ = 1, ϕ = x, ϕ =

y, ϕ = x2, ϕ = xy and ϕ = y2, the equalities in (23) will hold for all these

cases under only one constraint each on γs,x and γs,y, namely
∑q

s=1 γs,x = 1

and
∑q

s=1 γs,y = 1, because p3 and ps all reproduce these functions exactly.

Hence we should only need q ≥ 5. q = 5 is taken in the scheme below.

We now need q = 5 small stencils Γs, s = 1, · · · , 5 for the target tri-

angle 40, satisfying S0 =
⋃5
s=1 Γs, and every quadratic polynomial ps is

associated with a small stencil Γs. In the third-order scheme, the small

stencils will be the same for both directions x, y and all three nodes i, j, k

in 40. However the linear weights γs,x, γs,y can be different for different

nodes i, j, k and different directions x, y. Because each quadratic polyno-

mial has six degrees of freedom, the number of nodes in Γs must be at

least six. To build a small stencil Γs, we start from several candidates

Γ
(r)
s , r = 1, 2, · · · , ns. These candidates are constructed by first taking a

point A
(r)
s as the “center”, then finding at least six nodes from S0 which

have the shortest distances from A
(r)
s and can generate the interpolation

coefficient matrix with a good condition number, using the method of Pro-

cedure 1. We then choose the best Γs among Γ
(r)
s , r = 1, · · · , ns for every

s = 1, · · · , 5. Here “best” means that by using this group of small stencils,

the linear weights γs,x, γs,y, s = 1, · · · , 5 for all three nodes i, j, k are either

all positive or have the smallest possible negative values in magnitude. The

details of the algorithm is described in the following procedure.

Procedure 2: The third-order linear scheme.

For every triangle 4l, l = 1, · · · , N , do Steps 1 to 6:

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

66 C.-W. Shu

(1) Follow Procedure 1 to obtain the big stencil Sl for 4l.

(2) For s = 1, · · · , 5, find the set Ws = {Γ(r)
s , r = 1, 2, · · · , ns}, which are

the candidate small stencils for the s-th small stencil. We use the fol-

lowing method to find the Γ
(r)
s in Ws: first, nodes i, j, k are always

included in every Γ
(r)
s ; then we take a point A

(r)
s as the center of

Γ
(r)
s , detailed below, and find at least 3 additional nodes other than

i, j, k from Sl which satisfy the following two conditions: 1) they have

the shortest distances from A
(r)
s ; and 2) taking them and the nodes

i, j, k as the interpolation points, we will obtain the interpolation co-

efficient matrix A with a good condition number, namely the recip-

rocal condition number c of A satisfies c ≥ δ with the same threshold

δ = 10−3. For the triangulations tested in [42], at most 8 nodes are used

to reach this threshold value. Finally, the center of the candidate sten-

cils A
(r)
s , r = 1, · · · , ns; s = 1, · · · , 5 are taken from the nodes around

4l (see Figure 2) as follows:

• A
(1)
1 = point G, n1 = 1;

• A
(1)
2 = node 1, A

(2)
2 = node 4, A

(3)
2 = node 7, n2 = 3;

• A
(1)
3 = node 2, A

(2)
3 = node 5, A

(3)
3 = node 8, n3 = 3;

• A
(1)
4 = node 3, A

(2)
4 = node 6, A

(3)
4 = node 9, n4 = 3;

• {A(r)
5 }9

r=1 = nodes 4, 5, 6, 7, 8, 9 and the middle points of nodes 4

and 8, 5 and 9, 6 and 7. n5 ≤ 9.

(3) By taking one small stencil Γ
(rs)
s from each Ws, s = 1, · · · , 5 to form a

group, we obtain n1×n2×· · ·×n5 groups of small stencils. We eliminate

the groups which contain the same small stencils, and also eliminate

the groups which do not satisfy the condition

5⋃

s=1

Γ(rs)
s = Sl

According to every group {Γ(rs)
s , s = 1, · · · , 5} of small stencils, we have

5 quadratic polynomials {p(rs)
s }5

s=1. We evaluate ∂
∂xp

(rs)
s and ∂

∂yp
(rs)
s

at points i, j, k, to obtain second-order approximation values for ∇ϕ
at the three vertices of the triangle 4l. We remark that for practical

implementation, we do not use the polynomial itself, but compute a

series of constants {al}ml=1 which depend on the local geometry only,

such that:

∂

∂x
p(rs)
s (xn, yn) =

m∑

l=1

alϕl (24)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 67

where every constant al corresponds to one node in the stencil Γ
(rs)
s

and m is the total number of nodes in Γ
(rs)
s . For every vertex (xn, yn)

of triangle 4l, we obtain a series of such constants. And for the y

directional partial derivative, we compute the corresponding constants

too.

(4) For every group {Γ(rs)
s , s = 1, · · · , 5}, we form linear systems and solve

them to get a series of linear weights γ
(rs)
s,x and γ

(rs)
s,y satisfying the equal-

ities (23), for the three vertices i, j, k. Using the previous argument for

combining low-order approximations to get high-order approximation,

we form the linear system for γ
(rs)
s,x at a vertex (ξn, ηn) as follows (note

that we use normalized variables): take ϕ = ξ3, ξ2η, ξη2, η3 respectively,

the equalities are:

5∑

s=1

γ(rs)
s,x

∂

∂ξ
p(rs)
s (ξn, ηn) =

∂

∂ξ
ϕ(ξn, ηn) (25)

where p
(rs)
s is the quadratic interpolation polynomial for ϕ, using stencil

Γ
(rs)
s . Again, in practical implementation, we will not use p

(rs)
s itself,

instead we use the constants computed in the last step and equation

(24) to compute the approximation for the derivatives of ϕ. Together

with the requirement

5∑

s=1

γ(rs)
s,x = 1, (26)

we obtain a 5 × 5 linear system for γ
(rs)
s,x . For γ

(rs)
s,y , the same argu-

ment can be applied. Note that we need to compute the reciprocal

condition number c for every linear system again. If c ≥ δ for the

same threshold δ = 10−3, we will accept this group of stencils as one

of the remaining candidates. Otherwise, the linear system is consid-

ered to be ill-conditioned and its corresponding group of small stencils

{Γ(rs)
s , s = 1, · · · , 5} is eliminated from further consideration.

