256 Summary

1 High order FD

- Finite-order finite differences:

$$
\begin{aligned}
\mathcal{D}_{n} f\left(x_{j}\right) & =\frac{f_{j+n}-f_{j-n}}{2 n \Delta x} \\
\left.\frac{\mathrm{~d} f}{\mathrm{~d} x_{j}}\right|_{x_{j}} & =\sum_{n=1}^{m} \alpha_{n}^{m} \mathcal{D}_{n} f_{j} \\
\alpha_{n}^{m} & =-2(-1)^{n} \frac{(m!)^{2}}{(m-n)!(m+n)!}
\end{aligned}
$$

- Points per Wavelength:

$$
\mathrm{PPW}=\frac{2 \pi}{k \Delta x} \geqslant 2
$$

- Number of passes:

$$
\nu=\frac{k c t}{2 \pi}
$$

- Phase error: Leading term of the relative error. Often
- Work per wavelength:

$$
\operatorname{PE}(p, \nu) \sim C \nu\left(\frac{2 \pi}{\mathrm{PPW}}\right)^{\text {order }}
$$

$$
W_{m}=2 m \times \mathrm{PPW} \times \frac{t}{\Delta t}
$$

where $m=$ order.

- Infinite-order finite differences: As above with $m \rightarrow \infty$. Demand exactness for trig. polynomial $e^{i l x}$.

Find coefficients by comparing with Fourier series for $x \mapsto x$.
Rearranging the sum gives

$$
\left.\frac{\mathrm{d} u}{\mathrm{~d} x}\right|_{x_{j}}=\underbrace{\sum_{i=0}^{N} \frac{1}{2}(-1)^{j+i}\left[\sin \left(\frac{\pi}{N+1}(j-i)\right)\right]^{-1}}_{D_{i, j}} u_{i}
$$

2 Trigonometric Polynomial Approximation

Assume $u:[0,2 \pi] \rightarrow \mathbb{R}$ periodic.

- $\quad N$ even.
- Spaces:

$$
\begin{aligned}
\hat{B}_{N} & :=\operatorname{span}\left\{e^{i n x}:|n| \leqslant N / 2\right\} \quad N+1 \text {-dim. } \\
\tilde{B}_{N} & :=\hat{B}_{n} \backslash\left\{\sin \left(\frac{N}{2} x\right)\right\} \quad N \text {-dim. }
\end{aligned}
$$

2.1 Continuous Expansion

- Fourier series:

$$
\begin{aligned}
\mathcal{P}_{N} u(x) & =\sum_{n=-\infty}^{\infty} \hat{u}_{n} e^{i n x} \\
\hat{u}_{n} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} \mathrm{~d} x
\end{aligned}
$$

- Special cases:
- $\quad u$ real $\Rightarrow \hat{u}_{-n}=\hat{u}_{n}^{*}$,
- u even \Rightarrow only cosines,
- u odd \Rightarrow only sines.
- Approximation:
- $\quad \sum_{n=-\infty}^{\infty}\left|\hat{u}_{n}\right|^{2}<\infty \Rightarrow\left\|u-\mathcal{P}_{N} u\right\|_{L^{2}} \rightarrow 0$.
- $\quad \sum_{n=-\infty}^{\infty}\left|\hat{u}_{n}\right|<\infty \Rightarrow\left\|u-\mathcal{P}_{N} u\right\|_{L^{\infty}} \rightarrow 0$.
- $u^{(0 \ldots m-1)}$ (viewed periodically) is continuous, $u^{(m)} \in L^{2} \Rightarrow\left|\hat{u}_{n}\right| \sim(1 / n)^{m}$.
- Spectral convergence: $u \in C^{\infty} \Rightarrow \hat{u}_{n}$ decays faster than any power of n.
- $\mathcal{P D}=\mathcal{D P}$. Projection and differentiation commute. (start with expansion above, carry out both.)
- Truncation error: $\mathcal{P}_{N} \mathcal{L}\left(\operatorname{Id}-\mathcal{P}_{N}\right)=0$.

