255 Summary

1 General Framework

e Domain of dependence: physical /numerical.

e u;=Lu with IC and periodic BC on a Hilbert space H. L: H— H.

e Discretized to N-dimensional space By, with projection operator Py.
e  Numerical solution: uy € By solves

QN — Pty un(0)=Puo,

e (Convergence:
i u(t) — Pru(®)]| =0 (0<t<T),
e Accuracy:
J\}iinw (IPNL(Id — Py)u(t)]|=0 (0<t<T).

o Stability:

lexp(PNLPA)| < K (0<t<T).
e Lax Equivalence Theorem (semidiscrete): If the above IVP is well-posed and the scheme

is stable and accurate, then it converges.
Look at evolution of the error: ey =uy — Pnu

%N — PNLPren — PrL(Id — Py)

Integrate as ODE, estimates using accuracy and stability.

Order of convergence: Equal to order of accuracy.

2 Well-Posedness

e Solution operator S(t,tp):
o Semigroup property,
o S(to,to)=1d,
o |IS(t,te)|| < K ext—to),
e  FEwolution Equation:

utz”P(x,t, %)W, 0, ulz,0)=u(x)

with P a polyomial of degree r. (use multi-indices in n-d)
o Autonomous if P does not depend on t. Then S(t,t0) =S(t — o).

e Well-posed: The above IVP is weakly well-posed (of order p, with p < r) if for every f €
Cy and all T >0 there is a unique solution u(z,t) satisfying

lu@ <Ce[[ fllp,  (0<t<To).

If p=0, then well-posed. ||-||, is the Sobolev norm

full,i= 3 0%l / (1+ [w]?)?|f () Pdw.

la|<p
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e Well-posedness allows defining solutions by approximation.
e  Proving well-posedness:
o Constant coefficients:
— Diagonalize systems, treat each equation separately if possible.

— Fourier on Jordan block: try to turn into single derivative (multiply by
j:iwt?)
e 7

True Jordan blocks become weakly well-posed.

— Unbounded eigenvalues of symbol = not well-posed.

—  Small perturbations of a weakly well-posed symbol can make that PDE not
well-posed

o Several t-derivatives: make it a system.
o Non-constant coefficients:

— Get an energy estimate: Multiply the equation by u, consider d/d¢t E(t), use
equation, integrate by parts to put derivatives only on coefficient.

2.1 Lower Order Perturbations

e Duhamel Principle: uy="P(x,t,0;)u+ F(z,t) also has a solution, namely

w(z, ) = S(t, 0)uo(x) + /O " StV F(x. 7).

Proof: Differentiate solution.

e Perturbed problems are well-posed: vy ="P(x,t,d,)v strongly well-posed.
ur="P(z,t,0,)u+ Bz, t)u, u(zr,0)=f(z)

has solution for f € C®. supocr<t [|B(x, 7)u(7)|| < bol|u(t)|| = strongly well-posedness.
(Proof: examine y:= e~ Plu(x,t) for B3>0, write down evolution, Duhamel that)

3 Convergence, Stability and Accuracy

Assume Az =h;(At). |- || is discrete L.

e Abstract FD scheme: V™ a vector of point evaluations, Fj, is the shift operator in the kth
dimension.

Bo(E1, ..., E)V T = Bi(E,, ..., E) V2
Ezxplicit iff By=1d.
o Vntl=C(At,Azx,z,t)V"
e (A, projection onto the point evaluation space.

e If, like in Leapfrog, we have dependency on two previous time steps: Interpret V as a
vector of (V7 Vn—HT,

o Accuracy: Schme C(At) is accurate of degree ¢; in space and go in time: &

AitH [C(A)Qax — QazS(AY)|u(z,t)|| N < K (1) (|Az|7 + At?2).

o~
truncation error

e Convergence: For arbitrary ¢ and nAt =t,

p i CT(AD Qs QarS" (AN} F ()] =0.
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Stability: For all n, At,
|C(AY)"| < K evmAt,
e The difference between accuracy and convergence (which is stability) is a promise about
what happens if I shrink the timestep a lot.
e  Proving accuracy: Plug true solution into the above.

e Lax Equivalence Theorem: dclassical solution, scheme stable = order of convergence =
order of accuracy, in both space and time.
Proof: Write error evolution e" ! = C(At)e" + 4, write e" =", C(At)" k=15, esti-
mate that using stability and accuracy.
Can be generalized even if the IC is only in L? by approximation.

e Kreiss Perturbation Theorem: V"1 =C(At)V™ stable, |D(At)| bounded
= perturbed scheme V"1 ={C(At) + At D(At)}V" stable.
Proof: W"=e "AtAY " write down evolution for it, Duhamel that.

4 Constant Coefficient Problems

e Depend neither on z nor t.
ur = POy)u u(z,0)= f(z),
iy = Pliw)d d(w,0)= f(w).
P(iw) is called the symbol of the PDE.
o  Well-posedness: Weakly (strongly for p=0) w-p< 3K, o, p independent of w:
|eP 0 <K (14 [|wl|P)e.
Proof: Use Fourier description of Sobolev norm: ||([|w]|? + 1)2| f (w)[?].
e A< B for two matrices A, B: < A — B negative definite.
o Sufficient condition for well-posedness:
Jo: P(iw) + P(iw)* < ad.
Proof: 9/0t(4d,4) < a(d, ). (Adjoint-stuff)
e Sharp criterion for well-posedness: IH (w) hermitian with |H (w)]|, |H =} (w)| < K
H(w)P(iw) + P(iw)*H(w) < H(w).
Proof: 9/0t(1, H(w)4d) < (4, 4d). (Adjoint-stuff)
Remark: H'/? is a change of variables recovering the sufficient condition.
o Well-posedness for normal matrices: If P(iw) normal, then the IVP is well-posed iff
Re )j(w) < a.
Proof: Norm coincides with the spectral radius.

e Last criterion without normality: You only get equivalence to weak well-posedness.

