EN221 Summary

1 Tensor Stuff

- Divergence:

$$
\begin{array}{ll}
\nabla \cdot \boldsymbol{u}=\partial_{i} u_{i} & \int_{R} \nabla \cdot \boldsymbol{u}=\int_{\partial R} \boldsymbol{u}^{T} \boldsymbol{n} \mathrm{~d} a \\
\nabla \cdot T=\partial_{i} T_{i j} \boldsymbol{e}_{j} & \int_{R} \nabla \cdot T=\int_{\partial R} T^{T} \boldsymbol{n} \mathrm{~d} a \\
\nabla \otimes \boldsymbol{u}=\text { Jacobian } & \int_{R} \nabla \otimes \boldsymbol{u}=\int_{\partial R} \boldsymbol{u} \otimes \boldsymbol{n} \mathrm{~d} a
\end{array}
$$

(matrix divergence: columns stay separate)

- Box product: $[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]=\boldsymbol{a} \cdot(\boldsymbol{b} \wedge \boldsymbol{c})$
- Levi-Civita tensor:

$$
\varepsilon_{i j k}=\operatorname{det}\left(\begin{array}{ccc}
\delta_{i, 1} & \delta_{j, 1} & \delta_{k, 1} \\
\delta_{i, 2} & \delta_{j, 2} & \delta_{k, 2} \\
\delta_{i, 3} & \delta_{j, 3} & \delta_{k, 3}
\end{array}\right)=\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]= \begin{cases}1 & (i j k) \text { an even permut. of (123)} \\
-1 & (i j k) \text { an odd permut. of (123) } \\
0 & \text { if not. }\end{cases}
$$

$\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{k}=\varepsilon_{i j k} \boldsymbol{e}_{i}$.
$\operatorname{det}(\boldsymbol{a b c})=\varepsilon_{i j k} a_{i} b_{j} c_{k}$

$$
\begin{aligned}
\varepsilon_{i j k} \varepsilon_{i l m} & =\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} \\
\varepsilon_{i j k} \varepsilon_{i j l} & =2 \delta_{k l} \\
\varepsilon_{i j k} \varepsilon_{i j k} & =6
\end{aligned}
$$

- Principal Invariants:

$$
\begin{aligned}
\mathrm{I}_{A} & =\lambda_{1}+\lambda_{2}+\lambda_{3}=([A \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]+[\boldsymbol{a}, A \boldsymbol{b}, \boldsymbol{c}]+[\boldsymbol{a}, \boldsymbol{b}, A \boldsymbol{c}]) /[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]=\operatorname{tr} A \\
\mathrm{II}_{A} & =\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{3}=([A \boldsymbol{a}, A \boldsymbol{b}, \boldsymbol{c}]+[A \boldsymbol{a}, \boldsymbol{b}, A \boldsymbol{c}]+[\boldsymbol{a}, A \boldsymbol{b}, A \boldsymbol{c}]) /[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]=\frac{1}{2}\left[\operatorname{tr}^{2} A-\operatorname{tr} A^{2}\right] \\
\mathrm{III}_{A} & =\lambda_{1} \lambda_{2} \lambda_{3}=[A \boldsymbol{a}, A \boldsymbol{b}, A \boldsymbol{c}] /[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]=\operatorname{det} A
\end{aligned}
$$

- Adjugate/Cofactor of a Tensor: $A^{*}(\boldsymbol{a} \wedge \boldsymbol{b})=(A \boldsymbol{a}) \wedge(A \boldsymbol{b}) \Rightarrow A^{*}=\operatorname{det} A\left(A^{-T}\right)$.
$\partial_{t} \operatorname{det} A(t)=\operatorname{det} A \operatorname{tr}\left(\left(\partial_{t} A\right) A^{-1}\right)$
- Tensor Product: TO $\otimes \mathrm{FROM}$

$$
\begin{aligned}
\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} & =\boldsymbol{e}_{i} \boldsymbol{e}_{j}^{T} \\
(\boldsymbol{u} \otimes \boldsymbol{v}) \boldsymbol{a} & =\boldsymbol{u}(\boldsymbol{v} \cdot \boldsymbol{a}) \\
(\boldsymbol{u} \otimes \boldsymbol{v})(\boldsymbol{w} \otimes \boldsymbol{x}) & =\boldsymbol{v} \cdot \boldsymbol{w}(\boldsymbol{u} \otimes \boldsymbol{x}) \\
(\boldsymbol{u} \otimes \boldsymbol{v}) A & =\boldsymbol{u} \otimes\left(A^{T} \boldsymbol{v}\right)
\end{aligned}
$$

- Skewsymmetric matrices: Rotation around axis $\boldsymbol{\Omega}$ given by orthogonal matrix $Q(t)$.