(5) For each of the remaining groups Λl = {Γ(rs)
s , s = 1, · · · , 5}, find the

minimum value γl of all these linear weights γ
(rs)
s,x , γ

(rs)
s,y of the three

vertices i, j, k. Then find the group of small stencils whose γl is the

biggest, and take this group as the final 5 small stencils for triangle 4l.

Denote them by Γs, s = 1, · · · , 5. For every final small stencil Γs, s =

1, 2, · · · , 5, we store the index numbers of the nodes in Γs, the constants

in the linear combinations of node values to approximate values of ∇ϕ

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

68 C.-W. Shu

at points i, j, k, and the linear weights γs,x, γs,y of the three points

i, j, k.

(6) Now we have set up the necessary constants which only depend on the

mesh for all triangles. To form the final linear scheme, we compute

the third-order approximations (∇ϕ)0, · · · , (∇ϕ)kl
for all mesh nodes

l, by the linear combinations of second-order approximations, using the

prestored constants and linear weights. Then we can form the scheme

(22).

We now describe the construction of WENO schemes based on non-

linear weights.

We only discuss the case of WENO approximation for the x-directional

derivative at vertex i of the target cell 4l. Other cases are similar. In order

to compute the non-linear weights, we need to compute the smoothness

indicators first.

For a polynomial p(x, y) defined on the target cell 40 with degree up

to k, we take the smoothness indicator β as:

β =
∑

2≤|α|≤k

∫

40

|40||α|−2 (Dαp(x, y))
2
dxdy (27)

where α is a multi-index and D is the derivative operator. The smoothness

indicator measures how smooth the function p is on the triangle 40: the

smaller the smoothness indicator, the smoother the function p is on 40. The

scaling factor in front of the derivatives renders the smoothness indicator

self-similar and invariant under uniform scaling of the mesh in all directions.

The smoothness indicator (27) is the same as that used for the structured

mesh case discussed in the previous section.

Now we define the non-linear weights as:

ωj =
ω̃j∑
m ω̃m

, ω̃j =
γj

(ε+ βj)2
(28)

where γj is the jth linear weight (e.g. the γs,x in the linear schemes), βj is

the smoothness indicator for the jth interpolation polynomial pj(x, y) (the

ps in equation (23) for the third-order case) associated with the jth small

stencil, and ε is again a small positive number to avoid the denominator to

become 0 and is usually taken as ε = 10−6. The final WENO approximation

for the x-directional derivative at vertex i of target cell 4l is given by

(ϕx)i =

q∑

j=1

ωj
∂

∂x
pj(xi, yi) (29)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 69

where (xi, yi) are the coordinates of vertex i and q = 5 for the third-order

schemes.

In the WENO schemes, the linear weights {γj}qj=1 depend on the local

geometry of the mesh and can be negative. If min(γ1, · · · , γq) < 0, we

can adopt the splitting technique of treating negative weights in WENO

schemes developed by Shi, Hu and Shu [34]. We omit the details of this

technique and refer the readers to [34].

Again, we remark that the smoothness indicator (27) is a quadratic

function of function values on nodes of the small stencil, so in practical

implementation, to compute the smoothness indicator βj for the j-th small

stencil by equation (27), we do not need to use the interpolation polynomial

itself, instead we use a series of constants {art, r = 1, · · · , t; t = 1, · · · ,m},
which can be precomputed and they depend on the mesh only, such that

βj =
m∑

t=1

ϕt(
t∑

r=1

artϕr), (30)

where m is the total number of nodes in the j-th small stencil. These

constants for all smoothness indicators should be precomputed and stored

once the mesh is generated.

We summarize the algorithm for the third-order WENO schemes as

follows:

Procedure 3: The third-order WENO schemes.

(1) Generate a triangular mesh.

(2) Compute and store all constants which only depend on the mesh and

the accuracy order of the scheme. These constants include the node

index numbers of each small stencil, the coefficients in the linear com-

binations of function values on nodes of small stencils to approximate

the derivative values and the linear weights, following Procedure 2 for

the third-order case, and the constants for computing smoothness in-

dicators in equation (30).

(3) Using the prestored constants, for each angular sector of every node

i, compute the low-order approximations for ∇ϕ and the nonlinear

weights, then compute the third order WENO approximation (29). Fi-

nally, form the scheme (22).

Numerical examples using the third and fourth order WENO schemes

on unstructured meshes can be found in [42] and will not be presented here.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

70 C.-W. Shu

5. High Order Discontinuous Galerkin Schemes on

Unstructured Meshes

Discontinuous Galerkin methods have become very popular in recent years

to solve hyperbolic conservation laws because of their distinctive features,

among which are the easy design of the methods with any order of accuracy

and their minimal requirement on the mesh structures [12]. Adapted from

these methods for conservation laws, a discontinuous Galerkin method for

solving the Hamilton-Jacobi equations (1) was developed by Hu and Shu

in [18] based on the equivalence between Hamilton-Jacobi equations and

hyperbolic conservation laws [22,29]. See also [24]. In [18,24], the Hamilton-

Jacobi equations (1) were first rewritten as a system of conservation laws

(wi)t + (H(w))xi
= 0, in Ω × [0, T], w(x, 0) = ∇ϕ0(x), (31)

where w = ∇ϕ. With piecewise polynomial space as the solution space, the

usual discontinuous Galerkin formulation could be obtained for (31) [8,10].

