
257 Summary

TODO:

• How did we deduce TVD for the PDE?

• Lax’s entropy condition: < or 6 ?

• Strange second integral condition in derivation of Godunov.

• Why the meshing restriction for FD?

1 Miscellanea

• An interpolation polynomial is monotone in a jump cell.
Example: Degree-five polynomial, six points, degree-four derivative, four derivative zeros in each of
the boundary cells⇒ none in the center jump cell.

2 Theory

• Conservation Law : ut + f(u)x =0. Initial condition u0.

• Integral form :

d

dt

∫

a

b

u(x, t)= f(u(b, t))− f(u(a, t)). (1)

• Characteristic: Defined by
d

dt
u(x(t), t)= uxx

′+ ut=
!
0,

setting x′= f ′. May cross.

• Weak solution:

◦ (1) for almost all (a, b)

◦ For any ϕ∈C0
1(R2), t > 0

−
∫

0

t ∫

−∞

∞

uϕt + f(u)ϕxdxdt−
∫

−∞

∞

u0(x)ϕ(x, 0)dx= 0.

Both definitions equivalent.

• Rankine-Hugoniot condition: Curve parameterized by (x(t), t) separates two smooth regions.

s =x′(t)=
JfK

JuK

Proof: Split (1) at x(t), carry out time derivative, observe Leibniz rule, apply conservation law.

• Riemann problem : Conservation law with single-jump (otherwise constant) IC.
Rarefaction (− 1, x/t, 1) is a weak solution, jump is also weak solution⇒ non-uniqueness.

If f is convex, the general solution

u(x, t)=















{

ul x < s t,

ur x > s t,
ul > ur,







ul x < f ′(ul)t,

(f ′)−1(x/t) otherwise,
ur x > f ′(ur)t,

ul < ur.
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• Vanishing viscosity method : add uxx
ε to the RHS of the conservation law, letting ε→ 0.

• Entropy function: U convex (U ′′> 0).

• Entropy flux : F ′(u)= U ′(u)f ′(u).

• Entropy condition: (U , F ) an entropy-entropy flux pair. Then u is an entropy solution iff

U(u)t + F (u)x > 0

weakly.
Proof: Multiply c.law by U ′(uε), gather derivatives. On RHS, write

U ′(uε)ux,x
ε =(U ′(uε)ux

ε)x −U ′′(uε)(ux
ε)2 6 (U ′(uε)ux

ε)x.

Then multiply by smooth ϕ > 0 and integrate by parts twice. Pass to limit by DCT, RHS vanishes
because uε is bounded–maximum principle.

• The conservation law is

◦ Genuinely nonlinear : f ′′(u)� 0 uniformly,

◦ Convex : f ′′(u) > 0 uniformly,

◦ Concave: f ′′(u) < 0 uniformly.

• Other Entropy conditions :

◦ Motivation: x′(t)JUK 6 JF K by applying a Rankine-Hugoniot type argument to U(u)t +
F (u)x > 0.

◦ Oleinik entropy condition: For all u∈ [u−, u+]:

f(u)− f(u−)

u− u−
> s >

f(u)− f(u+)

u− u+ ,

where s is the shock speed from Rankine-Hugoniot.

◦ Lax entropy condition:

f ′(u−)> s > f ′(u+).

Not sufficient for uniqueness, but necessary.
Sufficient if f ′(u)≷ 0 uniformly. Simpler if f ′(u) > 0:

f ′(u−)> f ′(u+).

Since f ′ is ր, we can only jump down.
Meaning: Characteristics only go into shocks, never out of them.

• L1 contraction: For ut
ε + f(uε)x = εux,x

ε with uε(0, t)= u0(x), we have

‖uε( · , t)− vε( · , t)‖
L1 6

∥

∥u0− v0
∥

∥

L1
,

where vε solves the same PDE with IC v0.
Proof: Chop up

d

dt

∫

−∞

∞

|uε − vε|

at the sign changes. Put in sj as a sign function on each interval. Use Leibniz’s rule, then the
c.law, which can be integrated out to zero, leaving some ux terms, which can be deduced to have
the right sign.