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=\dot{Q} \boldsymbol{x} \Rightarrow \partial_{t}\left(Q^{T} Q\right)=0 \\
& W=\dot{Q} Q^{T}, W=-W^{T} . W \boldsymbol{x}=\boldsymbol{\Omega} \wedge \boldsymbol{x}
\end{aligned}
$$

2 Kinematics

2.1 Static

- Reference and deformed configurations.
- Deformation gradient: assumed regular. $J=\operatorname{det} F \neq 0$.

$$
\begin{aligned}
\boldsymbol{x}(\boldsymbol{X}) & =\boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X}) \\
F & =\nabla_{\boldsymbol{X}} \otimes \boldsymbol{x}(\boldsymbol{X}) \\
F^{-1} & =\partial_{x_{j}} X_{\beta} \boldsymbol{E}_{\beta} \otimes \boldsymbol{e}_{i}
\end{aligned}
$$

- Isochoric: $J=1$.
- Polar decomposition:

$$
\begin{array}{ll}
\circ & F=R U \\
& F^{T} F=U^{2}, R=F U^{-1} \\
\circ & F=V R
\end{array}
$$

Features:

- Is unique.
- $\quad R$ is rotation of principal axes.
- $\quad R$ average of all rotations.
- Principal axes of V are $R \boldsymbol{u}_{i}$.
- $\sigma(V)=\sigma(U)$.
- $\quad R=\boldsymbol{v}_{k} \otimes \boldsymbol{u}_{k}$.
- $\quad F=\lambda_{k} \boldsymbol{v}_{k} \otimes \boldsymbol{u}_{k}$.
- Left/Right Cauchy-Green Deformation Tensor: $F F^{T} / F^{T} F$ SPD.
- Strain:

$$
\begin{aligned}
E & =\frac{1}{2}\left(F^{T} F-\mathrm{Id}\right) \quad\left(\text { Lagrangean: } \quad|\mathrm{d} \boldsymbol{x}|^{2}-|\mathrm{d} \boldsymbol{X}|^{2}=2 \mathrm{~d} \boldsymbol{X} \cdot E \mathrm{~d} \boldsymbol{X}\right) \\
E^{\prime} & =\frac{1}{2}\left(\mathrm{Id}-F^{-T} F^{-1}\right) \quad\left(\text { Eulerian: } \quad|\mathrm{d} \boldsymbol{x}|^{2}-|\mathrm{d} \boldsymbol{X}|^{2}=2 \mathrm{~d} \boldsymbol{x} \cdot E^{\prime} \mathrm{d} \boldsymbol{x}\right)
\end{aligned}
$$

- Stretch:

$$
\lambda(\boldsymbol{M})=\left(\boldsymbol{M} \cdot F^{T} F \boldsymbol{M}\right)^{1 / 2}=|U \boldsymbol{M}| .
$$

Has local maxima and minima when M is an eigenvector of U.

- Transformation of area elements:

$$
\boldsymbol{n} \mathrm{d} a=F^{*} \boldsymbol{N} \mathrm{~d} A
$$

- Deformation gradient in cylindrical coordinates: Given

$$
\left(\begin{array}{l}
r \\
\theta \\
z
\end{array}\right)=f(R, \Theta, Z)
$$

we have

$$
F=\partial_{R} \boldsymbol{x} \otimes \boldsymbol{E}_{R}+\frac{1}{R} \partial_{\Theta} \boldsymbol{x} \otimes \boldsymbol{E}_{\Theta}+\partial_{Z} \boldsymbol{x} \otimes \boldsymbol{E}_{Z}
$$

Also expressible as mixed tensor from $\boldsymbol{E}_{(R, \Theta, Z)}$ to $\boldsymbol{E}_{(r, \theta, z)}$:

$$
F=\left(\begin{array}{rrr}
\frac{\partial r}{\partial R} & \frac{1}{R} \frac{\partial r}{\partial \Theta} & \frac{\partial r}{\partial z} \\
\frac{r}{1} \frac{\partial \theta}{\partial R} & \frac{r}{R} \frac{\partial \theta}{\partial \Theta} & \frac{r}{1} \frac{\partial \theta}{\partial z} \\
\frac{\partial z}{\partial R} & \frac{1}{R} \frac{\partial z}{\partial \Theta} & \frac{\partial z}{\partial Z}
\end{array}\right)
$$

Caveat for mixed tensors: $\operatorname{tr}(F) \neq F_{i i}$. However det, V, U as usual. Also works for spherical basis, but more complicated.

