255 Summary

1 General Framework

- Domain of dependence: physical/numerical.
- $u_{t}=\mathcal{L} u$ with IC and periodic BC on a Hilbert space \mathcal{H}. $\mathcal{L}: \mathcal{H} \rightarrow \mathcal{H}$.
- Discretized to N-dimensional space \mathcal{B}_{N}, with projection operator \mathcal{P}_{N}.
- Numerical solution: $u_{N} \in \mathcal{B}_{N}$ solves

$$
\frac{\partial u_{N}}{\partial t}=\mathcal{P}_{N} \mathcal{L} u_{N}, \quad u_{N}(0)=\mathcal{P}_{N} u_{0}
$$

- Convergence:

$$
\lim _{N \rightarrow \infty}\left\|u_{N}(t)-\mathcal{P}_{N} u(t)\right\|=0 \quad(0 \leqslant t \leqslant T)
$$

- Accuracy:

$$
\lim _{N \rightarrow \infty}\left\|\mathcal{P}_{N} \mathcal{L}\left(\operatorname{Id}-\mathcal{P}_{N}\right) u(t)\right\|=0 \quad(0 \leqslant t \leqslant T)
$$

- Stability:

$$
\left\|\exp \left(\mathcal{P}_{N} \mathcal{L} \mathcal{P}_{N} t\right)\right\| \leqslant K \quad(0 \leqslant t \leqslant T)
$$

- Lax Equivalence Theorem (semidiscrete): If the above IVP is well-posed and the scheme is stable and accurate, then it converges.

Look at evolution of the error: $e_{N}=u_{N}-\mathcal{P}_{N} u$

$$
\frac{\partial}{\partial t} e_{N}=\mathcal{P}_{N} \mathcal{L} \mathcal{P}_{N} e_{N}-\mathcal{P}_{N} \mathcal{L}\left(\operatorname{Id}-P_{N}\right)
$$

Integrate as ODE, estimates using accuracy and stability.

- Order of convergence: Equal to order of accuracy.

2 Well-Posedness

- Solution operator $S\left(t, t_{0}\right)$:
- Semigroup property,
- $S\left(t_{0}, t_{0}\right)=\mathrm{Id}$,
- $\left\|S\left(t, t_{0}\right)\right\| \leqslant K e^{\alpha\left(t-t_{0}\right)}$.
- Evolution Equation:

$$
u_{t}=\mathcal{P}\left(x, t, \frac{\partial}{\partial x}\right) u(x, t), \quad u(x, 0)=u_{0}(x)
$$

with \mathcal{P} a polyomial of degree r. (use multi-indices in n-d)

- Autonomous if \mathcal{P} does not depend on t. Then $S\left(t, t_{0}\right)=S\left(t-t_{0}\right)$.
- Well-posed: The above IVP is weakly well-posed (of order p, with $p \leqslant r$) if for every $f \in$ C_{0}^{r} and all $T_{0}>0$ there is a unique solution $u(x, t)$ satisfying

$$
\|u(t)\| \leqslant C e^{\alpha t}\|f\|_{p}, \quad\left(0 \leqslant t \leqslant T_{0}\right)
$$

If $p=0$, then well-posed. $\|\cdot\|_{p}$ is the Sobolev norm

$$
\|u\|_{p}:=\sum_{|\alpha| \leqslant p}\left\|\partial^{\alpha} u\right\|_{L^{2}} \sim \int\left(1+|\omega|^{p}\right)^{2}|\hat{f}(\omega)|^{2} \mathrm{~d} \omega .
$$

- Well-posedness allows defining solutions by approximation.
- Proving well-posedness:
- Constant coefficients:
- Diagonalize systems, treat each equation separately if possible.
- Fourier on Jordan block: try to turn into single derivative (multiply by $\left.e^{ \pm i \omega t} ?\right)$

True Jordan blocks become weakly well-posed.

