257 Summary

TODO:

- How did we deduce TVD for the PDE?
- Lax's entropy condition: < or \leqslant ?
- Strange second integral condition in derivation of Godunov.
- Why the meshing restriction for FD?

1 Miscellanea

- An interpolation polynomial is monotone in a jump cell.

Example: Degree-five polynomial, six points, degree-four derivative, four derivative zeros in each of the boundary cells \Rightarrow none in the center jump cell.

2 Theory

- Conservation Law: $u_{t}+f(u)_{x}=0$. Initial condition u_{0}.
- Integral form:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{a}^{b} u(x, t)=f(u(b, t))-f(u(a, t)) \tag{1}
\end{equation*}
$$

- Characteristic: Defined by

$$
\frac{\mathrm{d}}{\mathrm{~d} t} u(x(t), t)=u_{x} x^{\prime}+u_{t} \stackrel{!}{=} 0
$$

setting $x^{\prime}=f^{\prime}$. May cross.

- Weak solution:
- (1) for almost all (a, b)
- For any $\varphi \in C_{0}^{1}\left(\mathbb{R}^{2}\right), t>0$

$$
-\int_{0}^{t} \int_{-\infty}^{\infty} u \varphi_{t}+f(u) \varphi_{x} \mathrm{~d} x \mathrm{~d} t-\int_{-\infty}^{\infty} u_{0}(x) \varphi(x, 0) \mathrm{d} x=0
$$

Both definitions equivalent.

- Rankine-Hugoniot condition: Curve parameterized by $(x(t), t)$ separates two smooth regions.

$$
s=x^{\prime}(t)=\frac{\llbracket f \rrbracket}{\llbracket u \rrbracket}
$$

Proof: Split (1) at $x(t)$, carry out time derivative, observe Leibniz rule, apply conservation law.

- Riemann problem: Conservation law with single-jump (otherwise constant) IC.

Rarefaction $(-1, x / t, 1)$ is a weak solution, jump is also weak solution \Rightarrow non-uniqueness. If f is convex, the general solution

- Vanishing viscosity method: add $u_{x x}^{\varepsilon}$ to the RHS of the conservation law, letting $\varepsilon \rightarrow 0$.
- Entropy function: U convex $\left(U^{\prime \prime} \geqslant 0\right)$.
- Entropy flux: $F^{\prime}(u)=U^{\prime}(u) f^{\prime}(u)$.
- Entropy condition: (U, F) an entropy-entropy flux pair. Then u is an entropy solution iff

$$
U(u)_{t}+F(u)_{x} \geqslant 0
$$

weakly.
Proof: Multiply c.law by $U^{\prime}\left(u^{\varepsilon}\right)$, gather derivatives. On RHS, write

$$
U^{\prime}\left(u^{\varepsilon}\right) u_{x, x}^{\varepsilon}=\left(U^{\prime}\left(u^{\varepsilon}\right) u_{x}^{\varepsilon}\right)_{x}-U^{\prime \prime}\left(u^{\varepsilon}\right)\left(u_{x}^{\varepsilon}\right)^{2} \leqslant\left(U^{\prime}\left(u^{\varepsilon}\right) u_{x}^{\varepsilon}\right)_{x}
$$

Then multiply by smooth $\varphi \geqslant 0$ and integrate by parts twice. Pass to limit by DCT, RHS vanishes because u^{ε} is bounded-maximum principle.

- The conservation law is
- Genuinely nonlinear: $f^{\prime \prime}(u) \neq 0$ uniformly,
- Convex: $f^{\prime \prime}(u)>0$ uniformly,
- Concave: $f^{\prime \prime}(u)<0$ uniformly.
- Other Entropy conditions:
- Motivation: $x^{\prime}(t) \llbracket U \rrbracket \leqslant \llbracket F \rrbracket$ by applying a Rankine-Hugoniot type argument to $U(u)_{t}+$ $F(u)_{x} \geqslant 0$.
- Oleinik entropy condition: For all $u \in\left[u^{-}, u^{+}\right]$:

$$
\frac{f(u)-f\left(u^{-}\right)}{u-u^{-}} \geqslant s \geqslant \frac{f(u)-f\left(u^{+}\right)}{u-u^{+}}
$$

where s is the shock speed from Rankine-Hugoniot.