Notice that wi, i = 1, · · · , n are not independent due to the restriction

w = ∇ϕ. A least square procedure was applied in each time step (or each

time stage depending on the particular time discretization used) to enforce

this restriction in [18,24].

In a recent preprint by Li and Shu [27], we have given a reinterpreta-

tion and simplified implementation of the discontinuous Galerkin method

for Hamilton-Jacobi equations developed in [18,24]. This was based on a

recent work by Cockburn et al [9] and by Li and Shu [26], where the locally

divergence-free discontinuous Galerkin methods were developed for partial

differential equations with divergence-free solutions. Compared with tra-

ditional ways to solve this type of equations, the piecewise divergence-free

polynomial space, which is a subspace of the standard piecewise polynomial

space, is used. With minimal change in the scheme formulation (only the

solution and test space is changed to a smaller space), the computational

cost is reduced, the stability and the order of accuracy of the scheme are

maintained. For specific applications such as the Maxwell equations [9] and

the ideal magnetohydrodynamics (MHD) equations [26], this new method

even improves over the traditional discontinuous Galerkin method in terms

of stability and/or accuracy while saving computational costs. The idea of

this approach could be applied to more general situations, by using piece-

wise solution space in which functions satisfy certain properties of the exact

solutions (divergence-free, or curl-free, ...). The general approximation the-

ory can guarantee no loss of accuracy when such smaller solution space is

used. This observation leads to a reinterpretation and simplified implemen-

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 71

tation of the discontinuous Galerkin method for Hamilton-Jacobi equations

developed in [18,24].

In this section we describe the discontinuous Galerkin method for solv-

ing the Hamilton-Jacobi equations developed in [18,24], using the reinter-

pretation in [27]. There are other similar or related types of discretizations

for Hamilton-Jacobi equations on unstructured meshes, e.g. the schemes of

Augoula and Abgrall [4] and that of Barth and Sethian [6], which will not

be described in this section because of space limitations.

Starting with a regular triangulation Th = {K} of Ω (edges denoted

by e), the general discontinuous Galerkin formulation of (31) is: find w =

(w1, · · · , wn) ∈ Vk, such that

d

dt

∫

K

wividx =

∫

K

H(w)(vi)xi
dx−

∑

e∈∂K

∫

e

Ĥi,e,Kvids, ∀K, i = 1, · · · , n

(32)

holds for all v = (v1, · · · , vn) ∈ Vk , where Vk is the solution space which

will be specified later, and Ĥi,e,K is the monotone numerical flux described

in section 2.2. The strong stability preserving Runge-Kutta time discretiza-

tion, to be described in section 6, could be used in time direction. Notice

(32) is the formulation for the derivatives of ϕ in (1). To recover the miss-

ing constant in ϕ (e.g. the cell average of ϕ in each element), there are two

different strategies developed in [18,24] which can be used:

(1) By requiring that
∫

K

(ϕt +H(ϕx, ϕy)) v dxdy = 0, (33)

for all v ∈ V 0
h and for all K ∈ Th, that is,
∫

K

(ϕt +H(ϕx, ϕy)) dxdy = 0, ∀K ∈ Th ; (34)

(2) By using (34) to update only one (or a few) elements, e.g., the corner

element(s), then use

ϕ(B, t) = ϕ(A, t) +

∫ B

A

(ϕx dx+ ϕy dy) (35)

to determine the missing constant. The path should be taken to avoid

crossing a derivative discontinuity, if possible.

We refer the readers to [18,24] for more details.

Before finalizing the scheme, we introduce the following spaces,

Vk
1 = {(v1, · · · , vn) : vi|K ∈ P k(K), i = 1, · · · , n, ∀K ∈ Th}, (36)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

72 C.-W. Shu

Vk
2 = {(v1, · · · , vn) : v|K = ∇ϕ, ϕ ∈ P k+1(K), ∀K ∈ Th}, (37)

where P k(K) denotes the space of polynomials in K of degree at most k. It

is easy to see that Vk
2 ⊂ Vk

1 . Two formulations are obtained if Vk in (32)

is specified as follows:

• Formulation I: Vk = Vk
1 . A single polynomial ϕ ∈ P k+1(K), up to a

constant, is recovered from w in each element by the following least

square procedure
∣∣∣∣∣

∣∣∣∣∣
∑

i

(ϕxi
− wi)

2

∣∣∣∣∣

∣∣∣∣∣
L1(K)

= min
ψ∈Pk+1(K)

∣∣∣∣∣

∣∣∣∣∣
∑

i

(ψxi
− wi)

2

∣∣∣∣∣

∣∣∣∣∣
L1(K)

(38)

after each time stage. This is the method proposed by Hu and Shu in

[18].

• Formulation II: Vk = Vk
2 .

We have proven in [27] that the two formulations are mathematically equiv-

alent. Clearly, the second formulation has several advantages over the first

formulation:

(1) Formulation II allows the method of lines version of the scheme, while

Formulation I does not have a method of lines version due to the least

square procedure which is applied after each time step or stage. The

method of lines version allows more natural and direct analysis for sta-

bility and accuracy of discontinuous Galerkin methods, e.g. the results

in [24].

(2) The implementation of the algorithm is significantly simplified by using

Formulation II since a smaller solution space is used and the least square

procedure is completely avoided. If we characterize the computational

cost of (32) per time step per element simply by the dimension of Vk|K ,

we can get

n1 = dim(Vk
1 |K) = n

k∑

r=0

Cn−1
r+n−1, n2 = dim(Vk

2 |K) =

k+1∑

r=1

Cn−1
r+n−1.

