
256 Summary

1 High order FD

• Finite-order finite differences :

Dnf(xj) =
fj+n − fj−n

2n∆x
df

dxj

|xj
=

∑

n=1

m

αn
mDnfj

αn
m = − 2(− 1)n (m!)2

(m−n)!(m + n)!
.

• Points per Wavelength:

PPW=
2π

k∆x
> 2

• Number of passes :

ν =
k c t

2π

• Phase error : Leading term of the relative error. Often

PE(p, ν)∼Cν

(

2π

PPW

)order

.

• Work per wavelength:

Wm = 2m×PPW× t

∆t
,

where m = order.

• Infinite-order finite differences : As above with m→∞. Demand exactness for trig. polynomial eilx.
Find coefficients by comparing with Fourier series for x� x.
Rearranging the sum gives

du

dx
|xj

=
∑

i=0

N
1

2
(− 1)j+i

[

sin

(

π

N + 1
(j − i)

)]−1�
Di,j

ui.

2 Trigonometric Polynomial Approximation

Assume u: [0, 2π]→R periodic.

• N even.

• Spaces :

B̂N 4 span{einx: |n|6 N/2} N + 1-dim.

B̃N 4 B̂n \
{

sin

(

N

2
x

)}

N -dim.

2.1 Continuous Expansion

• Fourier series :

PNu(x) =
∑

n=−∞

∞

ûneinx,

ûn =
1

2π

∫

0

2π

f(x)e−inxdx.
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• Special cases:

◦ u real⇒ û−n = ûn
∗,

◦ u even⇒ only cosines,

◦ u odd⇒ only sines.

• Approximation:

◦ ∑

n=−∞
∞ |ûn|2 <∞⇒‖u−PNu‖

L2→ 0.

◦ ∑

n=−∞
∞ |ûn|<∞⇒‖u−PNu‖

L∞
→ 0.

• u(0�m−1) (viewed periodically) is continuous, u(m)∈L2⇒|ûn| ∼ (1/n)m.

• Spectral convergence: u∈C∞⇒ ûn decays faster than any power of n.

• PD=DP . Projection and differentiation commute. (start with expansion above, carry out both.)

• Truncation error : PNL(Id−PN)= 0.

2.1.1 Approximation Theory for the Continuous Expansion

• Sobolev norm:

‖u‖
q

2 =
∑

m=0

q

‖Dmu‖
L2

2 ∼
∑

n=−∞

∞

|ûn|2(1+ |n|)2q.

• Parseval’s Identity:
∑

n

|ûn|2 =
1

2π

∫

0

2π

|u|2.

• h = 1/N .

• u∈Hr:

‖u−P2Nu‖
L2 6C hq

∥

∥

∥
u(q)

∥

∥

∥

L2
.

Proof: Parseval, consider tail, smuggle in an n2q · 1

n2q .

• u analytic:

‖u−P2Nu‖
L2 6 Ce−cN‖u‖

L2

Proof:
∥

∥

∥
u(q)

∥

∥

∥

L2
6C q!‖u‖

L2,Stirling’s Formula: q!∼ qqe−q, q∼N .

• u∈Hr:

‖u−P2Nu‖
Hq 6 Chr−q‖u‖

Hr.

Proof: Parseval, (1+ |n|)2q∼ (1+ |n|2r)

N2(r−q)
.

• u∈C q, q > 1/2:

‖u−P2Nu‖
L∞

6 hq−1/2
∥

∥

∥
u(q)

∥

∥

∥

L2
.

Proof: |u−P2Nu|, smuggle in nq, CSU.

• L a constant coefficient differential operator :

Lu =
∑

j=1

s

aj
dju

dxj
.

‖Lu−LP2Nu‖
Hq 6 hr−q−s‖u‖

Hr.

2.2 Discrete Expansion

2.2.1 Discrete Even Expansion

• xj =2πj/N , j = 0�N − 1. (N points)
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• Exactness : Periodic case: Trapezoidal rule is Gauß quadrature.

u∈ B̂2N−2:
1

2π

∫

0

2π

u(x)=
1

N

∑

j=0

N−1

u(xj)

Proof: Evaluate geometric series.

• Coefficients :

ũn =
1

Nc̃n

∑

j=0

N−1

e−inxju(xj),

where cn =1 +1n=N/2 to compensate for ũN/2 = ũ−N/2.→N coefficients, N quadrature points.

• Interpolant :

INu(x) =
∑

|n|6N/2

ũneinx.