• Total Variation:

TV(u)4 sup
h

∫ |u(x + h)− u(x)|
h

dx

TVD : TV(u( · , t)) 6TV(u0). XXX WHY?
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3 Numerics

• Bad example: Discretize ut = u ux 255-style, and get a monstrosity that leaves a 1-0 shock just
where it is.

• Conservative scheme:

uj
n+1 = uj

n− ∆t

∆x

[

f̂j+1/2− f̂j−1/2

]

,

with

◦ f̂ consistent, i.e. f̂ (u,� , u)= f(u),

◦ f̂ locally Lipschitz.

• Summation by parts:

∑

j=j1

j2

aj(bj − bj−1)=−
∑

j=j1

j2

(aj+1− aj)bj − aj1bj1−1 + aj2bj2.

• Lax-Wendroff : If {uj
n} converges (∆t, ∆x→ 0) boundedly a.e. to a function u⇒u a weak solution.

Proof: Summation by parts, DCT, Conservativity.

• Schemes :

◦ Godunov : Exploit finite propagation speed, solve Riemann problem on each cell, demanding
that

∫

Ij

∫

t

(ut + f(u)x)dxdt = 0.

To get f̂j+1/2
n

, use the exact Riemann solution at xj+1/2.

f̂j+1/2 =

{

min[uj,uj+1] f(u) uj < uj+1,

max[uj,uj+1] f(u) uj > uj+1.

◦ Lax-Friedrichs :

f̂j+1/2 =
1

2

[

f(uj+1)+ f(uj)−αj+1/2∆+uj

]

− local Lax-Friedrichs : αj+1/2 =max[uj,uj+1] |f ′(u)|,
− global Lax-Friedrichs : αj+1/2 =maxu |f ′(u)|.

◦ Roe:

f̂j+1/2 =

{

f(uj) aj+1/2 > 0

f(uj+1) aj+1/2 < 0
, where aj+1/2 =

∆+f(uj)

∆+uj

.

◦ Engquist-Osher :

f̂j+1/2 = f+(uj)− f−(uj+1),

f+(u) =

∫

0

u

f ′(u)∨ 0du + f(0),

f−(u) =

∫

0

u

f ′(u)∧ 0du.

◦ Lax-Wendroff :

− Taylor-expand un+1 in t.

− Replace time derivatives with 2nd-order centered differences to desired order.

f̂j+1/2 =
1

2

[

f(uj) + f(uj+1)−λf ′(uj+1/2)(f(uj+1)− f(uj))
]

,

where

uj+1/2 =
uj+1 +uj

2
, λ =

∆t

∆x
.
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◦ McCormack : Predictor-corrector-style

uj
n+1/2 = uj

n −λ(f(uj
n)− f(uj−1

n )),

uj
n+1 =

1

2

[

uj
n + uj

n+1/2
+ λ

[

f(uj+1
n+1/2

)− f(uj
n+1/2

)
]

.

• Monotone schemes : Write uj
n+1 = G(uj−p−1,�uj+q). Monotone iff G(↑, ↑, ↑).

◦ For three-point schemes : G(uj−1, uj , uj+1)= uj −λ[f̂ (uj+1, uj)− f̂ (uj−1, uj)]⇒G(↑, ?, ↑).
∂uj

G= 1−λ(f̂1− f̂2) > 0!

◦ L-F is monotone.

Properties:

◦ uj 6 vj for all j⇒G(uj)6 G(vj)
Proof: by definition.

◦ Local maximum principle

min
i∈stencilj

ui 6 G(uj)6 max
i∈stencilj

ui

Proof: Define w to be minstencil on the stencil and u otherwise. Then

min
stencil

= G(w)6 G(u).