For example, for the two dimensional case n = 2, n1 = (k + 2)(k + 1),

n2 = (k+4)(k+1)
2 , hence n2

n1
→ 1

2 as k → ∞; i.e. the cost is reduced

to about half for higher order schemes. For the three dimensional case

n = 3, n1 = k3+6k2+11k+6
2 , n2 = (k+1)(k2+8k+18)

6 , hence n2

n1
→ 1

3 as

k → ∞; i.e. the cost is reduced to about one third for higher order

schemes.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 73

Representative numerical examples using the discontinuous Galerkin

methods for solving the two dimensional Hamilton-Jacobi equations (4) will

be given in section 7. More numerical examples can be found in [18,24,27].

6. High Order Strong Stability Preserving Runge-Kutta

Time Discretizations

For all of the spatial discretizations discussed in the previous sections, the

time variable t is left undiscretized. A popular time discretization method

is the class of strong stability preserving (SSP), also referred to as total

variation diminishing (TVD), high order Runge-Kutta time discretizations,

see [37,35,15,16].

We start with the following ordinary differential equation (ODE)

d

dt
u(t) = L(u(t), t) (39)

resulting from a method of lines spatial discretization of a time dependent

partial differential equation, such as (17), (21), (22) or (32) in the previous

sections. Here u = u(t) is a (usually very long) vector and L(u, t) depends on

u either linearly or non-linearly. In many applications L(u, t) = L(u) which

does not explicitly depend on t. The starting point for the SSP method is

an assumption that the first order Euler forward time discretization to (39):

un+1 = un + ∆tL(un, tn), (40)

where un is an approximation to u(tn), are stable under a certain (semi)

norm

||un+1|| ≤ ||un|| (41)

with a suitable time step restriction

∆t ≤ ∆t0, (42)

which typically depends on the spatial discretization mesh size. With this

assumption, we would like to find SSP time discretization methods to (39),

that are higher order accurate in time, yet still maintain the same stability

condition (41). This might require a different restriction on the time step

∆t than that in (42) of the form

∆t ≤ c∆t0, (43)

where c is called the CFL coefficient of the SSP method. The objective is

to find such methods with simple format, low computational cost and least

restriction on the time step ∆t, i.e. larger CFL coefficient c.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

74 C.-W. Shu

We remark that the strong stability assumption for the forward Euler

step in (41) can be relaxed to the more general stability assumption

||un+1|| ≤ (1 +O(∆t))||un||.
This general stability property is also preserved by the high order SSP time

discretizations.

Runge-Kutta methods are time discretizations which can be written in

several different ways. In [37], a general m stage Runge-Kutta method for

(39) is written in the form:

u(0) = un,

u(i) =

i−1∑

k=0

(
αi,ku

(k) + ∆tβi,kL(u(k), tn + dk∆t)
)
, i = 1, ...,m (44)

un+1 = u(m)

where dk are related to αi,k and βi,k by

d0 = 0, di =
i−1∑

k=0

(αi,kdk + βi,k), i = 1, ...,m− 1.

Thus, we do not need to discuss the choice of dk separately. In most ODE

literatures, e.g. [7], a Runge-Kutta method is written in the form of a

Butcher array. Every Runge-Kutta method in the form of (44) can be easily

converted in a unique way into a Butcher array, see [37]. A Runge-Kutta

method written in a Butcher array can also be rewritten into the form (44),

however this conversion is in general not unique. This non-uniqueness in the

representation (44) is exploited in the literature to seek the largest provable

time steps (43) for SSP.

We always need and require that αi,k ≥ 0 in (44). If this is violated no

SSP methods are possible. Basically, we rely heavily on convexity arguments

which would require that all αi,k ’s to be non-negative.

If all the βi,k’s in (44) are also nonnegative, βi,k ≥ 0, we have the fol-

lowing simple lemma, which is the backbone of SSP Runge-Kutta methods:

Lemma 4: [37] If the forward Euler method (40) is stable in the sense of

(41) under the time step restriction (42), then the Runge-Kutta method (44)

with αi,k ≥ 0 and βi,k ≥ 0 is SSP, i.e. its solution also satisfies the same

stability (41) under the time step restriction (43) with the CFL coefficient

c = min
i,k

αi,k
βi,k

. (45)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 75

The most popular and successful SSP methods are those covered by

Lemma 4. We will only give examples of SSP methods covered by Lemma

4 in this section. If some of the βi,k’s must be negative because of accuracy

constraints, there is also a way to obtain SSP methods, see [37,15,16] for

details.

We list below a few popular SSP Runge-Kutta methods:

(1) A second order SSP Runge-Kutta method [37]:

u(1) = un + ∆tL(un, tn)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tL(u(1), tn + ∆t) (46)

with a CFL coefficient c = 1 in (43). This is just the classical Heun or

modified Euler method.

(2) A third order SSP Runge-Kutta method [37]:

u(1) = un + ∆tL(un, tn)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn + ∆t) (47)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t),

with a CFL coefficient c = 1 in (43).

(3) A third order low storage SSP Runge-Kutta method [15]:

u(0) = un, du(0) = 0,

du(i) = Aidu
(i−1) + ∆tL(u(i−1), tn + di−1∆t), i = 1, . . . , 3, (48)

u(i) = u(i−1) + Bidu
(i), i = 1, . . . , 3,

un+1 = u(3).

