
255 Summary

1 General Framework

• Domain of dependence: physical/numerical.

• ut =Lu with IC and periodic BC on a Hilbert space H. L:H→H.

• Discretized to N -dimensional space BN, with projection operator PN.

• Numerical solution: uN ∈BN solves

∂uN

∂t
=PNLuN , uN(0)=PNu0.

• Convergence:

lim
N→∞

‖uN(t)−PNu(t)‖=0 (06 t 6 T ).

• Accuracy:

lim
N→∞

‖PNL(Id−PN)u(t)‖=0 (06 t 6 T ).

• Stability:

‖exp(PNLPNt)‖6 K (0 6 t 6 T ).

• Lax Equivalence Theorem (semidiscrete): If the above IVP is well-posed and the scheme
is stable and accurate, then it converges.

Look at evolution of the error: eN = uN −PNu

∂

∂t
eN = PNLPNeN −PNL(Id−PN)

Integrate as ODE, estimates using accuracy and stability.

• Order of convergence: Equal to order of accuracy.

2 Well-Posedness

• Solution operator S(t, t0):

◦ Semigroup property,

◦ S(t0, t0)= Id,

◦ ‖S(t, t0)‖6K eα(t−t0).

• Evolution Equation:

ut =P

(

x, t,
∂

∂x

)

u(x, t), u(x, 0)= u0(x)

with P a polyomial of degree r. (use multi-indices in n-d)

• Autonomous if P does not depend on t. Then S(t, t0) =S(t− t0).

• Well-posed: The above IVP is weakly well-posed (of order p, with p 6 r) if for every f ∈
C0

r and all T0 > 0 there is a unique solution u(x, t) satisfying

‖u(t)‖6 Ceαt‖f ‖p, (0 6 t 6 T0).

If p =0, then well-posed . ‖ · ‖p
is the Sobolev norm

‖u‖
p
4 ∑

|α|6p

‖∂αu‖
L2∼

∫

(1 + |ω |p)2|f̂ (ω)|2dω.
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• Well-posedness allows defining solutions by approximation.

• Proving well-posedness:

◦ Constant coefficients :

− Diagonalize systems, treat each equation separately if possible.

− Fourier on Jordan block: try to turn into single derivative (multiply by
e±iωt?)

True Jordan blocks become weakly well-posed.

− Unbounded eigenvalues of symbol⇒ not well-posed.

− Small perturbations of a weakly well-posed symbol can make that PDE not
well-posed

◦ Several t-derivatives : make it a system.

◦ Non-constant coefficients :

− Get an energy estimate: Multiply the equation by u, consider d/dtE(t), use
equation, integrate by parts to put derivatives only on coefficient.

2.1 Lower Order Perturbations

• Duhamel Principle: ut =P(x, t, ∂x)u+ F (x, t) also has a solution, namely

u(x, t)= S(t, 0)u0(x)+

∫

0

t

S(t, τ )F (x, τ)dτ .

Proof: Differentiate solution.

• Perturbed problems are well-posed: vt =P(x, t, ∂x)v strongly well-posed.

ut =P(x, t, ∂x)u+B(x, t)u, u(x, 0)= f(x)

has solution for f ∈C∞. sup06τ6t ‖B(x, τ)u(τ)‖6 b0‖u(t)‖⇒ strongly well-posedness.

(Proof: examine y4 e−βtu(x, t) for β > 0, write down evolution, Duhamel that)

3 Convergence, Stability and Accuracy

Assume ∆x = hi(∆t). ‖ · ‖
N

is discrete L2.

• Abstract FD scheme: V n a vector of point evaluations, Ek is the shift operator in the kth
dimension.

B0(E1,� , Es)Vα
n+1 = B1(E1,� , Es)Vα

n.

Explicit iff B0 = Id.

• V n+1 = C(∆t, ∆x, x̄ , t)V n.

• Q∆x projection onto the point evaluation space.

• If, like in Leapfrog, we have dependency on two previous time steps: Interpret V as a
vector of (V n, V n−1)T .

• Accuracy: Schme C(∆t) is accurate of degree q1 in space and q2 in time:⇔

1

∆t
‖[C(∆t)Q∆x − Q∆xS(∆t)]u(x, t)‖N�

truncation error

6 K(t)(|∆x|q1 + ∆tq2).

• Convergence: For arbitrary t and n∆t = t,

lim
∆t↓0,∆x↓0

‖{Cn(∆t)Q∆x − Q∆xS
n(∆t)}f(x)‖

N
= 0.
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• Stability: For all n, ∆t,

|C(∆t)n|6 K eαn∆t.