- Unbounded eigenvalues of symbol \Rightarrow not well-posed.
- Small perturbations of a weakly well-posed symbol can make that PDE not well-posed
- Several t-derivatives: make it a system.
- Non-constant coefficients:
- Get an energy estimate: Multiply the equation by u, consider $\mathrm{d} / \mathrm{d} t E(t)$, use equation, integrate by parts to put derivatives only on coefficient.

2.1 Lower Order Perturbations

- Duhamel Principle: $u_{t}=\mathcal{P}\left(x, t, \partial_{x}\right) u+F(x, t)$ also has a solution, namely

$$
u(x, t)=S(t, 0) u_{0}(x)+\int_{0}^{t} S(t, \tau) F(x, \tau) d \tau
$$

Proof: Differentiate solution.

- Perturbed problems are well-posed: $v_{t}=\mathcal{P}\left(x, t, \partial_{x}\right) v$ strongly well-posed.

$$
u_{t}=\mathcal{P}\left(x, t, \partial_{x}\right) u+\mathcal{B}(x, t) u, \quad u(x, 0)=f(x)
$$

has solution for $f \in C^{\infty}$. $\sup _{0 \leqslant \tau \leqslant t}\|\mathcal{B}(x, \tau) u(\tau)\| \leqslant b_{0}\|u(t)\| \Rightarrow$ strongly well-posedness.
(Proof: examine $y:=e^{-\beta t} u(x, t)$ for $\beta \geqslant 0$, write down evolution, Duhamel that)

3 Convergence, Stability and Accuracy

Assume $\Delta x=h_{i}(\Delta t) .\|\cdot\|_{N}$ is discrete L^{2}.

- Abstract FD scheme: V^{n} a vector of point evaluations, E_{k} is the shift operator in the k th dimension.

$$
B_{0}\left(E_{1}, \ldots, E_{s}\right) V_{\alpha}^{n+1}=B_{1}\left(E_{1}, \ldots, E_{s}\right) V_{\alpha}^{n}
$$

Explicit iff $B_{0}=\mathrm{Id}$.

- $V^{n+1}=C(\Delta t, \Delta x, \bar{x}, t) V^{n}$.
- $Q_{\Delta x}$ projection onto the point evaluation space.
- If, like in Leapfrog, we have dependency on two previous time steps: Interpret V as a vector of $\left(V^{n}, V^{n-1}\right)^{T}$.
- Accuracy: Schme $C(\Delta t)$ is accurate of degree q_{1} in space and q_{2} in time: \Leftrightarrow

$$
\underbrace{\frac{1}{\Delta t}\left\|\left[C(\Delta t) Q_{\Delta x}-Q_{\Delta x} S(\Delta t)\right] u(x, t)\right\|_{N}}_{\text {truncation error }} \leqslant K(t)\left(|\Delta x|^{q_{1}}+\Delta t^{q_{2}}\right)
$$

- Convergence: For arbitrary t and $n \Delta t=t$,

$$
\lim _{\Delta t \downarrow 0, \Delta x \downarrow 0}\left\|\left\{C^{n}(\Delta t) Q_{\Delta x}-Q_{\Delta x} S^{n}(\Delta t)\right\} f(x)\right\|_{N}=0 .
$$

- Stability: For all $n, \Delta t$,

$$
\left|C(\Delta t)^{n}\right| \leqslant K e^{\alpha n \Delta t}
$$

- The difference between accuracy and convergence (which is stability) is a promise about what happens if I shrink the timestep a lot.
- Proving accuracy: Plug true solution into the above.
- Lax Equivalence Theorem: \exists classical solution, scheme stable \Rightarrow order of convergence $=$ order of accuracy, in both space and time.

Proof: Write error evolution $\varepsilon^{n+1}=C(\Delta t) \varepsilon^{n}+\delta_{n}$, write $\varepsilon^{n}=\sum_{k} C(\Delta t)^{n-k-1} \delta_{k}$, estimate that using stability and accuracy.