- Lax entropy condition:

$$
f^{\prime}\left(u^{-}\right) \geqslant s \geqslant f^{\prime}\left(u^{+}\right)
$$

Not sufficient for uniqueness, but necessary.
Sufficient if $f^{\prime}(u) \gtrless 0$ uniformly. Simpler if $f^{\prime}(u)>0$:

$$
f^{\prime}\left(u^{-}\right) \geqslant f^{\prime}\left(u^{+}\right)
$$

Since f^{\prime} is \nearrow, we can only jump down.
Meaning: Characteristics only go into shocks, never out of them.

- L^{1} contraction: For $u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=\varepsilon u_{x, x}^{\varepsilon}$ with $u^{\varepsilon}(0, t)=u_{0}(x)$, we have

$$
\left\|u^{\varepsilon}(\cdot, t)-v^{\varepsilon}(\cdot, t)\right\|_{L^{1}} \leqslant\left\|u^{0}-v^{0}\right\|_{L^{1}}
$$

where v^{ε} solves the same PDE with IC v^{0}.
Proof: Chop up

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty}\left|u^{\varepsilon}-v^{\varepsilon}\right|
$$

at the sign changes. Put in s_{j} as a sign function on each interval. Use Leibniz's rule, then the c.law, which can be integrated out to zero, leaving some u_{x} terms, which can be deduced to have the right sign.

- Total Variation:

$$
\mathrm{TV}(u):=\sup _{h} \int \frac{|u(x+h)-u(x)|}{h} \mathrm{~d} x
$$

$T V D: \operatorname{TV}(u(\cdot, t)) \leqslant \operatorname{TV}\left(u^{0}\right) . \mathrm{XXX}$ WHY?

3 Numerics

- Bad example: Discretize $u_{t}=u u_{x} 255$-style, and get a monstrosity that leaves a 1-0 shock just where it is.
- Conservative scheme:
with

$$
u_{j}^{n+1}=u_{j}^{n}-\frac{\Delta t}{\Delta x}\left[\hat{f}_{j+1 / 2}-\hat{f}_{j-1 / 2}\right]
$$

- \hat{f} consistent, i.e. $\hat{f}(u, \ldots, u)=f(u)$,
- \hat{f} locally Lipschitz.
- Summation by parts:

$$
\sum_{j=j_{1}}^{j_{2}} a_{j}\left(b_{j}-b_{j-1}\right)=-\sum_{j=j_{1}}^{j_{2}}\left(a_{j+1}-a_{j}\right) b_{j}-a_{j_{1}} b_{j_{1}-1}+a_{j_{2}} b_{j_{2}}
$$

- Lax-Wendroff: If $\left\{u_{j}^{n}\right\}$ converges $(\Delta t, \Delta x \rightarrow 0)$ boundedly a.e. to a function $u \Rightarrow u$ a weak solution. Proof: Summation by parts, DCT, Conservativity.
- Schemes:
- Godunov: Exploit finite propagation speed, solve Riemann problem on each cell, demanding that

$$
\int_{I_{j}} \int_{t}\left(u_{t}+f(u)_{x}\right) \mathrm{d} x \mathrm{~d} t=0
$$

To get $\hat{f}_{j+1 / 2}^{n}$, use the exact Riemann solution at $x_{j+1 / 2}$.

- Lax-Friedrichs:

$$
\hat{f}_{j+1 / 2}= \begin{cases}\min _{\left[u_{j}, u_{j+1}\right]} f(u) & u_{j}<u_{j+1} \\ \max _{\left[u_{j}, u_{j+1}\right]} f(u) & u_{j} \geqslant u_{j+1}\end{cases}
$$

- Lax-Friedrichs:

$$
\hat{f}_{j+1 / 2}=\frac{1}{2}\left[f\left(u_{j+1}\right)+f\left(u_{j}\right)-\alpha_{j+1 / 2} \Delta_{+} u_{j}\right]
$$

- local Lax-Friedrichs: $\alpha_{j+1 / 2}=\max _{\left[u_{j}, u_{j+1}\right]}\left|f^{\prime}(u)\right|$,
$-\quad$ global Lax-Friedrichs: $\alpha_{j+1 / 2}=\max _{u}\left|f^{\prime}(u)\right|$.
- Roe:

$$
\hat{f}_{j+1 / 2}=\left\{\begin{array}{ll}
f\left(u_{j}\right) & a_{j+1 / 2} \geqslant 0 \\
f\left(u_{j+1}\right) & a_{j+1 / 2}<0
\end{array}, \quad \text { where } \quad a_{j+1 / 2}=\frac{\Delta_{+} f\left(u_{j}\right)}{\Delta_{+} u_{j}}\right.
$$