=
∑

j=0

N−1

gj(x)u(xj)

with

gj(x) =
1

N
sin

(

N
x− xj

2

)

cot

(

x− xj

2

)

.

◦ IN: L2→ B̃N.

◦ INu(xj)= u(xj). (rewrite sums, geometric series)

• Two different ways to differentiate: go through mode space–or don’t.

• Differentiation matrix is circulant .

• sinN/2 consequences:

◦ IN
d

dx
� DIN (d/dx: B̃N 9 B̃N)

◦ D2� D(2).

• Spatial discretization does not cause phase error deterioration.

2.2.2 Discrete Odd Expansion

• xj =2πj/(N +1) j = 0�N . (N + 1 points)

• Exactness : Periodic case: Trapezoidal rule is Gauß quadrature.

u∈ B̂2N:
1

2π

∫

0

2π

u(x) =
1

N +1

∑

j=0

N

u(xj).

• Coefficients :

ũn =
1

N + 1

∑

j=0

N

u(xj)e
−inxj.

• Interpolant :

JNu(x) =
∑

|n|6N/2

ũneinx

=
∑

l=0

N

u(xl)hl(x)

with

hl(x)=
1

N + 1

sin
(

N + 1

2
(x− xl)

)

sin
(

1

2
(x−xl)

) =
∑

k=−N/2

N/2

eik(x−xl).

◦ JN: L2→ B̂N.
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◦ JNu(xj) =u(xj).

◦ May also be viewed as Lagrange trigonometric interpolant :

◦ Same differentiation matrix as ∞-order FD.

• IN
d

dx
=DIN.

2.2.3 Approximation Theory for Discrete Expansions

• u∈H q, q > 1/2:

c̃nũn = ûn +
∑

|m|6∞,m� 0

ûn+2Nm

Proof: Substitute continuous into discrete, exchange sums because of absolute convergence,
smuggle+CSU.

• Aliasing error :

ANu4 c̃nũn − ûn.

• u∈Hr, r > 1/2:

‖ANu‖
L2 6 hr

∥

∥

∥
u(r)

∥

∥

∥

L2
.

Proof: smuggle, CSU.

• u∈Hr, r > 1/2:

‖u−I2Nu‖
L2 6 hr

∥

∥

∥
u(r)

∥

∥

∥

L2
.

Proof: Error = aliasing+truncation.

• u∈Hr, r > 1/2:

‖ANu‖
Hq 6hr−q‖u‖

Hr.

• u∈Hr, r > 1/2:

‖u−I2Nu‖
Hq 6 hr−q‖u‖

Hr,

‖Lu−LI2Nu‖
Hq 6 hr−q−s‖u‖

Hr.

3 Fourier Spectral Methods

Consider ut =Lu.

3.1 Fourier Galerkin

• Defining assumption:

RN = ∂tuN −LuN ⊥ B̂N.

• Build method : Calculate residual, project onto B̂N, set to zero.

◦ Multiplication (for nonlinear problems) becomes convolution. (e.g. Burgers)

◦ More complicated nonlinearities: no way.

◦ Very efficient for linear, constant-coefficient problems with periodic BCs.

3.1.1 Stability

• L semi-bounded :

L+L∗6 2αId

⇒ stability.
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• Proving semi-boundedness : Integrate by parts.
Examples:

◦ L= a(x)∂x

◦ L= ∂xb(x)∂x

• L semi-bounded⇒Fourier-Galerkin stable.
Proof: show PN =PN

∗ by (PNu, v)= (PNu,PNv). Then LN =PNLPN semi-bounded.

3.2 Fourier Collocation

• Defining assumption:

RN |yj
= 0

• Optionally : Collocation points {yj}� Quadrature points {xj}. (we won’t do that)

• Build method : Expand u with Lagrange interpolation polynomial. Obtain residual. Set to zero at
collocation points→ simply replace derivatives by application of the differentiation matrix.

3.2.1 Stability

• IN � IN
∗ , so Fourier Galerkin proof breaks.

• Discrete inner product :

(u, v)
N

=
1

N + 1

∑

j=0

N

f(xj)g(xj)

‖uN‖
N

= ‖uN‖
L2 for odd expansion.

‖uN‖
N
∼‖uN‖

L2 for even expansion.

• L= a(x)u(x), 0 < 1/k 6 |a(x)|6 k:

◦ ‖uN(t)‖
N

6 k‖uN(0)‖.
Proof: Multiply by uN/a, obtain (1/a)d/dt(

∑

u2). Use exactness of quad. formula, period-
icity to get d/dt =0. Exploit boundedness of a.