Can be generalized even if the IC is only in L^{2} by approximation.

- Kreiss Perturbation Theorem: $V^{n+1}=C(\Delta t) V^{n}$ stable, $|D(\Delta t)|$ bounded
\Rightarrow perturbed scheme $V^{n+1}=\{C(\Delta t)+\Delta t D(\Delta t)\} V^{n}$ stable.
Proof: $W^{n}=e^{-n \Delta t \beta} V^{n}$, write down evolution for it, Duhamel that.

4 Constant Coefficient Problems

- Depend neither on x nor t.

$$
\begin{array}{ll}
u_{t}=\mathcal{P}\left(\partial_{x}\right) u(x, 0)=f(x) \\
\hat{u}_{t}=\mathbb{P}(i \omega) \hat{u} & \hat{u}(\omega, 0)=\hat{f}(\omega) .
\end{array}
$$

$\mathbb{P}(i \omega)$ is called the symbol of the PDE.

- Well-posedness: Weakly (strongly for $p=0$) $\mathrm{w}-\mathrm{p} \Leftrightarrow \exists K, \alpha, p$ independent of ω :

$$
\left|e^{\mathbb{P}(i \omega) t}\right| \leqslant K\left(1+\|\omega\|^{p}\right) e^{\alpha t} .
$$

Proof: Use Fourier description of Sobolev norm: $\left\|\left(\|\omega\|^{p}+1\right)^{2}|\hat{f}(\omega)|^{2}\right\|$.

- $A \leqslant B$ for two matrices $A, B: \Leftrightarrow A-B$ negative definite.
- Sufficient condition for well-posedness:

$$
\exists \alpha: \mathbb{P}(i \omega)+\mathbb{P}(i \omega)^{*} \leqslant \alpha I .
$$

Proof: $\partial / \partial t(\hat{u}, \hat{u})<\alpha(\hat{u}, \hat{u})$. (Adjoint-stuff)

- Sharp criterion for well-posedness: $\exists H(\omega)$ hermitian with $|H(\omega)|,\left|H^{-1}(\omega)\right| \leqslant K$

$$
H(\omega) \mathbb{P}(i \omega)+\mathbb{P}(i \omega)^{*} H(\omega) \leqslant H(\omega)
$$

Proof: $\partial / \partial t(\hat{u}, H(\omega) \hat{u})<\alpha(\hat{u}, \hat{u})$. (Adjoint-stuff)
Remark: $H^{1 / 2}$ is a change of variables recovering the sufficient condition.

- Well-posedness for normal matrices: If $\mathbb{P}(i \omega)$ normal, then the IVP is well-posed iff

$$
\operatorname{Re} \lambda_{j}(\omega) \leqslant \alpha
$$

Proof: Norm coincides with the spectral radius.

- Last criterion without normality: You only get equivalence to weak well-posedness.

4.1 Hyperbolic Equations

- General form:

$$
\begin{gathered}
u_{t}=\sum_{j=1}^{s} A_{j} \partial_{x_{j}} u, \quad u(x, 0)=u_{0}(x) . \\
\mathbb{P}(i \omega)=\sum_{j=1}^{s} i A_{j} \omega_{j} .
\end{gathered}
$$

- Weakly hyperbolic: purely imaginary eigenvalues.
- Strongly hyperbolic:
- $\exists T(\omega):|T(\omega)|,\left|T^{-1}(\omega)\right| \leqslant K, T$ diagonalizes $\mathbb{P}(i \omega)$
- purely imaginary eigenvalues.
- Strictly hyperbolic: weakly hyperbolic with pairwise distinct eigenvalues.
- Symmetric hyperbolic: $\exists S: S^{-1} A_{j} S$ symmetric (!)
- \quad strictly \Rightarrow strongly.
- symmetric \Rightarrow strongly.
- weakly/strongly hyperbolic \Rightarrow weakly/strongly well-posed

Proof: non-normal criterion for weakly, otherwise $H=T^{-H} T^{-1}$.