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

76 C.-W. Shu

with

z1 =
√

36b4 + 36b3 − 135b2 + 84b− 12

z2 = 2b2 + b− 2

z3 = 12b4 − 18b3 + 18b2 − 11b+ 2

z4 = 36b4 − 36b3 + 13b2 − 8b+ 4

z5 = 69b3 − 62b2 + 28b− 8

z6 = 34b4 − 46b3 + 34b2 − 13b+ 2

d0 = 0

A1 = 0

B1 = b

d1 = B1

A2 =
−z1(6b− 4b+ 1) + 3z3

(2b+ 1)z1 − 3(b+ 2)(2b− 1)2

B2 =
12b(b− 1)(3z2 − z1) − (3z2 − z1)

2

144b(3b− 2)(b− 1)2

d2 = B1 +B2 +B2A2

A3 =
−z1z4 + 108(2b− 1)b5 − 3(2b− 1)z5
24z1b(b− 1)4 + 72bz6 + 72b6(2b− 13)

B3 =
−24(3b− 2)(b− 1)2

(3z2 − z1)2 − 12b(b− 1)(3z2 − z1)

where b = 0.924574, with a CFL coefficient c = 0.32 in (43). Only u

and du must be stored, resulting in two storage units for each variable.

This method can be used when storage is a paramount consideration,

such as in large scale three dimensional calculations.

(4) A fourth order, five stage SSP Runge-Kutta method. It can be proven

[15] that all four stage, fourth order SSP Runge-Kutta scheme (44) with

a nonzero CFL coefficient c in (43) must have at least one negative βi,k.

To obtain fourth order SSP Runge-Kutta methods with nonnegative

βi,k covered by Lemma 4, we would need at least five stages. The fol-

lowing is a five stage, fourth order SSP Runge-Kutta method [40] with

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 77

a CFL coefficient c = 1.508 in (43):

u(1) = un + 0.39175222700392∆tL(un, tn)

u(2) = 0.44437049406734un+ 0.55562950593266u(1)

+0.36841059262959∆tL(u(1), tn + 0.39175222700392∆t)

u(3) = 0.62010185138540un+ 0.37989814861460u(2)

+0.25189177424738∆tL(u(2), tn + 0.58607968896780∆t)

u(4) = 0.17807995410773un+ 0.82192004589227u(3) (49)

+0.54497475021237∆tL(u(3), tn + 0.47454236302687∆t)

un+1 = 0.00683325884039un+ 0.51723167208978u(2)

+0.12759831133288u(3)

+0.08460416338212∆tL(u(3), tn + 0.47454236302687∆t)

+0.34833675773694u(4)

+0.22600748319395∆tL(u(4), tn + 0.93501063100924∆t).

7. A Few Numerical Examples

We will show a few numerical examples simulated by the discontinuous

Galerkin method in section 5 [18] as representatives. Other examples can

be found in the references listed in each sections for different numerical

methods discussed in these notes.

Example 5: Two dimensional Burgers’ equation:
{
ϕt +

(ϕx+ϕy+1)2

2 = 0, −2 < x < 2, −2 < y < 2

ϕ(x, y, 0) = − cos
(
π(x+y)

2

) (50)

with periodic boundary conditions.

At t = 0.5/π2, the solution is still smooth. We use non-uniform rectan-

gular meshes obtained from the tensor product of one dimensional nonuni-

form meshes via randomly shifting the cell boundaries in a uniform mesh

in the range [−0.1h, 0.1h] (the meshes in two directions are independent).

The L2-errors computed by a 6× 6 point Gaussian quadrature in each cell

are shown in Table 1.

At t = 1.5/π2, the solution has discontinuous derivatives. Figure 3 is

the graph of the numerical solution with 40× 40 elements (uniform mesh).

Finally we use triangle based triangulation, the mesh with h = 1
4 is

shown in Figure 4. The accuracy at t = 0.5/π2 is shown in Table 2. Similar

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

78 C.-W. Shu

Table 1. Accuracy for 2D Burgers equation, non-uniform rectangular mesh, t = 0.5/π2.

P 1 P 2 P 3

N × N L2 error order L2 error order L2 error order

10 × 10 4.47E-01 — 6.28E-02 — 1.61E-02 —

20 × 20 1.83E-01 1.288 1.50E-02 2.066 2.06E-03 2.966

40 × 40 8.01E-02 1.192 3.63E-03 2.047 3.48E-04 2.565

80 × 80 3.82E-02 1.068 9.17E-04 1.985 6.03E-05 2.529

160 × 160 1.87E-02 1.031 2.34E-04 1.970 8.58E-06 2.813

-1

-0.5

0

0.5

Z

-2
-1

0
1

2

X

-2

-1

0

1

2

Y

 P2, 40x40 elements

-1

-0.5

0

0.5

Z

-2
-1

0
1

2

X

-2

-1

0

1

2

Y

 P3, 40x40 elements

Fig. 3. Two dimension Burgers’ equation, rectangular mesh, t=1.5/π2.

accuracy pattern is observed as in the rectangular case. The result at t =

1.5/π2, when the derivative is discontinuous, is shown in Figure 5.

Table 2. Accuracy for 2D Burgers equation, triangular
mesh as those in Figure 4, t = 0.5/π2.

P 2 P 3

h L1 error order L1 error order

1 5.48E-02 — 1.17E-02 —

1/2 1.35E-02 2.02 1.35E-03 3.12

1/4 2.94E-03 2.20 1.45E-04 3.22

1/8 6.68E-04 2.14 1.71E-05 3.08

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 79

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 4. Triangulation for two dimensional Burgers equation, h = 1
4
.