◦ u̇ = A D u: Use A1/2 as a change of variables, then bound u = e−ADt
u0 by saying

A1/2D A−1/2 is skew-symmetric.
Proof remains valid for u̇ = DAu, L=− a(x), �

• L= a(x)u(x) with a(x) changing sign, but |ax|/26 α uniformly

◦ treat skew-symmetric form

Lu=
1

2
a ux +

1

2
(a u)x − 1

2
axu

to get ‖uN‖
N

6 eαt‖u0‖N
:

Proof: Multiply by uN, get d/dt
∑

uN
2 . Integrate (exact) by parts in the second term, only

third term left over, yields bound.

◦ skew-symmetric equation can be written

∂uN

∂t
+

1

2
JNa∂xuN +

1

2
∂xJN[a uN]− 1

2
JN(axuN) = 0,

∂uN

∂t
+

1

2
JNa∂xuN +

1

2
∂xJN[a uN]− 1

2
(JN∂x(a uN)−JNa∂xuN) = 0,

∂uN

∂t
+JNa∂xuN +

1

2
∂xJN[a uN]− 1

2
JN∂x(auN)�

AN4 = 0

‖AN‖
L2 6 h2s−1

∥

∥

∥
uN

(2s)
∥

∥

∥

L2
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(it’s 2s− 1 because AN contains derivatives). This motivates the...

◦ ...superviscosity method

L̃u =Lu +(− 1)s ε

N2s−1∂x
2suN.

Stable if ε > some constant C.

Proof: Add AN on both sides, integrate (uN , AN)
N

by parts, 6

∥

∥

∥
uN

(s)
∥

∥

∥

L2
. Bound supervis-

cosity term by same norm, bound for (u, ∂tu)
N

involving |ax| shows up.
◦ Using Fourier Galerkin, see that superviscosity=filtering.

• L= b(x)∂x
2u, b > 0:

◦ matrix method: Define D(2) = D2, note D2
u∈ B̂N−1, Dreal

(2)
u∈ B̃N, use skew-hermiticity.

◦ integral method: ∂x
24 IN∂xIN∂xIN , then rewrite as integral.

• L= f(U)x:

◦ Spectral viscosity method

∂tuN + ∂xPNf(uN)= εN(− 1)s+1∂x
s[Qm ∗ ∂x

suN]

where Qm is a filter

◦ Superspectral viscosity method

∂tuN + ∂xPNf(uN) = εN(− 1)s+1∂x
2suN.

4 Orthogonal Polynomials

• BN4 span{xn: 06 n 6 N }.
• Fourier methods achieve exponential accuracy only if u is periodic.

• Sturm-Liouville operator :

Lϕ = ∂x(p∂xϕ)+ qϕ = λwϕ

p > 0, 0 6 q <M , w the weight function.

• Parseval identity :

(u, u)
Lw

2 =
∑

γnûn
2 , γn =(ϕn, ϕn), ûn =

1

γn
(u, ϕn)

Lw
2 .

• Estimate decay of ûn by plugging in eigenvalue problem, using selfadjointness of operator.

• Singular Sturm-Liouville problem: p vanishes at boundary.

→|ûn| ∼C
1

λn
m

∥

∥

∥

∥

(

L
w

)m

u

∥

∥

∥

∥

Lw
2

.

→ spectral decay for C∞ functions with zero BCs. (Regular problem: only for periodic problems,
otherwise boundary causes error.)

• Jacobi polynomials : Pn
(α,β), α, β >− 1

p(x)= (1−x)α+1(1 +x)β+1, w(x) = (1− x)α(1+ x)β , q(x) = c w.

• Rodrigues’ formula:

(1−x)α(1 +x)βPn
α,β(x) =

1

2nn!
∂x

n(1− x)α+n(1 + x)β+n.

• Derivative:
d

dx
Pn

(α,β) =
n + α + β +1

2
Pn−1

(α+1,β+1)(x).
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• Odd/Even:

Pn
(α,β)

= (− 1)nPn
(α,β)

(−x).

• There are various three-term recurrence for these polynomials, P0
(α,β) = 1, P1

(α,β) =
1

2
(α + β + 2)x +

(α− β)/2.