- Engquist-Osher:

$$
\begin{aligned}
\hat{f}_{j+1 / 2} & =f^{+}\left(u_{j}\right)-f^{-}\left(u_{j+1}\right) \\
f^{+}(u) & =\int_{0}^{u} f^{\prime}(u) \vee 0 \mathrm{~d} u+f(0) \\
f^{-}(u) & =\int_{0}^{u} f^{\prime}(u) \wedge 0 \mathrm{~d} u
\end{aligned}
$$

- Lax-Wendroff:
- Taylor-expand u^{n+1} in t.
- Replace time derivatives with 2nd-order centered differences to desired order.

$$
\hat{f}_{j+1 / 2}=\frac{1}{2}\left[f\left(u_{j}\right)+f\left(u_{j+1}\right)-\lambda f^{\prime}\left(u_{j+1 / 2}\right)\left(f\left(u_{j+1}\right)-f\left(u_{j}\right)\right)\right]
$$

where

$$
u_{j+1 / 2}=\frac{u_{j+1}+u_{j}}{2}, \quad \lambda=\frac{\Delta t}{\Delta x} .
$$

- McCormack: Predictor-corrector-style

$$
\begin{aligned}
u_{j}^{n+1 / 2} & =u_{j}^{n}-\lambda\left(f\left(u_{j}^{n}\right)-f\left(u_{j-1}^{n}\right)\right), \\
u_{j}^{n+1} & =\frac{1}{2}\left[u_{j}^{n}+u_{j}^{n+1 / 2}+\lambda\left[f\left(u_{j+1}^{n+1 / 2}\right)-f\left(u_{j}^{n+1 / 2}\right)\right] .\right.
\end{aligned}
$$

- Monotone schemes: Write $u_{j}^{n+1}=G\left(u_{j-p-1}, \ldots u_{j+q}\right)$. Monotone iff $G(\uparrow, \uparrow, \uparrow)$.
- For three-point schemes: $G\left(u_{j-1}, u_{j}, u_{j+1}\right)=u_{j}-\lambda\left[\hat{f}\left(u_{j+1}, u_{j}\right)-\hat{f}\left(u_{j-1}, u_{j}\right)\right] \Rightarrow G(\uparrow, ?, \uparrow)$. $\partial_{u_{j}} G=1-\lambda\left(\hat{f}_{1}-\hat{f}_{2}\right) \geqslant 0$!
- L-F is monotone.

Properties:

- $\quad u_{j} \leqslant v_{j}$ for all $j \Rightarrow G\left(u_{j}\right) \leqslant G\left(v_{j}\right)$

Proof: by definition.

- Local maximum principle

$$
\min _{i \in \text { stencil }_{j}} u_{i} \leqslant G\left(u_{j}\right) \leqslant \max _{i \in \text { stencil }_{j}} u_{i}
$$

Proof: Define w to be $\min _{\text {stencil }}$ on the stencil and u otherwise. Then

$$
\min _{\text {stencil }}=G(w) \leqslant G(u)
$$

- Crandall/Tartar Lemma/ L^{1} contraction: $\|G(u)-G(v)\|_{L^{1}} \leqslant\|u-v\|_{L^{1}}$

Proof: Let $w:=u \vee v$. Then $G(u), G(v) \leqslant G(w)$ and $G(w)-G(v) \geqslant(G(u)-G(v))^{+}$. Then

$$
\sum(G(u)-G(v))^{+} \leqslant \sum[G(w)-G(v)] \stackrel{\text { conservative }}{=} \sum(w-v)=\sum(u-v)^{+}
$$

- TVD. Take $v_{j}=u_{j+1}$ in L^{1} contraction.
- Cell entropy inequality: Let $U(u)=|u-c|$ and $\hat{F}=\hat{f}(c \vee u)-\hat{f}(c \wedge u)$.