- Time reversal: You may invert the sign on the A_{j} without affecting strong/weak hyperbolicity.
- Calculating a symmetrizer: Grab a diagonalizer for A_{1}, multiply by a well-chosen diagonal matrix.

5 Stability of Constant Coefficient Schemes

- Obtaining a stability estimate: Use Fourier ansatz

$$
V_{j}^{n}=\sum_{k=-\infty}^{\infty} \hat{V}^{n}(k) e^{i k \cdot(j \Delta x)}
$$

in the scheme.

- Parseval's identity, discrete:

$$
\frac{1}{N} \sum_{j=0}^{N=1}\left|V_{j}^{n}\right|^{2}=\sum_{k=-\infty}^{\infty}|\hat{V}(k)|^{2}
$$

- Amplification matrix: $\mathcal{G}(\Delta t, k)$ in

$$
\hat{V}^{n+1}=\mathcal{G}(\Delta t, k) \hat{V}^{n}(k) .
$$

- Stability condition:

$$
\left|\{\mathcal{G}(\Delta t, k)\}^{n}\right| \leqslant K e^{\alpha n \Delta t}
$$

- Von-Neumann condition: Scheme stable \Rightarrow

$$
\rho[\mathcal{G}(\Delta t, k)] \leqslant e^{\gamma \Delta t}=1+O(\Delta t)
$$

VNC is sufficient if

- \mathcal{G} is normal $(\rho(\cdot)=\|\cdot\|)$
- or diagonalizable by a bounded and inverse-bounded diagonalizer.

5.1 Kreiss Matrix Theorem

- Stable family of matrices: $\exists K \forall G \in \mathcal{F} \forall n \geqslant 0$: $\left|G^{n}\right| \leqslant k$.
- Kreiss Matrix Theorem: Equivalent:
- \mathcal{F} stable family
- Resolvent condition: $\exists C \forall$ complex $|z|>1$

$$
\left|(A-z \mathrm{Id})^{-1}\right| \leqslant \frac{C}{|z|-1}
$$

- $\forall A \in \mathcal{F} \exists S \in \mathbb{R}^{p \times p}$ bounded, inverse-bounded s.t. $B=S A S^{-1}$ upper triangular

$$
\left|b_{i, j}\right| \leqslant K_{S} \min \left\{1-\left|b_{i, i}\right|, 1-\left|b_{j, j}\right|\right\}
$$

- Energy Condition: $\forall A \in \mathcal{F} \exists H \geqslant 0$ hermitian, bounded, inverse-bounded,

$$
A^{*} H A \leqslant H
$$

Proof: Neumannsche Reihe, $H^{1 / 2}$ is a change of variables for energy condition.

5.2 Lax-Wendroff Condition

- Numerical range of a matrix G :

$$
\tau(G)=\max _{V \in \mathbb{R}^{n \times n} \backslash\{0\}} \frac{\left\|V^{H} G V\right\|}{\left\|V^{2}\right\|}
$$

- $\quad G$ normal $\Rightarrow \tau(G)=\rho(G)$.
- Lax-Wendroff-Theorem: $\tau(G) \leqslant 1 \Rightarrow \exists K:\left\|G^{n}\right\| \leqslant K$.

Proof: $\left\|G^{n}\right\| \leqslant\left\|G^{n}+\left(G^{H}\right)^{n}\right\|+\left\|G^{n}-\left(G^{H}\right)^{n}\right\|$.