◦ Crandall/Tartar Lemma/L1 contraction : ‖G(u)−G(v)‖
L1 6 ‖u− v‖

L1

Proof: Let w4 u∨ v. Then G(u), G(v)6 G(w) and G(w)−G(v)> (G(u)−G(v))+. Then

∑

(G(u)−G(v))+ 6
∑

[G(w)−G(v)] =
conservative ∑

(w − v)=
∑

(u− v)+.

◦ TVD . Take vj = uj+1 in L1 contraction.

• Cell entropy inequality : Let U(u)= |u− c| and F̂ = f̂ (c∨u)− f̂ (c∧u).

U(uj
n+1)−U(uj

n)

∆t
− F̂j+1/2− F̂j−1/2

∆x
6 0

Proof: Show

G(c∨uj)−G(c∧uj)= |uj
n − c| −λ(F̂j+1/2− F̂j−1/2)

by starting with the LHS. Next, c∨uj
n+1 6 G(c∨un)j and so

U(un+1)j = |uj
n+1− c|6 G(c∨un)j −G(c∧un)j.

• Godunov’s Theorem: Montone schemes are at most first-order accurate.
Proof: The scheme is second-order accurate for an equation with dissipation, so it can’t also be
second-order accurate for the original c.law.

• TVD scheme.

• Monotonicity-preserving scheme:

uj
n >uj+1

n ∀j ⇒ uj
n+1 > uj+1

n+1∀j.

• TVD⇒ monotonicity-preserving .
Proof: Suppose it isn’t. Then you can make u constant outside the relevant stencils. Reversal of
order of the two values implies non-TVD.

• Linear scheme: Linear if applied to a linear PDE.
Also “positive” because Monotone⇔ positive coefficients.
Can be written

uj
n+1 =

∑

l=−k

k

cl(λ)uj−l
n .
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• Linear, monotonicity-preserving⇒monotone.
Proof: Consider first differences of a Heaviside jump⇒ all coefficients positive.

• Linear, monotone (TVD)⇒ at most first order .
Proof: Plug in constant, linear term, quadratic term to obtain

1 =
∑

cl,

λ =
∑

l cl,

λ2 =
∑

l2cl.

Then a4 (l cl

√
), b4 ( cl

√
) and Cauchy-Schwarz (equality iff a =αb).

3.1 Higher Order TVD Schemes

Assume f ′(u)> 0 (wind from the left) for the moment.

• General Finite Volume Framework :

d

dt

∫

xj−1/2

xj+1/2

udx+ f(u(xj+1/2))− f(u(xj−1/2))= 0,

then

ū 4 1

∆x

∫

xj−1/2

xj+1/2

udx,

so
d

dt
ūj =

1

∆xj

[

f̂j+1/2− f̂j−1/2

]

with

f̂j±1/2≈ f(u(xj±1/2)).

• Reconstruction:

uj+1/2
(central)

=
1

2
(ūj + ūj+1),

uj+1/2
(upwind)

=
1

2

(

3ūj − 1

2
ūj−1

)

.

Goal is to compute polynomial such that
1

∆x

∫

Ij
p(x)= ūj for some js. Then evaluate at xj+1/2.

• minmod :

minmod(a, b, c) =

{

argmin{|a|, |b|, |c|} same sign on all,
0 otherwise.

• Harten’s lemma:

ūj+1 = ūj +λ(Cj+1/2∆+ūj −Dj−1/2∆−ūj)

is TVD if:

Cj+1/2 > 0,

Dj+1/2 > 0,

1−λ(Cj+1/2 + Dj+1/2) > 0.

Proof: Look at
∑ |∆+ūj |, observe sum-arounds.

• MUSCL scheme:

ûj+1/2
(muscl)

= ūj +minmod
(

uj+1/2
(upwind)− ūj , uj+1/2

(central)− ūj

)�
ũj4 .