4.1 Hyperbolic Equations
e General form:
up= Z A0y u,  u(x,0)=wup(x).
j=1

S

]P(zw) = Z iAij‘.

j=1
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o  Weakly hyperbolic: purely imaginary eigenvalues.
e Strongly hyperbolic:
o IT(w):|T(w)|,|T~Hw)|< K, T diagonalizes P (iw)
o purely imaginary eigenvalues.
e Strictly hyperbolic: weakly hyperbolic with pairwise distinct eigenvalues.
e Symmetric hyperbolic: 3S: ST1A;S symmetric (!)
e strictly = strongly.
e symmetric = strongly.

e weakly/strongly hyperbolic = weakly/strongly well-posed
Proof: non-normal criterion for weakly, otherwise H =7 ~HT 1

e Time reversal: You may invert the sign on the A; without affecting strong/weak hyper-
bolicity.

e Calculating a symmetrizer: Grab a diagonalizer for A;, multiply by a well-chosen diag-
onal matrix.

5 Stability of Constant Coefficient Schemes

e  Obtaining a stability estimate: Use Fourier ansatz

Vit= 30 ViRelh i
k=—o00
in the scheme.
e Parseval’s identity, discrete:

N=1 00

1 n "

T W= Y HPE
§=0 k=—o0

o Amplification matriz: G(At, k) in
Vi =g (AL BV (k).
o Stability condition:
|{Q(At, k)}n| < Keo‘"At.
e Von-Neumann condition: Scheme stable =
plG(At, k)] < et =1+ O(At)
VNC is sufficient if
o G is normal (p(-) =] - )

o or diagonalizable by a bounded and inverse-bounded diagonalizer.

5.1 Kreiss Matrix Theorem
e Stable family of matrices: IK VG € F¥n > 0:|G™| < k.
e Kreiss Matrixz Theorem: Equivalent:
o F stable family

o Resolvent condition: 3C Vcomplex |z|>1

_ -1 <
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o VAeF IS €RP*P bounded, inverse-bounded s.t. B=S5AS~! upper triangular
|bi ;| < Kgmin {1 —1[b; i, 1 —1[b; ;|}
o Energy Condition: VA € F 3H > 0 hermitian, bounded, inverse-bounded,
A*HA<LH.

Proof: Neumannsche Reihe, H'/? is a change of variables for energy condition.

5.2 Lax-Wendroff Condition
e Numerical range of a matrix G:
VHEGV
o vy

=  max
vermmfop [V
e (G normal=7(G) = p(G).

o  Laz-Wendroff-Theorem: 7(G) < 1=3K: |G"|| < K.
Proof: [|G™[| < [|G™+(G")"|| + ]G — (G|

5.3 Dissipative Schemes
e Scheme dissipative of order 2r: &

p[G(At, k)] <1 —68|kAz|?".

6 Examples

6.1 Transport

o u;=aug (a>0) Analytic solution: u(x,t) = f(z+at).
(Left shift — Wind from right)

o preserves energy [ u?
o preserves “mass” [ |u| (chop up integral at sign changes)

e CFL number: (Courant, Friedrichs, Lewy)

At
A=axy
e Scheme 1:

n n )\ n n
Vit =V S (Vi = Vi)

o (2,1)-accurate (Taylor)
o unstable (Fourier; lin. combination of upwind and downwind scheme)

e Laz-Friedrichs:

n 1 n n )\ n n
V; +1:§(Vj+1+Vj—1) +5(Vi=Vity)

o (1,1)-accurate (gi —e'***=O(At) + O(Ax))
o stable if |\ <1

o L? error at a given point — 0 as At, Ax — 0. (Fourier, Parseval, split tail off
Fourier series)

o Dissipates energy: E(n+1) < E(n) (rewrite as (1+X)V;41+ (1 —A)V; ).
o Dissipates mass (again, rewrite as (1 +A)Vj 414+ (1 —A)V;_1)
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o Dissipative of order 2.
e Upwind Scheme:
VI VP AV - V)
o (1,1)-accurate
o stable for 0< A1
(Fourier, sin(£¢) =ny/1 —n?, cos(§) =1 — 202, where n=sin(£/2))

e Leap frog scheme:
n—+1 n—1 n n
Vi -V i1 — Vit

2At 2Ax

o (2,2)-accurate.
o Stable for A\2< 1.
o Not dissipative. (conserves energy)

e Lax-Wendroff: Plug PDE into Taylor expansion of u(t + At) until all time derivatives are
gone. Use centered differences for spatial part.

n n At n n At2 n n n
‘/j+1:‘/j —i—m( jH+17 HHW( T =2V Vi)

o (2,2)-accurate.
o Dissipative of order 4.

e  Crank-Nicholson:

At
VI = Vi Vi = V)

n+l__ yn
Vit =Vt g5 (Vi

o (2,2)-accurate.

6.2 Heat
o U= 1Uyy.

e \=At/Az%2<1/2 for standard centered difference stuff.

6.3 Schrodinger
o U =1Ugpg.
e P(iw)+P(iw)*=0= Energy conservation.

e centered differences are unstable.