• Legendre polynomials : α = β =0, w≡ 1, called Pn

• Chebyshev polynomials : p = 1− x2
√

, q =0, w = p. Tn = cos(n arccos(x)).

x Tn =
1

2
Tn−1 + Tn+1.

Chebyshev is best approximation to xn+1 among polynomials of degree n.

• Ultraspherical/Gegenbauer polynomials : α = β.

• PPW for polynomials: ∼ 4. (Gegenbauer expansion, decay of the Bessel function)

5 Polynomial Expansions

• Can somewhat easily differentiate and integrate, requires three-term stuff and its inverse.

• Gauß-Lobatto quadrature: both endpoints part of the quadrature. Exact for B2N−1.

• Gauß-Radau quadrature: one endpoint part of the quadrature. Exact for B2N.

• Pure Gauß quadrature: no endpoints part of the quadrature. Exact for B2N+1.

• Each different kind of polynomial has a different set of quadrature points and weights because each
has a different weight function.

• Chebyshev Quadrature:

GL GR G

xj =− cos

(

j

N
π

)

wj =− cos

(

2j

2N +1
π

)

zj =− cos

(

2j +1

2N + 2
π

)

j = 0,� , N

wj =
π

cjN
vj =

π

cj
· 1

2N +1
uj =

π

N + 1
with

cj = 1+ 1N +10.

• [ · , · ]w denotes discrete inner product, ‖ · ‖
N,w

discrete norm.

• Discrete Gauß-Lobatto norm : not exact for n = N , but equivalent.

• Discrete Expansion :

INu(x)=
∑

n=0

N

Pn
(α)(x)ũn, ũn =

1

γ̃n

∑

j=0

N

u(xj)Pn
(α)(xj)wj

• Quadrature points are interpolation points .
Proof: Plug coefficient terms into expansion, exchange sums to find

lj(x)= wj

∑

n=0

N
1

γ̃n

Pn
(α)(x)Pn

(α)(xj)

is the Lagrange interpolation polynomial.

• Differentiation matrices are nilpotent. (Decrease in order)

• GL Differentiation matrix is centro-antisymmetric.

• D(q) = Dq.
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• Runge phenomenon: Wild behavior of polynomials near interval boundaries.

• u∈C0[− 1, 1], {xj} interpolation nodes. Then

‖u−Inu‖∞6 |1 +ΛN |‖u− p∗‖∞,

where p∗ is the best-approximating polynomial and

Λn = max
[−1,1]

λn, λn =
∑

j=0

N

lj(x).

• ΛN > C log(N + 1)+C ′.

• Cauchy interpolation remainder :

u(x)−INu(x)=
u(N+1)(ξ)

(N + 1)!

∏

j=0

n

(x− xj).

• Grid points should cluster quadratically near the boundary.

6 Polynomial Spectral Methods & Stability

6.1 Galerkin

• Defining assumption: Residual orthogonal to BN.

• Stiffness matrix :

Sk,n =
1

γk

∫

ϕkLϕnwdx.

Mass matrix :

Mk,n =
1

γk

∫

ϕkϕnwdx,

positive definite because L2-norm is a norm.

• Formulation:

ȧ =M−1Sa.

• Basis constructed as a linear combination of Pn
(α) to ensure BCs are kept.

• ut =Lu. If L is semi-bounded (L+L∗6 2γId), then the Galerkin method is stable.

• Linear hyperbolic equation well-posed in Jacobi norm for α > 0, β 6 0, but not for Chebyshev.
(Consider 1− |x|/ε. Norm blows up, because Cheb weights blow up.)

6.2 Tau

• Defining assumption : Residual orthogonal to BN−k, where k is the number of BCs, demand that it
is zero.

• BC coefficients can be obtained once PDE-discretizing coefficients are computed.

• Mass matrix remains diagonal.

• Usable for elliptic problems, allows efficient preconditioners.

• Burgers: Product once again becomes convolution-like term.

6.3 Collocation

• Defining assumption: Residual zero at interpolation/quadrature nodes.

8 Section 6



• Stability: Usual go-to-integral stuff.

6.4 Penalty Method for Boundary Conditions

• Example:

Q−(x) =
(1−x)PN

′ (x)

2PN(− 1)
=

{

1 x=− 1,
0 x= xj � − 1.

∂uN

∂t
+ a

∂uN

∂x
=− τa Q−(x)(uN(− 1)−BC)

• Consistent because exact solution satisfies scheme exactly.

• Stable: go back to integral, gives boundary values, tweak τ to be bigger than corresponding weight.
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