$$
\frac{U\left(u_{j}^{n+1}\right)-U\left(u_{j}^{n}\right)}{\Delta t}-\frac{\hat{F}_{j+1 / 2}-\hat{F}_{j-1 / 2}}{\Delta x} \leqslant 0
$$

Proof: Show

$$
G\left(c \vee u_{j}\right)-G\left(c \wedge u_{j}\right)=\left|u_{j}^{n}-c\right|-\lambda\left(\hat{F}_{j+1 / 2}-\hat{F}_{j-1 / 2}\right)
$$

by starting with the LHS. Next, $c \vee u_{j}^{n+1} \leqslant G\left(c \vee u^{n}\right)_{j}$ and so

$$
U\left(u^{n+1}\right)_{j}=\left|u_{j}^{n+1}-c\right| \leqslant G\left(c \vee u^{n}\right)_{j}-G\left(c \wedge u^{n}\right)_{j}
$$

- Godunov's Theorem: Montone schemes are at most first-order accurate.

Proof: The scheme is second-order accurate for an equation with dissipation, so it can't also be second-order accurate for the original c.law.

- TVD scheme.
- Monotonicity-preserving scheme:

$$
u_{j}^{n} \geqslant u_{j+1}^{n} \forall j \quad \Rightarrow \quad u_{j}^{n+1} \geqslant u_{j+1}^{n+1} \forall j .
$$

- TVD \Rightarrow monotonicity-preserving.

Proof: Suppose it isn't. Then you can make u constant outside the relevant stencils. Reversal of order of the two values implies non-TVD.

- Linear scheme: Linear if applied to a linear PDE.

Also "positive" because Monotone \Leftrightarrow positive coefficients.
Can be written

$$
u_{j}^{n+1}=\sum_{l=-k}^{k} c_{l}(\lambda) u_{j-l}^{n}
$$

- Linear, monotonicity-preserving \Rightarrow monotone.

Proof: Consider first differences of a Heaviside jump \Rightarrow all coefficients positive.

- Linear, monotone $(T V D) \Rightarrow$ at most first order.

Proof: Plug in constant, linear term, quadratic term to obtain

$$
\begin{aligned}
1 & =\sum c_{l} \\
\lambda & =\sum l c_{l} \\
\lambda^{2} & =\sum l^{2} c_{l}
\end{aligned}
$$

Then $\boldsymbol{a}:=\left(l \sqrt{c_{l}}\right), \boldsymbol{b}:=\left(\sqrt{c_{l}}\right)$ and Cauchy-Schwarz (equality iff $\boldsymbol{a}=\alpha \boldsymbol{b}$).

3.1 Higher Order TVD Schemes

Assume $f^{\prime}(u) \geqslant 0$ (wind from the left) for the moment.

- General Finite Volume Framework:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u \mathrm{~d} x+f\left(u\left(x_{j+1 / 2}\right)\right)-f\left(u\left(x_{j-1 / 2}\right)\right)=0
$$

then
so

$$
\bar{u}:=\frac{1}{\Delta x} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u \mathrm{~d} x
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \bar{u}_{j}=\frac{1}{\Delta x_{j}}\left[\hat{f}_{j+1 / 2}-\hat{f}_{j-1 / 2}\right]
$$

with

$$
\hat{f}_{j \pm 1 / 2} \approx f\left(u\left(x_{j \pm 1 / 2}\right)\right)
$$

- Reconstruction:

$$
\begin{aligned}
u_{j+1 / 2}^{(\text {central })} & =\frac{1}{2}\left(\bar{u}_{j}+\bar{u}_{j+1}\right) \\
u_{j+1 / 2}^{(\text {upwind })} & =\frac{1}{2}\left(3 \bar{u}_{j}-\frac{1}{2} \bar{u}_{j-1}\right)
\end{aligned}
$$

Goal is to compute polynomial such that $\frac{1}{\Delta x} \int_{I_{j}} p(x)=\bar{u}_{j}$ for some j s. Then evaluate at $x_{j+1 / 2}$.