Is TVD by Harten’s lemma.
Proof: Take

ūj
n+1 = ūj −λ[f(ūj + ũj)− f(ūj−1 + ũj−1)] = ūj −λ

[

−Dj−1/2∆−ūj],
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and

Dj−1/2 =
f(ūj + ũj)− f(ūj−1 + ũj−1)

ūj − ūj−1
= f ′(ξ)

ūj − ūj−1 + ũj − ũj−1

ūj − ūj−1

= f ′(ξ)







1+
ũj

ūj − ūj−1�
06·6

1

2

− ũj−1

ūj − ūj−1�
06·6

1

2







> 0

CFL restriction: λmax |f ′|6 2/3.

Now lift wind-from-left restriction.

• General form:

ūj
n+1 = ūj

n −λ
[

f̂ (uj+1/2
− , uj+1/2

+ )− f̂ (uj−1/2
− , uj−1/2

+ )
]

,

where f̂ (↑, ↓) is a monotone flux.

• Now choose

uj+1/2
+,mod = ūj +minmod(uj+1/2

+ , ūj − ūj−1, ūj+1− ūj)

etc.

• Prove TVD by

ūj
n+1 = ūj

n −λ





f̂ (uj+1/2
− , uj+1/2

+ )− f̂ (uj+1/2
− , uj−1/2

+ )�
Cj+1/2∆+-term

+ f̂ (uj+1/2
− , uj−1/2

+ )− f̂ (uj−1/2
− , uj−1/2

+ )�
Dj−1/2∆−-term





using Harten, monotonicity of the flux.

• Smooth and montone region→ high-order accuracy.
Proof:

ũj = ux
∆x

2
+ O(∆x2)

ūj+1− ūj = ux∆x+ O(∆x2)

ūj − ūj−1 = ux∆x+ O(∆x2)

So the high-accuracy term is half as big as the low-accuracy limiting terms in the minmod.

• TVD schemes are at most first-order accurate near smooth extrema. Consider extremal hump
between two grid points.

• TVB scheme:

minmod(a, b, c)4 {

a |a|6M |∆x|2,
minmod(a, b, c) otherwise.

Scheme maintains high-order accuracy, choosing M =
2

3
|ux,x|. TVB:

TV(ū n+1)6TV(ū n+1)+ CM ∆x2 N 6TV(ū n) +C∆t.

• Semidiscrete Cell Entropy Inequality :

dU(uj)

dt
+

1

∆x

[

F̂j+1/2− F̂j−1/2

]

=− 1

∆x
Θj�
>0

.

Let U ′′(u) > 0 and integrate by parts in the definition of the entropy flux F . Let

F̂j+1/2 =U ′(uj)f̂ (uj , uj+1)−
∫ uj

U ′′(u)f(u)du.

Multiply the c.law by U ′(uj), yielding a “junk” term Θj that ends up being positive, proving the
CEI.
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3.2 ENO/WENO

• Newton interpolation:

y[xi] = yi,

y[xi, xi+1] =
y[xi+1]− y[xi]

xi+1− xi

,

y[xi, xi+1, xi+2] =
y[xi+1, xi+2]− y[xi, xi+1]

xi+2− xi

,

then

p(x) = y[x0] + y[x0, x1](x− x0)+ y[x0, x1, x2](x− x0)(x− x1)+� .

• Interpolation↔Reconstruction : Thinking about P =
∫

p, where p is the reconstruction polynomial,
yields that running sums of cell averages turn reconstruction into interpolation. Since the step P →
p is first differences, i.e. undoing running sums, the reconstruction polynomial for ū is the same as
the interpolation polynomial for

∑

ū .

• ENO idea: Progressively expand the stencil in the direction with the lowest divided differences.
Un-divided differences (for a uniform mesh) may be precomputed.

• WENO idea: Start with a linear combination of smaller stencils that gives high-order accuracy.
∑

i

αistencili

Now weight them so that wi = αi + O(∆x2) in smooth regions and wi = O(∆x4). The normalize the
wi so they add up to one.

3.3 Finite Differences

• Finite Difference Idea: View f(uj) as cell averages of a function h. Then

f(u)x =
1

∆x
[h(x+ ∆x/2)− h(x−∆x/2)].

So do reconstruction on values of f(uj).