2.1.1 Static Examples

- Pure shear: $F=\lambda \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}+\lambda^{-1} \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2}$.
- Simple shear: $F=\mathrm{Id}+\lambda \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2}$.
- Pure bending:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
(R-Y) \sin \alpha(x) \\
R-(R-Y) \cos \alpha(x) \\
Z
\end{array}\right), \quad J=(R-Y) \alpha^{\prime}
$$

- Tension and torsion:

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\frac{X}{\sqrt{\lambda}} \cos \left(\frac{\alpha}{l} \lambda Z\right)-\frac{Y}{\sqrt{\lambda}} \sin \left(\frac{\alpha}{l} \lambda Z\right) \\
\frac{X}{\sqrt{\lambda}} \sin \left(\frac{\alpha}{l} \lambda Z\right)+\frac{Y}{\sqrt{\lambda}} \cos \left(\frac{\alpha}{l} \lambda Z\right) \\
\lambda Z
\end{array}\right)
$$

- Turning a cylinder inside out.

2.2 Dynamic

- Steady motion: $\partial / \partial t \boldsymbol{v}(\boldsymbol{x}, t)=0$.
- Material/Lagrangean POV : focus on particle, expressions in terms of \boldsymbol{X} and $t \rightarrow$ Solids.
- Spatial/Eulerian POV: focus on point in space, expressions in terms of \boldsymbol{x} and $t \rightarrow$ Fluids.
- Lines:
- Path line: Curve traced by a fixed particle.
- Streamlines: Field lines of velocity in Eulerian POV.

Both coincide under steady motion.

- Material derivative:

$$
\begin{aligned}
\dot{\varphi} & =\frac{\partial \varphi}{\partial t}+\nabla_{\boldsymbol{x}} \varphi \cdot \boldsymbol{v} \\
\dot{\boldsymbol{w}} & =\frac{\partial \boldsymbol{w}}{\partial t}+\left(\nabla_{\boldsymbol{x}} \otimes \boldsymbol{w}\right) \boldsymbol{v} \\
\dot{T} & =\frac{\partial T}{\partial T}+\left(\nabla_{\boldsymbol{x}} \otimes T\right) \boldsymbol{v}
\end{aligned}
$$

- Acceleration: $\boldsymbol{a}=\dot{\boldsymbol{v}}$.
- Velocity gradient: $L=\nabla_{\boldsymbol{x}} \otimes \boldsymbol{v} \Rightarrow \dot{F}=L F$ (chain rule). F requires a "reference state", L does not.
- $\quad \mathrm{d} \dot{\boldsymbol{x}}=\dot{F} \mathrm{~d} \boldsymbol{X}=L F \mathrm{~d} \boldsymbol{X}=L \mathrm{~d} \boldsymbol{x}$. Assume $\mathrm{d} \boldsymbol{x}=\boldsymbol{m}|\mathrm{d} \boldsymbol{x}|$.

$$
\text { Strain rate: } \quad \begin{aligned}
\frac{|\mathrm{d} \boldsymbol{x}|^{\bullet}}{|\mathrm{d} \boldsymbol{x}|} & =\boldsymbol{m} \cdot L \boldsymbol{m}=\boldsymbol{m} \cdot D \boldsymbol{m} \\
\dot{\boldsymbol{m}} & =L \boldsymbol{m}-\boldsymbol{m}(\boldsymbol{m} \cdot L \boldsymbol{m})
\end{aligned}
$$

- Stretch and Spin: $L=D+W, D=D^{T}, W=-W^{T}$.
D_{11} : stretching rate of a line element along the 1-direction
D_{12} : (roughly) change in angle between the 1- and 2-direction.
Principal axes \boldsymbol{p}_{i} of D are rigidly rotating about

$$
\boldsymbol{\omega}=\frac{1}{2} \operatorname{curl} \boldsymbol{v}
$$

with $W \boldsymbol{p}_{i}=\boldsymbol{\omega} \times \boldsymbol{p}_{i}$.

- Vorticity: curl $\boldsymbol{v}=2 \cdot$ angular velocity. (Letter here is also $\boldsymbol{\omega}$.)
- $\dot{J}=J \operatorname{tr} L=J \operatorname{div} \boldsymbol{v}$.
- Integrals over moving contours:

$$
\begin{aligned}
\oint_{C_{t}} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{x} & =\oint_{C_{R}} \boldsymbol{v}(\boldsymbol{x}, t) \cdot F \mathrm{~d} \boldsymbol{X} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \oint_{C_{t}} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{x} & =\oint_{C_{R}}(\dot{\boldsymbol{v}}(\boldsymbol{x}, t) \cdot F+\boldsymbol{v}(\boldsymbol{x}, t) \cdot L F) \mathrm{d} \boldsymbol{X} \\
& =\oint_{C_{t}} \dot{\boldsymbol{v}}(\boldsymbol{x}, t)+L^{T} \boldsymbol{v}(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

- Integrals over moving surfaces: Similar, taking into account that $F^{*}=J F^{-T}$.