- minmod:

$$
\operatorname{minmod}(a, b, c)= \begin{cases}\operatorname{argmin}\{|a|,|b|,|c|\} & \text { same sign on all, } \\ 0 & \text { otherwise }\end{cases}
$$

- Harten's lemma:

$$
\bar{u}_{j+1}=\bar{u}_{j}+\lambda\left(C_{j+1 / 2} \Delta_{+} \bar{u}_{j}-D_{j-1 / 2} \Delta_{-} \bar{u}_{j}\right)
$$

is TVD if:

$$
\begin{aligned}
C_{j+1 / 2} & \geqslant 0 \\
D_{j+1 / 2} & \geqslant 0 \\
1-\lambda\left(C_{j+1 / 2}+D_{j+1 / 2}\right) & \geqslant 0 .
\end{aligned}
$$

Proof: Look at $\sum\left|\Delta_{+} \bar{u}_{j}\right|$, observe sum-arounds.

- MUSCL scheme:

$$
\hat{u}_{j+1 / 2}^{(\operatorname{muscl})}=\bar{u}_{j}+\underbrace{\operatorname{minmod}\left(u_{j+1 / 2}^{\text {(upwind })}-\bar{u}_{j}, u_{j+1 / 2}^{(\text {central })}-\bar{u}_{j}\right)}_{\tilde{u}_{j}:=} .
$$

Is TVD by Harten's lemma.
Proof: Take

$$
\bar{u}_{j}^{n+1}=\bar{u}_{j}-\lambda\left[f\left(\bar{u}_{j}+\tilde{u}_{j}\right)-f\left(\bar{u}_{j-1}+\tilde{u}_{j-1}\right)\right]=\bar{u}_{j}-\lambda\left[-D_{j-1 / 2} \Delta_{-} \bar{u}_{j}\right],
$$

and

$$
\begin{aligned}
D_{j-1 / 2} & =\frac{f\left(\bar{u}_{j}+\tilde{u}_{j}\right)-f\left(\bar{u}_{j-1}+\tilde{u}_{j-1}\right)}{\bar{u}_{j}-\bar{u}_{j-1}}=f^{\prime}(\xi) \frac{\bar{u}_{j}-\bar{u}_{j-1}+\tilde{u}_{j}-\tilde{u}_{j-1}}{\bar{u}_{j}-\bar{u}_{j-1}} \\
& =f^{\prime}(\xi)[1+\underbrace{\frac{\tilde{u}_{j}}{\bar{u}_{j}-\bar{u}_{j-1}}}_{0 \leqslant \cdot \leqslant \frac{1}{2}}-\underbrace{\frac{\tilde{u}_{j-1}}{\bar{u}_{j}-\bar{u}_{j-1}}}_{0 \leqslant \cdot \leqslant \frac{1}{2}}] \geqslant 0
\end{aligned}
$$

CFL restriction: $\lambda \max \left|f^{\prime}\right| \leqslant 2 / 3$.
Now lift wind-from-left restriction.

- General form:

$$
\bar{u}_{j}^{n+1}=\bar{u}_{j}^{n}-\lambda\left[\hat{f}\left(u_{j+1 / 2}^{-}, u_{j+1 / 2}^{+}\right)-\hat{f}\left(u_{j-1 / 2}^{-}, u_{j-1 / 2}^{+}\right)\right]
$$

where $\hat{f}(\uparrow, \downarrow)$ is a monotone flux.

- Now choose

$$
u_{j+1 / 2}^{+, \bmod }=\bar{u}_{j}+\operatorname{minmod}\left(u_{j+1 / 2}^{+}, \bar{u}_{j}-\bar{u}_{j-1}, \bar{u}_{j+1}-\bar{u}_{j}\right)
$$

etc.

- Prove TVD by
using Harten, monotonicity of the flux.
- Smooth and montone region \rightarrow high-order accuracy.

Proof:

$$
\begin{aligned}
\tilde{u}_{j} & =u_{x} \frac{\Delta x}{2}+O\left(\Delta x^{2}\right) \\
\bar{u}_{j+1}-\bar{u}_{j} & =u_{x} \Delta x+O\left(\Delta x^{2}\right) \\
\bar{u}_{j}-\bar{u}_{j-1} & =u_{x} \Delta x+O\left(\Delta x^{2}\right)
\end{aligned}
$$

So the high-accuracy term is half as big as the low-accuracy limiting terms in the minmod.