2.1.1 Approximation Theory for the Continuous Expansion

- Sobolev norm:

$$
\|u\|_{q}^{2}=\sum_{m=0}^{q}\left\|D^{m} u\right\|_{L^{2}}^{2} \sim \sum_{n=-\infty}^{\infty}\left|\hat{u}_{n}\right|^{2}(1+|n|)^{2 q}
$$

- Parseval's Identity:

$$
\sum_{n}\left|\hat{u}_{n}\right|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|u|^{2}
$$

- $\quad h=1 / N$.
- $u \in H^{r}$:

$$
\left\|u-\mathcal{P}_{2 N} u\right\|_{L^{2}} \leqslant C h^{q}\left\|u^{(q)}\right\|_{L^{2}}
$$

Proof: Parseval, consider tail, smuggle in an $n^{2 q} \cdot \frac{1}{n^{2 q}}$.

- u analytic:

$$
\left\|u-\mathcal{P}_{2 N} u\right\|_{L^{2}} \leqslant C e^{-c N}\|u\|_{L^{2}}
$$

Proof: $\left\|u^{(q)}\right\|_{L^{2}} \leqslant C q!\|u\|_{L^{2}}$, Stirling's Formula: $q!\sim q^{q} e^{-q}, q \sim N$.

- $u \in H^{r}$:

$$
\left\|u-\mathcal{P}_{2 N} u\right\|_{H^{q}} \leqslant C h^{r-q}\|u\|_{H^{r}}
$$

Proof: Parseval, $(1+|n|)^{2 q} \sim \frac{\left(1+|n|^{2 r}\right)}{N^{2(r-q)}}$.

- $u \in C^{q}, q>1 / 2$:

$$
\left\|u-\mathcal{P}_{2 N} u\right\|_{L^{\infty}} \leqslant h^{q-1 / 2}\left\|u^{(q)}\right\|_{L^{2}} .
$$

Proof: $\left|u-\mathcal{P}_{2 N} u\right|$, smuggle in n^{q}, CSU.

- \mathcal{L} a constant coefficient differential operator:

$$
\begin{gathered}
\mathcal{L} u=\sum_{j=1}^{s} a_{j} \frac{\mathrm{~d}^{j} u}{\mathrm{~d} x^{j}} . \\
\left\|\mathcal{L} u-\mathcal{L} \mathcal{P}_{2 N} u\right\|_{H^{q}} \leqslant h^{r-q-s}\|u\|_{H^{r}} .
\end{gathered}
$$

2.2 Discrete Expansion

2.2.1 Discrete Even Expansion

- $x_{j}=2 \pi j / N, j=0 \ldots N-1$. (N points)
- Exactness: Periodic case: Trapezoidal rule is Gauß quadrature.

$$
u \in \hat{B}_{2 N-2}: \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} u(x)=\frac{1}{N} \sum_{j=0}^{N-1} u\left(x_{j}\right)
$$

Proof: Evaluate geometric series.

- Coefficients:

$$
\tilde{u}_{n}=\frac{1}{N \tilde{c}_{n}} \sum_{j=0}^{N-1} e^{-i n x_{j}} u\left(x_{j}\right)
$$

where $c_{n}=1+\mathbf{1}_{n=N / 2}$ to compensate for $\tilde{u}_{N / 2}=\tilde{u}_{-N / 2} . \rightarrow N$ coefficients, N quadrature points.

- Interpolant:

$$
\begin{aligned}
\mathcal{I}_{N} u(x) & =\sum_{|n| \leqslant N / 2} \tilde{u}_{n} e^{i n x} . \\
& =\sum_{j=0}^{N-1} g_{j}(x) u\left(x_{j}\right)
\end{aligned}
$$

with

$$
g_{j}(x)=\frac{1}{N} \sin \left(N \frac{x-x_{j}}{2}\right) \cot \left(\frac{x-x_{j}}{2}\right)
$$

- $\mathcal{I}_{N}: L^{2} \rightarrow \tilde{B}_{N}$.
- $\mathcal{I}_{N} u\left(x_{j}\right)=u\left(x_{j}\right)$. (rewrite sums, geometric series)
- Two different ways to differentiate: go through mode space-or don't.
- Differentiation matrix is circulant.
- $\quad \sin N / 2$ consequences:
- $\mathcal{I}_{N} \frac{\mathrm{~d}}{\mathrm{~d} x} \neq D \mathcal{I}_{N}\left(\mathrm{~d} / \mathrm{d} x: \tilde{B}_{N} \nrightarrow \tilde{B}_{N}\right)$
- $D^{2} \neq D^{(2)}$.
- Spatial discretization does not cause phase error deterioration.