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{S_{t}} \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{~d} s=\int_{S_{t}}(\dot{\boldsymbol{u}}+\boldsymbol{u} \operatorname{tr}(L)-L \boldsymbol{u}) \cdot \boldsymbol{n} \mathrm{d} s
$$

- Integrals over moving volumes/Reynolds' Transport Theorem:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{R_{t}} \varphi(\boldsymbol{x}) \mathrm{d} v=\int_{R_{t}} \dot{\varphi}+\varphi \operatorname{tr}(L) \mathrm{d} v .
$$

Observe that $\operatorname{tr}(L)=\operatorname{div} \boldsymbol{v}$, which is zero in the incompressible case.

- Circulation:

$$
\begin{aligned}
\oint_{C_{t}} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{x} & =\int_{S_{t}} \operatorname{curl} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{s}=\int_{S_{t}} \boldsymbol{\omega} \cdot \mathrm{~d} \boldsymbol{s} \\
L^{T} \boldsymbol{v} & =\frac{1}{2} \nabla v^{2} \\
0 \stackrel{\text { if circulation-preserving }}{=} \frac{\mathrm{d}}{\mathrm{~d} t} \oint_{C_{t}} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{x} & =\oint_{C_{t}} \dot{\boldsymbol{v}}(\boldsymbol{x}, t)+L^{T} \boldsymbol{v}(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \\
& =\oint_{C_{t}} \dot{\boldsymbol{v}}(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x}+\oint_{C_{t}} \frac{1}{2} \nabla v^{2} \mathrm{~d} \boldsymbol{x} \\
& =\oint_{C_{t}} \boldsymbol{a}(\boldsymbol{x}, t) \mathrm{d} \boldsymbol{x} \\
& =\int_{S_{t}} \operatorname{curl} \boldsymbol{a} \cdot \mathrm{~d} \boldsymbol{s}
\end{aligned}
$$

If $\boldsymbol{a}=\nabla \psi$, then the motion is circulation-preserving.
If circulation-preserving, then

$$
\operatorname{curl} \boldsymbol{a}=\dot{\boldsymbol{\omega}}+\boldsymbol{\omega} \operatorname{tr}(L)-L \boldsymbol{\omega}=0 .
$$

Then consider the product rule on

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(J F^{-1} \boldsymbol{\omega}\right)=\ldots=0
$$

to find Cauchy's vorticity formula:

$$
\boldsymbol{\omega}=\frac{1}{J} F \boldsymbol{\omega}_{\mathrm{ref}}
$$

Field lines of vorticity are vortex lines.
If the motion is circulation-preserving, these are material curves.

3 Balance Laws and Field Equations

- Conservation of Mass: Assumption:

$$
\left.J \rho=\rho_{\mathrm{ref}} \quad \text { (referential }\right)
$$

Therefore,

$$
\begin{aligned}
\dot{\rho} J+\rho \dot{J} & =0 \\
\dot{\rho} J+\rho J \operatorname{div} \boldsymbol{v} & =0 \\
\dot{\rho}+\rho \operatorname{div} \boldsymbol{v} & =0 \\
\partial_{t} \rho+\operatorname{div}(\rho \boldsymbol{v}) & =0 .
\end{aligned}
$$

- Transport Theorem with density:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{R_{t}} \rho \Phi \mathrm{~d} v=\int_{R_{t}} \rho \dot{\Phi} \mathrm{~d} v
$$

- Linear Momentum: $M=\rho \boldsymbol{v}$
- Stress vector: $\boldsymbol{t}_{(\boldsymbol{n})}$ is force/unit area.
- Balance law:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{R_{t}} \rho \boldsymbol{v}=\int_{R_{t}} \rho \dot{\boldsymbol{v}}=\int_{R_{t}} \rho \boldsymbol{b} \mathrm{~d} v+\int_{\partial R_{t}} \boldsymbol{t}_{(\boldsymbol{n})} \mathrm{d} a .
$$

- Stress tensor/Cauchy's Theorem: $\sigma^{T} \boldsymbol{n}=\boldsymbol{t}_{(\boldsymbol{n})}$. Derivation:
$-\boldsymbol{t}_{(-\boldsymbol{n})}=-\boldsymbol{t}_{(\boldsymbol{n})}$ by pillbox and balance law.
- Tetrahedron argument: \boldsymbol{n} the general normal of the coordinate-system-boxed tetrahedron. Then other faces $a_{i}=a \boldsymbol{n}_{i}$, where a is the area of the complicated face. Volume $h a / 3$. Apply $1 / a \cdot$ balance law, let $h \rightarrow 0$. Assume continuity, derive linear dependence by assuming values are locally constant.
- Updated balance law:

$$
\int_{R_{t}} \rho \boldsymbol{a}=\int_{R_{t}} \rho \boldsymbol{b}+\nabla \cdot \sigma
$$