Example 6: The level set equation in a domain with a hole:

{
ϕt + sign(ϕ0)(

√
ϕ2
x + ϕ2

y − 1) = 0, 1
2 <

√
x2 + y2 < 1

ϕ(x, y, 0) = ϕ0(x, y)
(51)

This problem is introduced in [41]. The solution ϕ to (51) has the same

zero level set as ϕ0, and the steady state solution is the distance function to

that zero level curve. We use this problem to test the effects using various

integration paths (35) when there is a hole in the region. Notice that the

exact steady state solution is the distance function to the inner boundary

of domain when boundary condition is adequately prescribed. We compute

the time dependent problem to reach a steady state solution, using the

exact solution for the boundary conditions of ϕx and ϕy. Four symmetric

elements near the outer boundary are updated by (34), all other elements

are recovered from (35) by the shortest path to the nearest one of above

four elements. The results are shown in Table 3. Also shown in Table 3 is

the error (difference) between the numerical solution ϕ thus recovered, and

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

80 C.-W. Shu

-1

-0.5

0

0.5

Z
-2

-1
0

1
2

X

-2

-1

0

1

2

Y

 P3, h = 1/8

-1

-0.5

0

0.5

Z

-2
-1

0
1

2

X

-2

-1

0

1

2

Y

 P2, h = 1/8

Fig. 5. Two dimension Burgers’ equation, triangular mesh, t=1.5/π2.

the value of ϕ after another integration along a circular path (starting and

ending at the same point in (35)). We can see that the difference is small

with the correct order of accuracy, further indicating that the dependency

of the recovered solution ϕ on the integration path is on the order of the

truncation errors even for such problems with holes. Finally, the mesh with

1432 triangles and the solution with 5608 triangles are shown in Figure 6.

Table 3. Errors for the level set equation, triangular mesh with P 2.

Errors for the Solution Errors by Integration Path

N L1 error order L1 error order

403 1.02E-03 — 1.61E-04 —

1432 1.23E-04 3.05 5.84E-05 1.46

5608 1.71E-05 2.85 9.32E-06 2.65

22238 2.09E-06 3.03 1.43E-06 2.70

Example 7: The problem of a propagating surface:
{
ϕt − (1 − εK)

√
1 + ϕ2

x + ϕ2
y = 0, 0 < x < 1, 0 < y < 1

ϕ(x, y, 0) = 1 − 1
4 (cos(2πx− 1)) (cos(2πy − 1))

(52)

where K is the mean curvature defined by

K = −
ϕxx(1 + ϕ2

y) − 2ϕxyϕxϕy + ϕyy(1 + ϕ2
x)

(1 + ϕ2
x + ϕ2

y)
3
2

, (53)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 81

Mesh: 1432 triangles

0

0.5

Z

-1

-0.5

0

0.5

1

X

-1

-0.5

0

0.5

1

Y

Solution: 5608 triangles

Fig. 6. The level set equation, P 2.

and ε is a small constant. Periodic boundary condition is used.

We apply the discontinuous Galerkin method, with the second derivative

terms handled by the local discontinuous Galerkin techniques presented and

analyzed in [11], which amounts to solving the following system




ut −
(√

1 + u2 + v2 + εp(1+v
2)−2quv+r(1+u2)
1+u2+v2

)

x
= 0

vt −
(√

1 + u2 + v2 + εp(1+v
2)−2quv+r(1+u2)
1+u2+v2

)

y
= 0

p− ux = 0

q − uy = 0

r − vy = 0

(54)

using the discontinuous Galerkin method. The details of the method, espe-

cially the choices of fluxes, which are important for stability, can be found

in [11].

We use a triangulation shown in Figure 7. We refine the mesh around

the center of domain where the solution develops discontinuous derivatives

(for the ε = 0 case). There are 2146 triangles and 1108 nodes in this trian-

gulation. The solutions are displayed in Figure 8 and Figure 9, respectively,

for ε = 0 (pure convection) and ε = 0.1. Notice that we shift the solution

at t = 0.0 downward by 0.35 to show the detail of the solutions at later

time.

Example 8: The problem of a propagating surface on a unit disk. The

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

82 C.-W. Shu

Fig. 7. Triangulation used for the propagating surfaces.

equation is the same as (52) in the previous example, but it is solved on a

unit disk x2 + y2 < 1 with an initial condition

ϕ(x, y, 0) = sin

(
π(x2 + y2)

2

)

and a Neumann type boundary condition ∇ϕ = 0.

It is difficult to use rectangular meshes for this problem. Instead we

use the triangulation shown in Figure 10. Notice that we have again re-

fined the mesh near the center of the domain where the solution develops

discontinuous derivatives. There are 1792 triangles and 922 nodes in this

triangulation. The solutions with ε = 0 are displayed in Figure 11. Notice

that the solution at t = 0 is shifted downward by 0.2 to show the detail of

the solution at later time.

The solution with ε = 0.1 are displayed in Figure 12. Notice that the

solution at t = 0 is again shifted downward by 0.2 to show the detail of the

solution at later time.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 83

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Z

0
0.25

0.5
0.75

1

X00.250.50.751

Y

P2, triangles

t = 0.0
φ - 0.35

t = 0.3

t = 0.6

t = 0.9

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Z

0
0.25

0.5
0.75

1

X00.250.50.751

Y

P3, triangles

t = 0.0
φ - 0.35

t = 0.3

t = 0.6

t = 0.9

Fig. 8. Propagating surfaces, triangular mesh, ε = 0.

Example 9: A problem from optimal control [32]:




ϕt + (sin y)ϕx + (sinx+ sign(ϕy))ϕy − 1
2 sin2 y − (1 − cosx) = 0,

−π < x < π, −π < y < π

ϕ(x, y, 0) = 0

(55)

with periodic boundary conditions. We use a uniform rectangular mesh of

40 × 40 elements. The solution at t = 1 is shown in Figure 13, while the

optimal control w = sign(ϕy) is shown in Figure 14.

Notice that the discontinuous Galerkin method computes ∇ϕ as an

independent variable. It is very desirable for those problems in which the

most interesting features are contained in the first derivatives of ϕ, as in

this optimal control problem.