2.2.2 Discrete Odd Expansion

- $x_{j}=2 \pi j /(N+1) j=0 \ldots N .(N+1$ points $)$
- Exactness: Periodic case: Trapezoidal rule is Gauß quadrature.

$$
u \in \hat{B}_{2 N}: \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} u(x)=\frac{1}{N+1} \sum_{j=0}^{N} u\left(x_{j}\right)
$$

- Coefficients:

$$
\tilde{u}_{n}=\frac{1}{N+1} \sum_{j=0}^{N} u\left(x_{j}\right) e^{-i n x_{j}} .
$$

- Interpolant:

$$
\begin{aligned}
\mathcal{J}_{N} u(x) & =\sum_{|n| \leqslant N / 2} \tilde{u}_{n} e^{i n x} \\
& =\sum_{l=0}^{N} u\left(x_{l}\right) h_{l}(x)
\end{aligned}
$$

with

$$
h_{l}(x)=\frac{1}{N+1} \frac{\sin \left(\frac{N+1}{2}\left(x-x_{l}\right)\right)}{\sin \left(\frac{1}{2}\left(x-x_{l}\right)\right)}=\sum_{k=-N / 2}^{N / 2} e^{i k\left(x-x_{l}\right)} .
$$

- $\mathcal{J}_{N}: L^{2} \rightarrow \hat{B}_{N}$.
- $\mathcal{J}_{N} u\left(x_{j}\right)=u\left(x_{j}\right)$.
- May also be viewed as Lagrange trigonometric interpolant:
- Same differentiation matrix as ∞-order FD.
- $\mathcal{I}_{N} \frac{\mathrm{~d}}{\mathrm{~d} x}=\mathcal{D} \mathcal{I}_{N}$.

2.2.3 Approximation Theory for Discrete Expansions

- $u \in H^{q}, q>1 / 2$:

$$
\tilde{c}_{n} \tilde{u}_{n}=\hat{u}_{n}+\sum_{|m| \leqslant \infty, m \neq 0} \hat{u}_{n+2 N m}
$$

Proof: Substitute continuous into discrete, exchange sums because of absolute convergence, smuggle + CSU.

- Aliasing error:

$$
\mathcal{A}_{N} u:=\tilde{c}_{n} \tilde{u}_{n}-\hat{u}_{n}
$$

- $u \in H^{r}, r>1 / 2$:

$$
\left\|\mathcal{A}_{N} u\right\|_{L^{2}} \leqslant h^{r}\left\|u^{(r)}\right\|_{L^{2}}
$$

Proof: smuggle, CSU.

- $u \in H^{r}, r>1 / 2$.

$$
\left\|u-\mathcal{I}_{2 N} u\right\|_{L^{2}} \leqslant h^{r}\left\|u^{(r)}\right\|_{L^{2}}
$$

Proof: Error $=$ aliasing + truncation.

- $u \in H^{r}, r>1 / 2$:

$$
\left\|\mathcal{A}_{N} u\right\|_{H^{q}} \leqslant h^{r-q}\|u\|_{H^{r}}
$$

- $u \in H^{r}, r>1 / 2$:

$$
\begin{aligned}
\left\|u-\mathcal{I}_{2 N} u\right\|_{H^{q}} & \leqslant h^{r-q}\|u\|_{H^{r}} \\
\left\|\mathcal{L} u-\mathcal{L I}_{2 N} u\right\|_{H^{q}} & \leqslant h^{r-q-s}\|u\|_{H^{r}} .
\end{aligned}
$$

3 Fourier Spectral Methods

Consider $u_{t}=\mathcal{L} u$.