- Field equations:

$$
\begin{aligned}
\rho_{\mathrm{ref}} \ddot{\boldsymbol{x}} & =\nabla_{X} \cdot s+\rho_{\mathrm{ref}} \boldsymbol{b} \quad \text { (referential) } \\
\rho \boldsymbol{a} & =\nabla_{\boldsymbol{x}} \cdot \sigma+\rho \boldsymbol{b} \quad \text { (spatial) }
\end{aligned}
$$

- Nominal Stress/Conjugate stress: $s=J F^{-1} \sigma .\left(\sigma^{T} \boldsymbol{n} \mathrm{~d} \boldsymbol{a}=s^{T} \boldsymbol{N} \mathrm{~d} \boldsymbol{A}\right.$ can be directly verified.) Also called Piola-Kirchoff stress. s^{T} is 2nd Piola-Kirchoff stress.
- Angular Momentum: $H=\rho \boldsymbol{x} \wedge \boldsymbol{v}$
- Non-polar material: no contact torques.
- Balance law:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{R_{t}} \rho \boldsymbol{x} \wedge \boldsymbol{v} \stackrel{(*)}{=} \int_{R_{t}} \rho \boldsymbol{x} \wedge \dot{\boldsymbol{v}}=\int_{R_{t}} \rho(\boldsymbol{x} \wedge \boldsymbol{b}+\boldsymbol{c}) \mathrm{d} v+\int_{\partial R_{t}} \boldsymbol{x} \wedge \boldsymbol{t}_{(\boldsymbol{n})} \mathrm{d} a
$$

\boldsymbol{c} is body torque. Equality $(*)$ follows because \boldsymbol{x}-derivatives vanish once $\wedge \boldsymbol{v}$ is applied.

- Subsituting Cauchy's Theorem into the balance law gives

$$
\begin{aligned}
\int_{R_{t}} \boldsymbol{x} \wedge\left(\nabla_{\boldsymbol{x}} \cdot \sigma+\rho \boldsymbol{b}\right)= & \int_{R_{t}} \rho(\boldsymbol{x} \wedge \boldsymbol{b}) \mathrm{d} v+\int_{\partial R_{t}} \boldsymbol{x} \wedge \sigma \boldsymbol{n} \mathrm{~d} a \\
\int_{R_{t}} \boldsymbol{x} \wedge\left(\nabla_{\boldsymbol{x}} \cdot \sigma\right) \quad & \int_{\partial R_{t}} \boldsymbol{x} \wedge \sigma \boldsymbol{n} \mathrm{~d} a
\end{aligned}
$$

View in component form, apply Gauß, derive $\varepsilon_{i j k} \sigma_{j i}=0 \Rightarrow \sigma=\sigma^{T}$.

- Field equations:

$$
\begin{aligned}
s^{T} F^{T} & =F s \quad(\text { referential }) \\
\sigma^{T} & =\sigma \quad(\text { spatial })
\end{aligned}
$$

- Vector identities:

$$
\begin{aligned}
(\boldsymbol{A} \cdot \nabla) \boldsymbol{A} & =\frac{1}{2} \nabla|\boldsymbol{A}|^{2}+(\nabla \times \boldsymbol{A}) \times \boldsymbol{A} \\
(\boldsymbol{A} \cdot \nabla) \boldsymbol{A} & =(\nabla \otimes \boldsymbol{A}) \boldsymbol{A}
\end{aligned}
$$

Use these identities to rewrite the $\dot{\boldsymbol{v}}$ as $\nabla\left(\boldsymbol{v}^{2}\right)$ for irrotational flow.

- Types of fluid flow:
- Inviscid: $\sigma=-p \mathrm{Id} \Rightarrow \operatorname{div} \sigma=-\nabla p$.
- Incompressible: $\dot{\rho}=0$ or $\operatorname{div} \boldsymbol{v}=0$.
- Steady: $\partial_{t} \boldsymbol{v}=\mathbf{0}$.
$\dot{\rho}=\boldsymbol{v} \cdot \nabla \rho$.
- Irrotational: $\boldsymbol{\omega}=\mathbf{0}$ or $\boldsymbol{v}=\nabla \varphi$.
- Elastic: p(ρ)
- Ideal=incompressible: $\operatorname{div} \boldsymbol{v}=0, J=1$.
- Rayleigh-Plesset equation: Begin with deformation of spherical shell (with extent!), assume $J \equiv 1$. Derive ODE.
- Conservative potentials: $\boldsymbol{b}=-\nabla \beta$
- Elastic or ideal flow here is circulation preserving, i.e. $\boldsymbol{a}=-\nabla$ something.
- Have

$$
\begin{aligned}
\boldsymbol{a} & =-\frac{1}{\rho} \nabla p(\rho)+\boldsymbol{b} \\
& =-\frac{1}{\rho} p^{\prime}(\rho) \nabla \rho-\nabla \beta
\end{aligned}
$$