5.3 Dissipative Schemes

- Scheme dissipative of order $2 r: \Leftrightarrow$

$$
\rho[\mathcal{G}(\Delta t, k)] \leqslant 1-\delta|k \Delta x|^{2 r}
$$

6 Examples

6.1 Transport

- $u_{t}=a u_{x}(a>0)$ Analytic solution: $u(x, t)=f(x+a t)$.
(Left shift \rightarrow Wind from right)
- preserves energy $\int u^{2}$
- preserves "mass" $\int|u|$ (chop up integral at sign changes)
- CFL number: (Courant, Friedrichs, Lewy)

$$
\lambda=a \frac{\Delta t}{\Delta x}
$$

- Scheme 1:

$$
V_{j}^{n+1}=V_{j}^{n}+\frac{\lambda}{2}\left(V_{j+1}^{n}-V_{j-1}^{n}\right)
$$

- (2,1)-accurate (Taylor)
- unstable (Fourier; lin. combination of upwind and downwind scheme)
- Lax-Friedrichs:

$$
V_{j}^{n+1}=\frac{1}{2}\left(V_{j+1}^{n}+V_{j-1}^{n}\right)+\frac{\lambda}{2}\left(V_{j+1}^{n}-V_{j-1}^{n}\right)
$$

- (1,1)-accurate $\left(g_{k}-e^{i a k t}=O(\Delta t)+O(\Delta x)\right)$
- stable if $|\lambda| \leqslant 1$
- L^{2} error at a given point $\rightarrow 0$ as $\Delta t, \Delta x \rightarrow 0$. (Fourier, Parseval, split tail off Fourier series)
- Dissipates energy: $E(n+1) \leqslant E(n)$ (rewrite as $\left.(1+\lambda) V_{j+1}+(1-\lambda) V_{j-1}\right)$.
- Dissipates mass (again, rewrite as $\left.(1+\lambda) V_{j+1}+(1-\lambda) V_{j-1}\right)$
- Dissipative of order 2 .
- Upwind Scheme:

$$
V_{j}^{n+1}=V_{j}^{n}+\lambda\left(V_{j+1}^{n}-V_{j}^{n}\right)
$$

- $(1,1)$-accurate
- stable for $0 \leqslant \lambda \leqslant 1$
(Fourier, $\sin (\xi)=\eta \sqrt{1-\eta^{2}}, \cos (\xi)=1-2 \eta^{2}$, where $\eta=\sin (\xi / 2)$)
- Leap frog scheme:

$$
\frac{V_{j}^{n+1}-V_{j}^{n-1}}{2 \Delta t}=\frac{V_{j+1}^{n}-V_{j-1}^{n}}{2 \Delta x}
$$

- (2,2)-accurate.
- Stable for $\lambda^{2}<1$.
- Not dissipative. (conserves energy)
- Lax-Wendroff: Plug PDE into Taylor expansion of $u(t+\Delta t)$ until all time derivatives are gone. Use centered differences for spatial part.

$$
V_{j}^{n+1}=V_{j}^{n}+\frac{\Delta t}{2 \Delta x}\left(V_{j+1}^{n}-V_{j-1}^{n}\right)+\frac{(\Delta t)^{2}}{2(\Delta x)^{2}}\left(V_{j+1}^{n}-2 V_{j}^{n}+V_{j-1}^{n}\right)
$$

- (2,2)-accurate.
- Dissipative of order 4.
- Crank-Nicholson:

$$
V_{j}^{n+1}=V_{j}^{n}+\frac{\Delta t}{2 \Delta x}\left(V_{j+1}^{n+1}-V_{j-1}^{n+1}+V_{j+1}^{n}-V_{j-1}^{n}\right)
$$

- (2,2)-accurate.

6.2 Heat

- $u_{t}=u_{x x}$.
- $\lambda=\Delta t / \Delta x^{2} \leqslant 1 / 2$ for standard centered difference stuff.

6.3 Schrödinger

- $u_{t}=i u_{x x}$.
- $\mathbb{P}(i \omega)+\mathbb{P}(i \omega)^{*}=0 \Rightarrow$ Energy conservation.
- centered differences are unstable.