- TVD schemes are at most first-order accurate near smooth extrema. Consider extremal hump between two grid points.
- TVB scheme:

$$
\overline{\operatorname{minmod}}(a, b, c):= \begin{cases}a & |a| \leqslant M|\Delta x|^{2} \\ \operatorname{minmod}(a, b, c) & \text { otherwise }\end{cases}
$$

Scheme maintains high-order accuracy, choosing $M=\frac{2}{3}\left|u_{x, x}\right|$. TVB:

$$
\mathrm{TV}\left(\bar{u}^{n+1}\right) \leqslant \mathrm{TV}\left(\bar{u}^{n+1}\right)+C M \Delta x^{2} N \leqslant \operatorname{TV}\left(\bar{u}^{n}\right)+C \Delta t
$$

- Semidiscrete Cell Entropy Inequality:

$$
\frac{\mathrm{d} U\left(u_{j}\right)}{\mathrm{d} t}+\frac{1}{\Delta x}\left[\hat{F}_{j+1 / 2}-\hat{F}_{j-1 / 2}\right]=-\frac{1}{\Delta x} \underbrace{\Theta_{j}}_{\geqslant 0} .
$$

Let $U^{\prime \prime}(u) \geqslant 0$ and integrate by parts in the definition of the entropy flux F. Let

$$
\hat{F}_{j+1 / 2}=U^{\prime}\left(u_{j}\right) \hat{f}\left(u_{j}, u_{j+1}\right)-\int^{u_{j}} U^{\prime \prime}(u) f(u) \mathrm{d} u
$$

Multiply the c.law by $U^{\prime}\left(u_{j}\right)$, yielding a "junk" term Θ_{j} that ends up being positive, proving the CEI.

3.2 ENO/WENO

- Newton interpolation:

$$
\begin{aligned}
y\left[x_{i}\right] & =y_{i} \\
y\left[x_{i}, x_{i+1}\right] & =\frac{y\left[x_{i+1}\right]-y\left[x_{i}\right]}{x_{i+1}-x_{i}} \\
y\left[x_{i}, x_{i+1}, x_{i+2}\right] & =\frac{y\left[x_{i+1}, x_{i+2}\right]-y\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}
\end{aligned}
$$

then

$$
p(x)=y\left[x_{0}\right]+y\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+y\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots
$$

- Interpolation \leftrightarrow Reconstruction: Thinking about $P=\int p$, where p is the reconstruction polynomial, yields that running sums of cell averages turn reconstruction into interpolation. Since the step $P \rightarrow$ p is first differences, i.e. undoing running sums, the reconstruction polynomial for \bar{u} is the same as the interpolation polynomial for $\sum \bar{u}$.
- ENO idea: Progressively expand the stencil in the direction with the lowest divided differences. Un-divided differences (for a uniform mesh) may be precomputed.
- WENO idea: Start with a linear combination of smaller stencils that gives high-order accuracy.

$$
\sum_{i} \alpha_{i} \text { stencil }_{i}
$$

Now weight them so that $w_{i}=\alpha_{i}+O\left(\Delta x^{2}\right)$ in smooth regions and $w_{i}=O\left(\Delta x^{4}\right)$. The normalize the w_{i} so they add up to one.

3.3 Finite Differences

- Finite Difference Idea: View $f\left(u_{j}\right)$ as cell averages of a function h. Then

$$
f(u)_{x}=\frac{1}{\Delta x}[h(x+\Delta x / 2)-h(x-\Delta x / 2)] .
$$

So do reconstruction on values of $f\left(u_{j}\right)$.

- Flux splitting: Required to show stability using Harten.

$$
\hat{f}_{j+1 / 2}=\hat{f}_{j+1 / 2}^{+}\left(u^{-}\right)+\hat{f}_{j+1 / 2}^{-}\left(u^{+}\right)
$$

Assumptions:

$$
\begin{array}{ll}
\circ & \frac{\mathrm{d} \hat{f}^{+}}{\mathrm{d} u} \geqslant 0 \\
\circ & \frac{\mathrm{~d} \hat{f}^{-}}{\mathrm{d} u} \leqslant 0 .
\end{array}
$$

Lax-Friedrichs is a splittable flux.