3.1 Fourier Galerkin

- Defining assumption:

$$
R_{N}=\partial_{t} u_{N}-\mathcal{L} u_{N} \perp \hat{B}_{N}
$$

- Build method: Calculate residual, project onto \hat{B}_{N}, set to zero.
- Multiplication (for nonlinear problems) becomes convolution. (e.g. Burgers)
- More complicated nonlinearities: no way.
- Very efficient for linear, constant-coefficient problems with periodic BCs.

3.1.1 Stability

- \mathcal{L} semi-bounded:

$$
\mathcal{L}+\mathcal{L}^{*} \leqslant 2 \alpha \mathrm{Id}
$$

\Rightarrow stability.

- Proving semi-boundedness: Integrate by parts.

Examples:

- $\mathcal{L}=a(x) \partial_{x}$
- $\mathcal{L}=\partial_{x} b(x) \partial_{x}$
- \mathcal{L} semi-bounded \Rightarrow Fourier-Galerkin stable.

Proof: show $\mathcal{P}_{N}=\mathcal{P}_{N}^{*}$ by $\left(\mathcal{P}_{N} u, v\right)=\left(\mathcal{P}_{N} u, \mathcal{P}_{N} v\right)$. Then $\mathcal{L}_{N}=\mathcal{P}_{N} \mathcal{L} \mathcal{P}_{N}$ semi-bounded.

3.2 Fourier Collocation

- Defining assumption:

$$
\left.R_{N}\right|_{y_{j}}=0
$$

- Optionally: Collocation points $\left\{y_{j}\right\} \neq$ Quadrature points $\left\{x_{j}\right\}$. (we won't do that)
- Build method: Expand u with Lagrange interpolation polynomial. Obtain residual. Set to zero at collocation points \rightarrow simply replace derivatives by application of the differentiation matrix.

3.2.1 Stability

- $\mathcal{I}_{N} \neq \mathcal{I}_{N}^{*}$, so Fourier Galerkin proof breaks.
- Discrete inner product:

$$
(u, v)_{N}=\frac{1}{N+1} \sum_{j=0}^{N} f\left(x_{j}\right) \overline{g\left(x_{j}\right)}
$$

$\left\|u_{N}\right\|_{N}=\left\|u_{N}\right\|_{L^{2}}$ for odd expansion.
$\left\|u_{N}\right\|_{N} \sim\left\|u_{N}\right\|_{L^{2}}$ for even expansion.

- $\mathcal{L}=a(x) u(x), 0<1 / k \leqslant|a(x)| \leqslant k:$
- $\left\|u_{N}(t)\right\|_{N} \leqslant k\left\|u_{N}(0)\right\|$.

Proof: Multiply by u_{N} / a, obtain $(1 / a) \mathrm{d} / \mathrm{d} t\left(\sum u^{2}\right)$. Use exactness of quad. formula, periodicity to get $\mathrm{d} / \mathrm{d} t=0$. Exploit boundedness of a.

- $\dot{\boldsymbol{u}}=A D \boldsymbol{u}$: Use $A^{1 / 2}$ as a change of variables, then bound $\boldsymbol{u}=e^{-A D t} \boldsymbol{u}_{0}$ by saying $A^{1 / 2} D A^{-1 / 2}$ is skew-symmetric.
Proof remains valid for $\dot{\boldsymbol{u}}=D A \boldsymbol{u}, \mathcal{L}=-a(x), \ldots$
- $\mathcal{L}=a(x) u(x)$ with $a(x)$ changing sign, but $\left|a_{x}\right| / 2 \leqslant \alpha$ uniformly
- treat skew-symmetric form

$$
\mathcal{L} u=\frac{1}{2} a u_{x}+\frac{1}{2}(a u)_{x}-\frac{1}{2} a_{x} u
$$

to get $\left\|u_{N}\right\|_{N} \leqslant e^{\alpha t}\left\|u_{0}\right\|_{N}$:
Proof: Multiply by u_{N}, get $\mathrm{d} / \mathrm{d} t \sum u_{N}^{2}$. Integrate (exact) by parts in the second term, only third term left over, yields bound.