Example 10: A problem from computer vision [33]:
{
ϕt + I(x, y)

√
1 + ϕ2

x + ϕ2
y − 1 = 0, −1 < x < 1, −1 < y < 1

ϕ(x, y, 0) = 0
(56)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

84 C.-W. Shu

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Z

0
0.25

0.5
0.75

1

X00.250.50.751

Y

P2, triangles

t = 0.0
φ - 0.35

t = 0.3

t = 0.6

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Z

0
0.25

0.5
0.75

1

X00.250.50.751

Y

 P3, triangles

t = 0.0
φ - 0.35

t = 0.3

t = 0.6

Fig. 9. Propagating surfaces, triangular mesh, ε = 0.1.

with ϕ = 0 as the boundary condition. The steady state solution of this

problem is the shape lighted by a source located at infinity with vertical

direction. The solution is not unique if there are points at which I(x, y) = 1.

Conditions must be prescribed at those points where I(x, y) = 1. Since our

method is a finite element method, we need to prescribe suitable conditions

at the correspondent elements. We take

I(x, y) = 1/
√

1 + (1 − |x|)2 + (1 − |y|)2 (57)

The exact steady solution is ϕ(x, y,∞) = (1 − |x|)(1 − |y|). We use a uni-

form rectangular mesh of 40× 40 elements. We impose the exact boundary

conditions for u = ϕx, v = ϕy from the above exact steady solution, and

take the exact value at one point (the lower left corner) to recover ϕ. The

results for P 2 and P 3 are presented in Figure 15, while Figure 16 contains

the history of iterations to the steady state.

Next we take

I(x, y) = 1/
√

1 + 4y2(1 − x2)2 + 4x2(1 − y2)2 (58)

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 85

Fig. 10. Triangulation for the propagating surfaces on a disk.

The exact steady solution is ϕ(x, y,∞) = (1− x2)(1 − y2). We again use a

uniform rectangular mesh of 40×40 elements and impose the exact bound-

ary conditions for u = ϕx, v = ϕy from the above exact steady solution,

and take the exact value at one point (the lower left corner) to recover ϕ.

A continuation method is used, with the steady solution using

Iε(x, y) = 1/
√

1 + 4y2(1 − x2)2 + 4x2(1 − y2)2 + ε (59)

for bigger ε as the initial condition for smaller ε. The sequence of ε used

are ε = 0.2, 0.05, 0. The results for P 2 and P 3 are presented in Figure 17.

8. Concluding Remarks

We have briefly surveyed the properties of Hamilton-Jacobi equations and a

few numerical schemes for solving these equations. Because of space limita-

tions, there are many related topics that we have not discussed, for example

the class of central non-oscillatory schemes (e.g. [28]), techniques for effi-

ciently solving steady state Hamilton-Jacobi equations, etc.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

86 C.-W. Shu

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Z

-1 -0.5 0 0.5 1
X

-1
-0.5

0
0.5

1

Y

 t = 0.6

t = 1.2

t = 1.8

t = 0.0
φ-0.2

P2, triangles

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Z

-1 -0.5 0 0.5 1
X

-1
-0.5

0
0.5

1

Y

 t = 0.6

t = 1.2

t = 1.8

t = 0.0
φ-0.2

P3, triangles

Fig. 11. Propagating surfaces on a disk, triangular mesh, ε = 0.

References

1. R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes:

analysis and implementation, Journal of Computational Physics, 114 (1994),
45-54.

2. R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equa-

tion on triangular meshes, Communications on Pure and Applied Mathe-
matics, 49 (1996), 1339-1373.

3. R. Abgrall and Th. Sonar, On the use of Muehlbach expansions in the re-

covery step of ENO methods, Numerische Mathematik, 76 (1997), 1-25.
4. S. Augoula and R. Abgrall, High order numerical discretization for

Hamilton-Jacobi equations on triangular meshes, Journal of Scientific Com-
puting, 15 (2000), 197-229.

5. M. Bardi and S. Osher, The non-convex multi-dimensional Riemann problem

for Hamilton-Jacobi equations, SIAM Journal on Mathematical Analysis, 22
(1991), 344-351.

6. T. Barth and J. Sethian, Numerical schemes for the Hamilton-Jacobi and

level set equations on triangulated domains, Journal of Computational
Physics, 145 (1998), 1-40.

7. J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations:

Runge-Kutta and General Linear Methods, John Wiley, New York, 1987.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 87

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Z

-1 -0.5 0 0.5 1
X

-1
-0.5

0
0.5

1

Y

t = 0.0
φ - 0.2

t = 0.6

t = 1.2

P3, triangles

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Z

-1 -0.5 0 0.5 1
X

-1
-0.5

0
0.5

1

Y

t = 0.0
φ - 0.2

t = 0.6

t = 1.2

P2, triangles

Fig. 12. Propagating surfaces on a disk, triangular mesh, ε = 0.1.

0

1

2

Z

-3-2-10123

X

-2
0

2
Y

 P2, 40x40 elements

0

1

2

Z

-3-2-10123

X

-2
0

2
Y

 P3, 40x40 elements

Fig. 13. Control problem, t = 1.

8. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection

discontinuous Galerkin finite element method for conservation laws IV: The

multidimensional case, Mathematics of Computation, 54 (1990), 545-581.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

88 C.-W. Shu

-1

-0.5

0

0.5

1

Z

-2

0

2

X

-2
0

2

Y

 P2, 40x40 elements

-1

-0.5

0

0.5

1

Z

-2

0

2

X

-2
0

2

Y

 P3, 40x40 elements

Fig. 14. Control problem, t = 1, w = sign(ϕy).

0

0.2

0.4

0.6

0.8

1

Z

-1
-0.5

0
0.5

1
X

-1
-0.5

0
0.5

1Y

P3, 40x40 elements

0

0.2

0.4

0.6

0.8

1

Z

-1
-0.5

0
0.5

1
X

-1
-0.5

0
0.5

1Y

P2, 40x40 elements

Fig. 15. Computer vision problem, ϕ(x, y,∞) = (1 − |x|)(1 − |y|).