- Limiting/stability: Focus on \hat{f}^{+}for now.

$$
\hat{f}_{j+1 / 2}^{+, \bmod }=f\left(u_{j}\right)+\operatorname{minmod}\left(\hat{f}_{j+1 / 2}^{+, \text {orig }}, \Delta_{+} f\left(u_{j}\right), \Delta_{-} f\left(u_{j}\right)\right)
$$

- Scheme:

$$
u_{t}=\left(\hat{f}_{j+1 / 2}^{+}+\hat{f}_{j+1 / 2}^{-}\right)-\left(\hat{f}_{j-1 / 2}^{+}+\hat{f}_{j-1 / 2}^{-}\right)
$$

- Mesh must be uniform or smoothly mappable to uniform. WHY?

4 Numerics in Multiple Space Dimensions

- $u_{t}+f(u)_{x}+g(u)_{y}=0$.
- Weak solutions, entropy solutions same as 1D.
- Motone schemes have the same properties (TVD, entropy condition, L^{1} contraction.
- TVD schemes are at most first order.
"Proof": Consider a wiggly jump vs. a straight jump. One has high TV, the other low.
- Saying TVD in n D literature amounts to "TVD in 1D, but straightforwardly generalized to 2D".
- Maximum principle: Consider scheme in Harten form. Then $u_{i, j}^{n+1}$ is a convex combination of the values on the stencil.
- Finite-volume:

$$
\begin{aligned}
& \frac{1}{\Delta x \Delta y} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} f(u)_{x} \mathrm{~d} x \mathrm{~d} y \\
= & \frac{1}{\Delta x \Delta y} \int_{y_{j-1 / 2}}^{y_{j+1 / 2}} f\left(u\left(x_{i+1 / 2}, y, t\right)\right)-f\left(u\left(x_{i-1 / 2}, y, t\right)\right) \mathrm{d} y .
\end{aligned}
$$

One integral is simple reconstruction, which must be carried out in two directions. Then the second integral must be carried out numerically.
General procedure:

Only relevant for third and higher order since

$$
\tilde{\bar{u}}_{i, j}=u\left(x_{i}, y_{j}\right)+O\left(\Delta x^{2}, \Delta y^{2}\right)
$$

where \sim and \cdot are cell averaging in x and y.

- Finite-difference: Generalizes straightforwardly.

5 Systems of Conservation Laws

- Linear case:

$$
u_{t}+A u_{x}=0
$$

A has complete set of eigenvectors and only real eigenvalues, it's called (strongly) hyperbolic.
If constant linear system, use change of variables and use upwind/downwind depending on sign of eigenvalue. $A^{+}=R \Lambda^{+} R^{-1} \neq A^{+, \text {elementwise }}$.

- If nonlinear, then find eigenvalues for each new matrix $\nabla \boldsymbol{f}(\boldsymbol{u})$, transform to diagonal form, carry out scalar reconstruction, then transform back.
Rationale: Separation of shocks-two shocks travelling at different speeds.
- All results about stability and convergence carry over to linear systems using the characteristic procedure above.
- Steps for the nonlinear case:
- At $x_{j+1 / 2}$ find a crude "reference vector" $\tilde{u}_{j+1 / 2}$ as
$-\quad \tilde{u}_{j+1 / 2}=\frac{1}{2}\left(\bar{u}_{j}+\bar{u}_{j+1}\right)$
- or Roe average: $f\left(\bar{u}_{j+1}\right)-f\left(\bar{u}_{j}\right)=f^{\prime}\left(\tilde{u}_{j+1 / 2}\right)\left(\bar{u}_{j+1}-\bar{u}_{j}\right)$
- Diagonalize $f^{\prime}\left(\tilde{u}_{j+1 / 2}\right)=R \Lambda R^{-1}$.
- Transform all involved cell averages using $\bar{v}=R^{-1} \bar{u}$.
- Carry out 1D reconstruction.
- Recover $u_{j+1 / 2}=R v_{j+1 / 2}$.
- For 2D nonlinear system, combine system approach with 2D stuff above.

6 Discontinuous Galerkin

- Derivation of the Scheme: Multiply PDE by test function v, integrate by parts, interpret arising boundary terms by comparing with FV , using $v=\mathbf{1}_{I_{j}}$. This gives

$$
\int_{I_{j}} u_{t} v-\int_{I_{j}} f(u) v_{x}+\hat{f}\left(u_{j+1 / 2}^{-}, u_{j+1 / 2}^{+}\right)-\hat{f}\left(u_{j-1 / 2}^{-}, u_{j+1 / 2}^{+}\right)=0 .
$$

Then pick a basis in the space V_{h}