- skew-symmetric equation can be written

$$
\begin{aligned}
& \frac{\partial u_{N}}{\partial t}+\frac{1}{2} \mathcal{J}_{N} a \partial_{x} u_{N}+\frac{1}{2} \partial_{x} \mathcal{J}_{N}\left[a u_{N}\right]-\frac{1}{2} \mathcal{J}_{N}\left(a_{x} u_{N}\right)=0 \\
& \frac{\partial u_{N}}{\partial t}+\frac{1}{2} \mathcal{J}_{N} a \partial_{x} u_{N}+\frac{1}{2} \partial_{x} \mathcal{J}_{N}\left[a u_{N}\right]-\frac{1}{2}\left(\mathcal{J}_{N} \partial_{x}\left(a u_{N}\right)-\mathcal{J}_{N} a \partial_{x} u_{N}\right)=0 \\
& \frac{\partial u_{N}}{\partial t}+\mathcal{J}_{N} a \partial_{x} u_{N}+\underbrace{\frac{1}{2} \partial_{x} \mathcal{J}_{N}\left[a u_{N}\right]-\frac{1}{2} \mathcal{J}_{N} \partial_{x}\left(a u_{N}\right)}_{A_{N}:=}=0 \\
&\left\|A_{N}\right\|_{L^{2}} \leqslant h^{2 s-1}\left\|u_{N}^{(2 s)}\right\|_{L^{2}}
\end{aligned}
$$

(it's $2 s-1$ because A_{N} contains derivatives). This motivates the...

- ...superviscosity method

$$
\tilde{\mathcal{L}} u=\mathcal{L} u+(-1)^{s} \frac{\varepsilon}{N^{2 s-1}} \partial_{x}^{2 s} u_{N}
$$

Stable if $\varepsilon>$ some constant C.
Proof: Add A_{N} on both sides, integrate $\left(u_{N}, A_{N}\right)_{N}$ by parts, $\leqslant\left\|u_{N}^{(s)}\right\|_{L^{2}}$. Bound superviscosity term by same norm, bound for $\left(u, \partial_{t} u\right)_{N}$ involving $\left|a_{x}\right|$ shows up.

- Using Fourier Galerkin, see that superviscosity = filtering.
- $\mathcal{L}=b(x) \partial_{x}^{2} u, b>0$:
- matrix method: Define $D^{(2)}=D^{2}$, note $D^{2} \boldsymbol{u} \in \hat{B}_{N-1}, D_{\text {real }}^{(2)} \boldsymbol{u} \in \tilde{B}_{N}$, use skew-hermiticity.
- integral method: $\partial_{x}^{2}:=\mathcal{I}_{N} \partial_{x} \mathcal{I}_{N} \partial_{x} \mathcal{I}_{N}$, then rewrite as integral.
- $\mathcal{L}=f(U)_{x}$:
- Spectral viscosity method

$$
\partial_{t} u_{N}+\partial_{x} \mathcal{P}_{N} f\left(u_{N}\right)=\varepsilon_{N}(-1)^{s+1} \partial_{x}^{s}\left[Q_{m} * \partial_{x}^{s} u_{N}\right]
$$

where Q_{m} is a filter

- Superspectral viscosity method

$$
\partial_{t} u_{N}+\partial_{x} \mathcal{P}_{N} f\left(u_{N}\right)=\varepsilon_{N}(-1)^{s+1} \partial_{x}^{2 s} u_{N}
$$

4 Orthogonal Polynomials

- $B_{N}:=\operatorname{span}\left\{x^{n}: 0 \leqslant n \leqslant N\right\}$.
- Fourier methods achieve exponential accuracy only if u is periodic.
- Sturm-Liouville operator:

$$
\mathcal{L} \varphi=\partial_{x}\left(p \partial_{x} \varphi\right)+q \varphi=\lambda w \varphi
$$

$p>0,0 \leqslant q<M, w$ the weight function.