• The difference between accuracy and convergence (which is stability) is a promise about
what happens if I shrink the timestep a lot.

• Proving accuracy : Plug true solution into the above.

• Lax Equivalence Theorem: ∃classical solution, scheme stable ⇒ order of convergence =
order of accuracy, in both space and time.

Proof: Write error evolution εn+1 = C(∆t)εn + δn, write εn =
∑

k
C(∆t)n−k−1δk, esti-

mate that using stability and accuracy.
Can be generalized even if the IC is only in L2 by approximation.

• Kreiss Perturbation Theorem: V n+1 = C(∆t)V n stable, |D(∆t)| bounded
⇒ perturbed scheme V n+1 = {C(∆t)+ ∆t D(∆t)}V n stable.

Proof: W n = e−n∆tβV n, write down evolution for it, Duhamel that.

4 Constant Coefficient Problems

• Depend neither on x nor t.

ut = P(∂x)u u(x, 0)= f(x),

ût = P(iω)û û(ω, 0)= f̂ (ω).

P(iω) is called the symbol of the PDE.

• Well-posedness: Weakly (strongly for p= 0) w-p⇔∃K, α, p independent of ω:

|eP(iω)t|6 K(1+ ‖ω‖p)eαt.

Proof: Use Fourier description of Sobolev norm: ‖(‖ω‖p + 1)2|f̂ (ω)|2‖.

• A 6B for two matrices A, B:⇔A−B negative definite.

• Sufficient condition for well-posedness:

∃α:P(iω)+P(iω)∗6 αI.

Proof: ∂/∂t(û , û) <α(û , û). (Adjoint-stuff)

• Sharp criterion for well-posedness: ∃H(ω) hermitian with |H(ω)|, |H−1(ω)|6 K

H(ω)P(iω)+P(iω)∗H(ω)6 H(ω).

Proof: ∂/∂t(û , H(ω)û)< α(û , û). (Adjoint-stuff)

Remark: H1/2 is a change of variables recovering the sufficient condition.

• Well-posedness for normal matrices: If P(iω) normal, then the IVP is well-posed iff

Reλj(ω)6 α.

Proof: Norm coincides with the spectral radius.

• Last criterion without normality: You only get equivalence to weak well-posedness.

4.1 Hyperbolic Equations

• General form:

ut =
∑

j=1

s

Aj∂xj
u, u(x, 0)= u0(x).

P(iω)=
∑

j=1

s

iAjωj.
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• Weakly hyperbolic: purely imaginary eigenvalues.

• Strongly hyperbolic:

◦ ∃T (ω): |T (ω)|, |T−1(ω)|6K, T diagonalizes P(iω)

◦ purely imaginary eigenvalues.

• Strictly hyperbolic: weakly hyperbolic with pairwise distinct eigenvalues.

• Symmetric hyperbolic: ∃S: S−1AjS symmetric (!)

• strictly⇒ strongly.

• symmetric⇒ strongly.

• weakly/strongly hyperbolic⇒weakly/strongly well-posed

Proof: non-normal criterion for weakly, otherwise H =T−HT−1.

• Time reversal : You may invert the sign on the Aj without affecting strong/weak hyper-
bolicity.

• Calculating a symmetrizer: Grab a diagonalizer for A1, multiply by a well-chosen diag-
onal matrix.

5 Stability of Constant Coefficient Schemes

• Obtaining a stability estimate: Use Fourier ansatz

Vj
n =

∑

k=−∞

∞

V̂
n
(k)eik·(j∆x)

in the scheme.

• Parseval’s identity, discrete:

1

N

∑

j=0

N=1

|Vj
n|2 =

∑

k=−∞

∞

|V̂ (k)|2.

• Amplification matrix: G(∆t, k) in

V̂
n+1

= G(∆t, k)V̂
n
(k).

• Stability condition :

|{G(∆t, k)}n|6 Keαn∆t.

• Von-Neumann condition : Scheme stable⇒

ρ[G(∆t, k)] 6 eγ∆t = 1+ O(∆t)

VNC is sufficient if

◦ G is normal (ρ( · )= ‖ · ‖)

◦ or diagonalizable by a bounded and inverse-bounded diagonalizer.