- Define

$$
\begin{aligned}
\varepsilon(\rho) & =\int_{0}^{\rho} \frac{1}{\rho^{\prime}} p^{\prime}\left(\rho^{\prime}\right) \mathrm{d} \rho^{\prime} \\
\Rightarrow \nabla \varepsilon(\rho) & =\varepsilon^{\prime}(\rho) \nabla \rho
\end{aligned}
$$

- Therefore

$$
\boldsymbol{a}=-\nabla(\varepsilon(\rho)+\beta)
$$

- For ideal fluid substitute p / ρ_{0} for ε.
- Bernoulli's Theorem:
- Flow irrotational (i.e. $\boldsymbol{v}=-\nabla \varphi$):

$$
\nabla\left(\partial_{t} \varphi+\frac{v^{2}}{2}+\varepsilon(\rho)+\beta\right)=\mathbf{0}
$$

Proof: Just rewrite, obtaining $v^{2} / 2$ from second term of material derivative.

- Flow steady:

$$
\left(\frac{v^{2}}{2}+\varepsilon(\rho)+\beta\right)^{\bullet}=0
$$

i.e. this quantity is constant along streamlines. Proof: Exploit $\boldsymbol{v} \cdot \dot{\boldsymbol{v}}=\boldsymbol{v} \cdot \nabla\left(\boldsymbol{v}^{2}\right)$

- Flow both irrotational and steady:

$$
\nabla\left(\frac{v^{2}}{2}+\varepsilon(\rho)+\beta\right)=\mathbf{0}
$$

- Acoustic wave equation:
- Assume $\rho=\rho_{0}+\delta \rho,|\boldsymbol{v}| \ll 1,|\nabla \boldsymbol{v}| \ll 1$.
- Start with $\partial_{t}(\nabla \cdot \boldsymbol{v})$, use cons. of. momentum without second order term, cons. of mass as $\partial_{t} \rho+\rho_{0} \operatorname{div}(\boldsymbol{v})=0$.
- $\delta \rho_{t t}=c^{2} \nabla^{2} \delta \rho$, with $c=\sqrt{\partial_{\rho} p}$.
- Mach number: assume steadiness $\boldsymbol{b}=0$, use $\boldsymbol{v} \cdot \dot{\boldsymbol{v}}$ in terms of c^{2}.

$$
\boldsymbol{v} \cdot(\rho \boldsymbol{v})^{\bullet}=\boldsymbol{v} \cdot \dot{\boldsymbol{v}} \rho(1-\underbrace{\frac{\boldsymbol{v}^{2}}{c^{2}}}_{m:=})
$$

- Supersonic nozzle $m<1, m>1$.
- Conservation of Energy:
- Balance law:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} K\left(R_{t}\right) & =-S\left(R_{t}\right)+P\left(R_{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \underbrace{\frac{1}{2} \int \rho \boldsymbol{v} \cdot \boldsymbol{v} \mathrm{~d} v}_{\text {Kinetic energy } K(t)} & =-\underbrace{\int_{R_{t}} \operatorname{tr}(\sigma D) \mathrm{d} v}_{\text {Stress power } S\left(R_{t}\right)}+\underbrace{\int_{R_{t}} \rho \boldsymbol{b} \cdot \boldsymbol{v}+\int_{\partial R_{t}} \sigma \boldsymbol{n} \cdot \boldsymbol{v} \mathrm{~d} a}_{\text {Power supplied } P\left(R_{t}\right)}
\end{aligned}
$$

Proof: Multiply Equation of Motion by \boldsymbol{v}, integrate by parts in the σ term.

- Field equation:

$$
\underbrace{\rho\left(\frac{1}{2} v \cdot v\right)^{\bullet}}_{\text {Kinetic Energy }}+\underbrace{\operatorname{tr}(\sigma D)}_{\text {Stress Power }}=\underbrace{\nabla_{\boldsymbol{x}} \cdot(\sigma \boldsymbol{v})+\rho \boldsymbol{b} \cdot \boldsymbol{v}}_{\text {Rate-of-working }}
$$

- Key words for more global energy conservation: internal energy $U\left(R_{t}\right)$, heat supply per unit mass $H\left(R_{t}\right)$, heat flux through material surface.

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\{K+U\}=P\left(R_{t}\right)+H\left(R_{t}\right)
$$

Now, because there is a stress power loss above, there needs to be a gain here:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} U\left(R_{t}\right)=S\left(R_{t}\right)+H\left(R_{t}\right)
$$

- Jump conditions: For the balance law

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{R_{t}} \rho \pi=\int_{R_{t}} \rho s+\int_{\partial R_{t}} f_{(\boldsymbol{n})}
$$

we get

$$
\left[\rho V \pi+f_{(\boldsymbol{n})}\right]=0
$$

V_{n} interface speed, $V=V_{n}-\boldsymbol{v} \cdot \boldsymbol{n}$.