• Flux splitting: Required to show stability using Harten.

f̂j+1/2 = f̂j+1/2
+

(u−)+ f̂j+1/2
−

(u+).

Assumptions:

◦ df̂
+

du
> 0,

◦ df̂
−

du
6 0.

Lax-Friedrichs is a splittable flux.

• Limiting/stability: Focus on f̂
+
for now.

f̂j+1/2
+,mod

= f(uj)+minmod(f̂j+1/2
+,orig

, ∆+f(uj), ∆−f(uj))

• Scheme:

ut = (f̂j+1/2
+

+ f̂j+1/2
−

)− (f̂j−1/2
+

+ f̂j−1/2
−

)

• Mesh must be uniform or smoothly mappable to uniform. WHY?

4 Numerics in Multiple Space Dimensions

• ut + f(u)x + g(u)y =0.
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• Weak solutions, entropy solutions same as 1D.

• Motone schemes have the same properties (TVD, entropy condition, L1 contraction.

• TVD schemes are at most first order .
“Proof”: Consider a wiggly jump vs. a straight jump. One has high TV, the other low.

• Saying TVD in nD literature amounts to “TVD in 1D, but straightforwardly generalized to 2D”.

• Maximum principle: Consider scheme in Harten form. Then ui,j
n+1 is a convex combination of the

values on the stencil.

• Finite-volume:

1

∆x∆y

∫

yj−1/2

yj+1/2
∫

xi−1/2

xi+1/2

f(u)xdx dy

=
1

∆x∆y

∫

yj−1/2

yj+1/2

f (u(xi+1/2, y, t))− f(u(xi−1/2, y, t))dy.

One integral is simple reconstruction, which must be carried out in two directions. Then the second
integral must be carried out numerically.
General procedure:

{ũi+1/2,j}�1D rec{ui+1/2,j+wk
}� {f(ui+1/2,j+wk

)} �num.int.{f̂i+1/2,j}

ր
1D rec

{ū̃i,j}

ց
1D rec

{ūi,j+1/2}�1D rec{ui+ωk,j+1/2}� {f(ui+ωk,j+1/2)} �num.int.{f̂i,j+1/2}

Only relevant for third and higher order since

ū̃i,j =u(xi, yj) +O(∆x2, ∆y2),

where ·̃ and ·̄ are cell averaging in x and y.

• Finite-difference: Generalizes straightforwardly.

5 Systems of Conservation Laws

• Linear case:

ut + A ux = 0

A has complete set of eigenvectors and only real eigenvalues, it’s called (strongly) hyperbolic.
If constant linear system, use change of variables and use upwind/downwind depending on sign of
eigenvalue. A+ = RΛ+R−1� A+,elementwise.

• If nonlinear, then find eigenvalues for each new matrix ∇f (u), transform to diagonal form, carry
out scalar reconstruction, then transform back.
Rationale: Separation of shocks–two shocks travelling at different speeds.

• All results about stability and convergence carry over to linear systems using the characteristic pro-
cedure above.

• Steps for the nonlinear case:

◦ At xj+1/2 find a crude “reference vector” ũj+1/2 as

− ũj+1/2 =
1

2
(ūj + ūj+1)

− or Roe average: f(ūj+1)− f
(

ūj)= f ′(ũj+1/2)(ūj+1− ūj)
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◦ Diagonalize f ′(ũj+1/2)= R ΛR−1.

◦ Transform all involved cell averages using v̄ = R−1ū .

◦ Carry out 1D reconstruction.

◦ Recover uj+1/2 = R vj+1/2.

• For 2D nonlinear system, combine system approach with 2D stuff above.

6 Discontinuous Galerkin

• Derivation of the Scheme: Multiply PDE by test function v, integrate by parts, interpret arising
boundary terms by comparing with FV, using v = 1Ij

. This gives
∫

Ij

utv −
∫

Ij

f(u)vx + f̂ (uj+1/2
− , uj+1/2

+ )− f̂ (uj−1/2
− , uj+1/2

+ ) =0.

Then pick a basis in the space Vh
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