5.1 Kreiss Matrix Theorem

• Stable family of matrices : ∃K ∀G∈F ∀n > 0: |Gn|6 k.

• Kreiss Matrix Theorem : Equivalent:

◦ F stable family

◦ Resolvent condition : ∃C ∀complex |z |> 1

|(A− z Id)−1|6
C

|z | − 1
.
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◦ ∀A∈F ∃S ∈R
p×p bounded, inverse-bounded s.t. B = S AS−1 upper triangular

|bi,j |6 KS min {1− |bi,i|, 1− |bj,j |}

◦ Energy Condition: ∀A∈F ∃H > 0 hermitian, bounded, inverse-bounded,

A∗H A 6H.

Proof: Neumannsche Reihe, H1/2 is a change of variables for energy condition.

5.2 Lax-Wendroff Condition

• Numerical range of a matrix G:

τ (G)= max
V ∈Rn×n\{0}

∥

∥V HGV
∥

∥

‖V 2‖
.

• G normal⇒ τ (G)= ρ(G).

• Lax-Wendroff-Theorem : τ(G) 6 1⇒∃K: ‖Gn‖6 K.

Proof: ‖Gn‖6
∥

∥Gn +(GH)n
∥

∥ +
∥

∥Gn − (GH)n
∥

∥.

5.3 Dissipative Schemes

• Scheme dissipative of order 2r:⇔

ρ[G(∆t, k)] 6 1− δ |k∆x|2r.

6 Examples

6.1 Transport

• ut = a ux (a > 0) Analytic solution: u(x, t)= f(x+ a t).
(Left shift→Wind from right)

◦ preserves energy
∫

u2

◦ preserves “mass”
∫

|u| (chop up integral at sign changes)

• CFL number : (Courant, Friedrichs, Lewy)

λ= a
∆t

∆x
.

• Scheme 1:

Vj
n+1 = Vj

n +
λ

2
(Vj+1

n −Vj−1
n )

◦ (2,1)-accurate (Taylor)

◦ unstable (Fourier; lin. combination of upwind and downwind scheme)

• Lax-Friedrichs:

Vj
n+1 =

1

2
(Vj+1

n + Vj−1
n )+

λ

2
(Vj+1

n −Vj−1
n )

◦ (1,1)-accurate (gk − eiakt = O(∆t)+ O(∆x))

◦ stable if |λ|6 1

◦ L2 error at a given point → 0 as ∆t, ∆x → 0. (Fourier, Parseval, split tail off
Fourier series)

◦ Dissipates energy: E(n + 1) 6E(n) (rewrite as (1 +λ)Vj+1 +(1−λ)Vj−1).

◦ Dissipates mass (again, rewrite as (1+ λ)Vj+1 + (1−λ)Vj−1)
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◦ Dissipative of order 2.

• Upwind Scheme:

Vj
n+1 =Vj

n +λ(Vj+1
n −Vj

n)

◦ (1, 1)-accurate

◦ stable for 06 λ 6 1
(Fourier, sin(ξ) = η 1− η2

√

, cos(ξ) =1− 2η2, where η = sin(ξ/2))

• Leap frog scheme:

Vj
n+1−Vj

n−1

2∆t
=

Vj+1
n −Vj−1

n

2∆x
.

◦ (2,2)-accurate.

◦ Stable for λ2 < 1.

◦ Not dissipative. (conserves energy)

• Lax-Wendroff : Plug PDE into Taylor expansion of u(t + ∆t) until all time derivatives are
gone. Use centered differences for spatial part.

Vj
n+1 = Vj

n +
∆t

2∆x
(Vj+1

n −Vj−1
n )+

(∆t)2

2(∆x)2
(Vj+1

n − 2Vj
n + Vj−1

n )

◦ (2,2)-accurate.

◦ Dissipative of order 4.

• Crank-Nicholson:

Vj
n+1 = Vj

n +
∆t

2∆x
(Vj+1

n+1−Vj−1
n+1 +Vj+1

n −Vj−1
n )

◦ (2,2)-accurate.

6.2 Heat

• ut = uxx.

• λ =∆t/∆x2 6 1/2 for standard centered difference stuff.

6.3 Schrödinger

• ut = i uxx.

• P(iω) +P(iω)∗=0⇒Energy conservation.

• centered differences are unstable.
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