		Mass	Mom.	A.Mom.	Energy
π	quantity per unit mass	1	\boldsymbol{v}	$\boldsymbol{x} \wedge \boldsymbol{v}$	$\varepsilon+\frac{1}{2} \boldsymbol{v} \cdot \boldsymbol{v}$
s	supply of π per unit mass	0	\boldsymbol{b}	$\boldsymbol{x} \wedge \boldsymbol{b}$	$\boldsymbol{b} \cdot \boldsymbol{v}+r$
$f_{(\boldsymbol{n})}$	influx of π per unit area	0	$\boldsymbol{t}_{(\boldsymbol{n})}$	$\boldsymbol{x} \wedge \boldsymbol{t}_{(\boldsymbol{n})}$	$\boldsymbol{t}_{(\boldsymbol{n})} \cdot \boldsymbol{v}+h_{(\boldsymbol{n})}$

so that for example

$$
\begin{aligned}
{[\rho V] } & =0 \\
{\left[\rho V \boldsymbol{v}+\boldsymbol{t}_{(\boldsymbol{n})}\right] } & =\mathbf{0}
\end{aligned}
$$

Or for material jumps: $\left[\boldsymbol{t}_{(\boldsymbol{n})}\right]=\mathbf{0}$.

Derivation:

- Modification for moving boundary is

$$
-\int_{\text {jump surface }}[\rho \pi] V_{n}
$$

- Then use pillbox that flattens around surface.

Examples:

- Free boundary: pressure must be continuous, because otherwise there's a finite force on something massless.
- Stokes waves:
- Assume $\boldsymbol{v}=\nabla \varphi$.
- Conservation of mass $\nabla^{2} \varphi=0$.
- Bernoulli's equation

$$
\partial_{t} \varphi+\frac{v^{2}}{2}+\frac{p}{\rho_{0}}+\beta=\mathrm{const}
$$

- BCs: z depthward, $z=\eta$ free surface
$-\varphi_{z}=0$ at bottom
$-\frac{\mathrm{d}}{\mathrm{d} t}(z-\eta)=0$ at $z=\eta \rightarrow \partial_{t} \varphi=\partial_{t} \eta$ at $z=0(!)$.
- pressure continuous at interface. Use Bernoulli's equation to rewrite as condition

$$
\partial_{t} \varphi+g \eta=0 \quad \text { at } z=0
$$

- Surface tension: $p_{1}-p_{2}=-\gamma \cdot$ curvature.
- Rayleigh-Taylor instability: Large density over small density.
- Kelvin-Helmholtz instability: Wave formation.

4 Constitutive Laws

- Observer: A reference frame/coordinate system w.r.t. which vectors and tensors are seen.

$$
\boldsymbol{x}^{*}=\boldsymbol{c}(t)+Q(t) \boldsymbol{x}
$$

so, for example, $F^{*}=Q F, J^{*}=J, U^{*}=U, R^{*}=Q R$.

- Objective fields:

$$
\begin{aligned}
\varphi^{*}\left(\boldsymbol{x}^{*}\right) & =\varphi(\boldsymbol{x}) \\
\boldsymbol{u}^{*}\left(\boldsymbol{x}^{*}\right) & =Q \boldsymbol{u}(\boldsymbol{x}) \\
A\left(\boldsymbol{x}^{*}\right) & =Q A(\boldsymbol{x}) Q^{T}
\end{aligned}
$$

Examples: D, regions, normals, σ
Non-examples: $\boldsymbol{v}=\dot{\boldsymbol{c}}+Q \boldsymbol{v}, L=Q L Q^{T}+\dot{Q} Q^{T}, W$.

- Constraint stress:
- Must be workless, i.e. $\operatorname{tr}(N D)=0$
- Constraint given as $\lambda(C)=0 \rightarrow \dot{\lambda}=\operatorname{tr}\left(\lambda_{C} \dot{C}\right)=0$, where $C=F^{T} F$.
- $\dot{C}=2 F^{T} D F \Rightarrow N=\alpha F \lambda_{C} F^{T}$.
- Fluid: $\sigma=g(L)$.

Cannot support shear stress at equilibrium. If ideal, also cannot support shear stress when in motion.

- Objectivity: $\sigma^{*}=g\left(L^{*}\right)$.
- Choose $Q=\mathrm{Id}, \dot{Q}=-W$ to obtain that $g(L)=g(D)$.
- Most general such g :

$$
\sigma(D)=\alpha I+\beta D+\gamma D^{2}
$$

with α, β, γ functions of the invariants of D.
Proof: Cayley-Hamilton.