9. B. Cockburn, F. Li and C.-W. Shu, Locally divergence-free discontinuous

Galerkin methods for the Maxwell equations, Journal of Computational
Physics, to appear.

10. B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin

method for conservation laws V: multidimensional systems, Journal of Com-
putational Physics, 141 (1998), 199-224.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 89

2000 4000 6000 8000 10000
Iteration

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

L
1
-e

rr
o

r

P2, 40x40 elements

2000 4000 6000 8000 10000
Iteration

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

L
1
-e

rr
o

r

P3, 40x40 elements

Fig. 16. Computer vision problem, history of iterations.

0

0.2

0.4

0.6

0.8

1

Z

-1
-0.5

0
0.5

1
X

-1
-0.5

0
0.5

1Y

P2, 40x40 elements

0

0.2

0.4

0.6

0.8

1

Z

-1
-0.5

0
0.5

1
X

-1
-0.5

0
0.5

1Y

P3, 40x40 elements

Fig. 17. Computer vision problem, ϕ(x, y,∞) = (1 − x2)(1 − y2).

11. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for

time-dependent convection-diffusion systems, SIAM Journal on Numerical
Analysis, 35 (1998), 2440-2463.

12. B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin meth-

ods for convection-dominated problems, Journal of Scientific Computing, 16
(2001), 173-261.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

90 C.-W. Shu

13. M. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equa-

tions, Transactions of American Mathematical Society, 277 (1983), 1-42.
14. M. Crandall and P. L. Lions, Monotone difference approximations for scalar

conservation laws, Mathematics of Computation, 34 (1984), 1-19.
15. S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta

schemes, Mathematics of Computation, 67 (1998), 73-85.
16. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order

time discretization methods, SIAM Review, 43 (2001), 89-112.
17. A. Harten, B. Engquist, S. Osher and S. Chakravathy, Uniformly high order

accurate essentially non-oscillatory schemes, III, Journal of Computational
Physics, 71 (1987), 231-303.

18. C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method

for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing, 21
(1999), 666-690.

19. C. Hu and C.-W. Shu, Weighted Essentially Non-Oscillatory Schemes on

Triangular Meshes, Journal of Computational Physics, 150 (1999), 97-127.
20. G. Jiang and D.-P. Peng, Weighted ENO schemes for Hamilton-Jacobi equa-

tions, SIAM Journal on Scientific Computing, 21 (2000), 2126-2143.
21. G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO

schemes, Journal of Computational Physics, 126 (1996), 202-228.
22. S. Jin and Z. Xin, Numerical passage from systems of conservation laws to

Hamilton-Jacobi equations and relaxation schemes, SIAM Journal on Nu-
merical Analysis, 35 (1998), 2385-2404.

23. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathemati-

cal Theory of Shock Waves, SIAM Regional Conference series in Applied
Mathematics, SIAM, Philadelphia, 1973.

24. O. Lepsky, C. Hu and C.-W. Shu, Analysis of the discontinuous Galerkin

method for Hamilton-Jacobi equations, Applied Numerical Mathematics, 33
(2000), 423-434.

25. R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Ver-
lag, Basel, 1992.

26. F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin methods

for MHD equations, Journal of Scientific Computing, to appear.
27. F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a

discontinuous Galerkin method for Hamilton-Jacobi equations, submitted to
Journal of Hyperbolic Differential Equations.

28. C.-T. Lin and E. Tadmor, High-resolution non-oscillatory central schemes

for approximate Hamilton-Jacobi equations, SIAM Journal on Scientific
Computing, 21 (2000), 2163-2186.

29. P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman,
Boston, 1982.

30. X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory

schemes, Journal of Computational Physics, 115 (1994), 200-212.
31. S. Osher and J. Sethian, Fronts propagating with curvature dependent speed:

algorithms based on Hamilton-Jacobi formulations, Journal of Computa-
tional Physics, 79 (1988), 12-49.

June 6, 2007 10:17 WSPC/Lecture Notes Series: 9in x 6in chapter2

High Order Numerical Methods for Hamilton-Jacobi Equations 91

32. S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for

Hamilton-Jacobi equations, SIAM Journal on Numerical Analysis, 28 (1991),
907-922.

33. E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-

shading, SIAM Journal on Numerical Analysis, 29 (1992), 867-884.
34. J. Shi, C. Hu and C.-W. Shu, A technique of treating negative weights in

WENO schemes, Journal of Computational Physics, 175 (2002), 108-127.
35. C.-W. Shu, Total-Variation-Diminishing time discretizations, SIAM Journal

on Scientific and Statistical Computing, 9 (1988), 1073-1084.
36. C.-W. Shu, Essentially non-oscillatory and weighted essentially non-

oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical

Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. John-
son, C.-W. Shu and E. Tadmor (Editor: A. Quarteroni), Lecture Notes in
Mathematics, volume 1697, Springer, Berlin, 1998, 325-432.

37. C.-W. Shu and S. Osher, Efficient implementation of essentially non-

oscillatory shock capturing schemes, Journal of Computational Physics, 77
(1988), 439-471.

38. C.-W. Shu and S. Osher, Efficient implementation of essentially non-

oscillatory shock capturing schemes II, Journal of Computational Physics,
83 (1989), 32-78.

39. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag,
New York, 1983.

40. R. Spiteri and S. Ruuth, A new class of optimal high-order strong-stability-

preserving time discretization methods, SIAM Journal on Numerical Anal-
ysis, 40 (2002), 469-491.

41. M. Sussman, P. Smereka and S. Osher, A level set approach for comput-

ing solution to incompressible two-phase flow, Journal of Computational
Physics, 114 (1994), 146-159.

42. Y.-T. Zhang and C.-W. Shu, High order WENO schemes for Hamilton-

Jacobi equations on triangular meshes, SIAM Journal on Scientific Com-
puting, 24 (2003), 1005-1030.