- Parseval identity:

$$
(u, u)_{L_{w}^{2}}=\sum \gamma_{n} \hat{u}_{n}^{2}, \quad \gamma_{n}=\left(\varphi_{n}, \varphi_{n}\right), \quad \hat{u}_{n}=\frac{1}{\gamma_{n}}\left(u, \varphi_{n}\right)_{L_{w}^{2}}
$$

- Estimate decay of \hat{u}_{n} by plugging in eigenvalue problem, using selfadjointness of operator.
- Singular Sturm-Liouville problem: p vanishes at boundary.

$$
\rightarrow\left|\hat{u}_{n}\right| \sim C \frac{1}{\lambda_{n}^{m}}\left\|\left(\frac{\mathcal{L}}{w}\right)^{m} u\right\|_{L_{w}^{2}}
$$

\rightarrow spectral decay for C^{∞} functions with zero BCs. (Regular problem: only for periodic problems, otherwise boundary causes error.)

- Jacobi polynomials: $P_{n}^{(\alpha, \beta)}, \alpha, \beta>-1$

$$
p(x)=(1-x)^{\alpha+1}(1+x)^{\beta+1}, \quad w(x)=(1-x)^{\alpha}(1+x)^{\beta}, \quad q(x)=c w .
$$

- Rodrigues' formula:

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{\alpha, \beta}(x)=\frac{1}{2^{n} n!} \partial_{x}^{n}(1-x)^{\alpha+n}(1+x)^{\beta+n}
$$

- Derivative:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} P_{n}^{(\alpha, \beta)}=\frac{n+\alpha+\beta+1}{2} P_{n-1}^{(\alpha+1, \beta+1)}(x) .
$$

- Odd/Even:

$$
P_{n}^{(\alpha, \beta)}=(-1)^{n} P_{n}^{(\alpha, \beta)}(-x) .
$$

- There are various three-term recurrence for these polynomials, $P_{0}^{(\alpha, \beta)}=1, P_{1}^{(\alpha, \beta)}=\frac{1}{2}(\alpha+\beta+2) x+$ $(\alpha-\beta) / 2$.
- Legendre polynomials: $\alpha=\beta=0, w \equiv 1$, called P_{n}
- Chebyshev polynomials: $p=\sqrt{1-x^{2}}, q=0, w=p . T_{n}=\cos (n \arccos (x))$.

$$
x T_{n}=\frac{1}{2} T_{n-1}+T_{n+1} .
$$

Chebyshev is best approximation to x^{n+1} among polynomials of degree n.

- Ultraspherical/Gegenbauer polynomials: $\alpha=\beta$.
- PPW for polynomials: ~ 4. (Gegenbauer expansion, decay of the Bessel function)

5 Polynomial Expansions

- Can somewhat easily differentiate and integrate, requires three-term stuff and its inverse.
- Gauß-Lobatto quadrature: both endpoints part of the quadrature. Exact for $B_{2 N-1}$.
- Gauß-Radau quadrature: one endpoint part of the quadrature. Exact for $B_{2 N}$.
- Pure Gauß quadrature: no endpoints part of the quadrature. Exact for $B_{2 N+1}$.
- Each different kind of polynomial has a different set of quadrature points and weights because each has a different weight function.
- Chebyshev Quadrature:

$$
\begin{array}{lll}
\text { GL } & \text { GR } & G \\
x_{j}=-\cos \left(\frac{j}{N} \pi\right) & w_{j}=-\cos \left(\frac{2 j}{2 N+1} \pi\right) & z_{j}=-\cos \left(\frac{2 j+1}{2 N+2} \pi\right) j=0, \ldots, N \\
w_{j}=\frac{\pi}{c_{j} N} & v_{j}=\frac{\pi}{c_{j}} \cdot \frac{1}{2 N+1} & u_{j}=\frac{\pi}{N+1}
\end{array}
$$

with

$$
c_{j}=1+\mathbf{1}_{N}+\mathbf{1}_{0} .
$$

- $[\cdot, \cdot]_{w}$ denotes discrete inner product, $\|\cdot\|_{N, w}$ discrete norm.
- Discrete Gauß-Lobatto norm: not exact for $n=N$, but equivalent.
- Discrete Expansion:

$$
\mathcal{I}_{N} u(x)=\sum_{n=0}^{N} P_{n}^{(\alpha)}(x) \tilde{u}_{n}, \quad \tilde{u}_{n}=\frac{1}{\tilde{\gamma}_{n}} \sum_{j=0}^{N} u\left(x_{j}\right) P_{n}^{(\alpha)}\left(x_{j}\right) w_{j}
$$

- Quadrature points are interpolation points.