- Incompressible fluid:

$$
\sigma=-p \mathrm{Id}
$$

- Ideal fluid:

$$
\sigma=-p(\rho) \operatorname{Id}
$$

- Newtonian fluid:

$$
\sigma=-p(\rho) \operatorname{Id}+2 \mu D
$$

- Navier-Stokes equation:

$$
\rho \boldsymbol{a}=-\nabla p+\mu \Delta \boldsymbol{v}+\rho \boldsymbol{b}
$$

plus conservation of mass.

- Rescaling $\tilde{x}=x / l, \tilde{\boldsymbol{v}}=\boldsymbol{v} / v, p=p /\left(\rho_{0} v^{2}\right), \tilde{t}=t / l$.

Then kinematic viscosity is $\nu=\mu / p$.

- Reynolds number: $\operatorname{Re}=l v / \nu$.

High: Dominated by inertial effects.
Low: Dominated by viscous effects.

- No-slip BCs apply only for viscous fluids.
- Wiggling plate: Watch for emergence of a boundary layer.
- Solid: $\sigma=f(F)$
- Material Symmetry: $P \in \mathcal{S}$, where \mathcal{S} is the symmetry group of the material.

$$
\sigma=f(F)=f(F P)
$$

Isotropic Material: $\mathcal{S}=\mathrm{SO}(3)$. Then choose $P=R^{T} \Rightarrow \sigma=f(F)=f(V)$.

- Objectivity: $\sigma^{*}=f\left(V^{*}\right)$.

Most general expression to satisfy this:

$$
\sigma(V)=\alpha \mathrm{Id}+\beta V+\gamma V^{2}
$$

with α, β, γ functions of the invariants.

- Lamé constant/Young's Modulus: Linearization!

$$
\begin{aligned}
F & =\mathrm{Id}+\nabla \boldsymbol{u} \\
E & =\frac{1}{2}\left[F^{T} F-\mathrm{Id}\right] \approx \frac{1}{2}\left[\nabla \boldsymbol{u}-(\nabla \boldsymbol{u})^{T}\right] \\
V & \approx \operatorname{Id}+E \\
R & \approx \operatorname{Id}+\frac{1}{2}\left[\nabla \boldsymbol{u}-(\nabla \boldsymbol{u})^{T}\right]
\end{aligned}
$$

Use these in

$$
\sigma=c_{0} \operatorname{tr} V \operatorname{Id}+c_{1} V+c_{3} V^{2} \approx \lambda \operatorname{tr}(E) \operatorname{Id}+2 \mu E
$$

where λ, μ are the Lamé constants.

- Strain energy per volume: $W(F) \leftarrow$ the usual way to specify constitutive relations for solids Then

$$
\sigma=\frac{1}{J} \cdot \underbrace{\frac{\partial W}{\partial F}}_{\frac{\partial W}{\partial V} R} F^{T}=\frac{1}{J} \cdot \frac{\partial W}{\partial V} V
$$

Invoke objectivity: $W(F)=W(U)$
Invoke isotropy: $W(F)=W(V)$
$\Rightarrow W$ depends only on invariants of V.
$\Rightarrow W$'s principal axes line up with those of V, i.e. principal stresses || principal stretches:

$$
\sigma_{\alpha}=\frac{1}{J} \lambda_{\alpha} \frac{\partial W\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}{\partial \lambda_{\alpha}} .
$$

Incompressible:

$$
\sigma_{\alpha}=\frac{1}{J} \lambda_{\alpha} \frac{\partial W\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}{\partial \lambda_{\alpha}}-p .
$$

Specifying W in terms of $B=F F^{T}$:

$$
\sigma=\frac{2}{J}\left(\mathrm{III}_{B} W_{\mathrm{III}_{B}} \mathrm{Id}+\left(W_{\mathrm{I}_{B}}+\mathrm{I}_{B} W_{\mathrm{II}_{B}}\right) B-W_{\mathrm{II}_{B}} B^{2}\right)
$$

where subscripts by $\mathrm{I}_{B}, \mathrm{II}_{B}, \mathrm{III}_{B}$ mean partial derivatives.

- Neo-Hookean material:

$$
W=\frac{1}{2} \mu\left[\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}-3-2 \ln (J)\right]+\frac{1}{2} \mu^{\prime}(J-1)^{2}
$$

unconstrained: $\quad \sigma_{i}=\mu\left(\lambda_{i}^{2}-1\right)+\mu^{\prime} J(J-1)$,

$$
\text { incompressible: } \quad \sigma_{i}=\mu \lambda_{i}^{2}-p
$$

- Solving a solids problem:
- Calculate F (Kinematics)
- Calculate $B=F F^{T}$
- Calculate σ
- Apply conservation of momentum in deformed configuration. Solve for unknowns \boldsymbol{x}, p, using BCs.