Proof: Plug coefficient terms into expansion, exchange sums to find

$$
l_{j}(x)=w_{j} \sum_{n=0}^{N} \frac{1}{\tilde{\gamma}_{n}} P_{n}^{(\alpha)}(x) P_{n}^{(\alpha)}\left(x_{j}\right)
$$

is the Lagrange interpolation polynomial.

- Differentiation matrices are nilpotent. (Decrease in order)
- GL Differentiation matrix is centro-antisymmetric.
- $D^{(q)}=D^{q}$.
- Runge phenomenon: Wild behavior of polynomials near interval boundaries.
- $u \in C^{0}[-1,1],\left\{x_{j}\right\}$ interpolation nodes. Then

$$
\left\|u-\mathcal{I}_{n} u\right\|_{\infty} \leqslant\left|1+\Lambda_{N}\right|\left\|u-p^{*}\right\|_{\infty},
$$

where p^{*} is the best-approximating polynomial and

$$
\Lambda_{n}=\max _{[-1,1]} \lambda_{n}, \quad \lambda_{n}=\sum_{j=0}^{\mathrm{N}} l_{j}(x)
$$

- $\quad \Lambda_{N} \geqslant C \log (N+1)+C^{\prime}$.
- Cauchy interpolation remainder:

$$
u(x)-\mathcal{I}_{N} u(x)=\frac{u^{(N+1)}(\xi)}{(N+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

- Grid points should cluster quadratically near the boundary.

6 Polynomial Spectral Methods \& Stability

6.1 Galerkin

- Defining assumption: Residual orthogonal to B_{N}.
- Stiffness matrix:

Mass matrix:

$$
S_{k, n}=\frac{1}{\gamma_{k}} \int \varphi_{k} \mathcal{L} \varphi_{n} w \mathrm{~d} x
$$

$$
M_{k, n}=\frac{1}{\gamma_{k}} \int \varphi_{k} \varphi_{n} w \mathrm{~d} x
$$

positive definite because L^{2}-norm is a norm.

- Formulation:

$$
\dot{\boldsymbol{a}}=M^{-1} S \boldsymbol{a} .
$$

- Basis constructed as a linear combination of $P_{n}^{(\alpha)}$ to ensure BCs are kept.
- $u_{t}=\mathcal{L} u$. If \mathcal{L} is semi-bounded $\left(\mathcal{L}+\mathcal{L}^{*} \leqslant 2 \gamma \mathrm{Id}\right)$, then the Galerkin method is stable.
- Linear hyperbolic equation well-posed in Jacobi norm for $\alpha \geqslant 0, \beta \leqslant 0$, but not for Chebyshev. (Consider $1-|x| / \varepsilon$. Norm blows up, because Cheb weights blow up.)

6.2 Tau

- Defining assumption: Residual orthogonal to B_{N-k}, where k is the number of BCs , demand that it is zero.
- BC coefficients can be obtained once PDE-discretizing coefficients are computed.
- Mass matrix remains diagonal.
- Usable for elliptic problems, allows efficient preconditioners.
- Burgers: Product once again becomes convolution-like term.

6.3 Collocation

- Defining assumption: Residual zero at interpolation/quadrature nodes.
- Stability: Usual go-to-integral stuff.

6.4 Penalty Method for Boundary Conditions

- Example:

$$
\begin{aligned}
& Q^{-}(x)=\frac{(1-x) P_{N}^{\prime}(x)}{2 P_{N}(-1)}= \begin{cases}1 & x=-1 \\
0 & x=x_{j} \neq-1 .\end{cases} \\
& \frac{\partial u_{N}}{\partial t}+a \frac{\partial u_{N}}{\partial x}=-\tau a Q^{-}(x)\left(u_{N}(-1)-\mathrm{BC}\right)
\end{aligned}
$$

- Consistent because exact solution satisfies scheme exactly.
- Stable: go back to integral, gives boundary values, tweak τ to be bigger than corresponding weight.

