PDE Summary

1 General Stuff

- Standard mollifier:
is a C_{c}^{∞} hump.

$$
\begin{gathered}
\eta(x)=\exp \left(\frac{1}{x^{2}-1}\right) \mathbf{1}_{[-1,1]} \\
\eta_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \eta(x / \varepsilon) .
\end{gathered}
$$

Normalization ($\int=1$) is still missing.

- Gamma function:

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha-1} \mathrm{~d} t
$$

- Volumes of sphere and ball:

$$
\begin{aligned}
\left|S^{n-1}\right| & =\omega_{n} r^{n-1}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} r^{n-1} \\
\left|B^{n}\right| & =\frac{\omega_{n}}{n} r^{n}
\end{aligned}
$$

- Green's identities:

$$
\begin{aligned}
\int_{U} v \Delta u & =-\int_{U} \nabla v \cdot \nabla u+\int_{\partial U} v \partial_{n} u \\
\int_{U} v \Delta u-u \Delta v & =\int_{\partial U} v \partial_{n} u-u \partial_{n} v
\end{aligned}
$$

- Young's Inequality:

$$
\|f * g\|_{L^{r}} \leqslant\|f\|_{L^{p}}\|g\|_{L^{q}} \quad \text { with } \quad \frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}
$$

In particular $q=1, r=p$.

- Generalized Hölder:

$$
\left\|f_{1} \cdot f_{2} \cdots f_{m}\right\|_{L^{1}} \leqslant\left\|f_{1}\right\|_{p_{1}}\|f\|_{p_{2}} \cdots\left\|f_{m}\right\|_{p_{m}}
$$

if

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}=1
$$

- Interpolation Inequality for L^{p} : If $1 \leqslant s \leqslant r \leqslant t \leqslant \infty$

$$
\frac{1}{r}=\frac{\theta}{s}+\frac{1-\theta}{t}
$$

$u \in L^{s} \cap L^{t}$, then $u \in L^{r}$ and

$$
\|u\|_{L^{r}} \leqslant\|u\|_{L^{s}}^{\theta}+\|u\|_{L^{t}}^{1-\theta} .
$$

- Compact: Every open cover has finite subcover. Metric space: \Leftrightarrow sequentially compact. Heine-Borel (finite-dim): \Leftrightarrow closed and bounded.
- Arzelà-Ascoli $:(S, d)$ compact metric space. $M \subset C(S)$ with sup-norm is compact if M is bounded, closed and equicontinuous.
- Precompact: has compact closure.
- Compact operator: $T: B_{1} \rightarrow B_{2}$ compact if T continuous and $T(A)$ precompact for every bounded A.
- Fredholm Alternative: $T: B \rightarrow B$ linear, continuous, compact:
- either $(I-T) x=0$ has a nontrivial solution
- or $(I-T)^{-1}$ exists and is bounded.
"Uniqueness and Compactness \Rightarrow Existence".
- Lax-Milgram: $B: H \times H \rightarrow \mathbb{F}$, bounded above and coercive $\Rightarrow B[u, g]=F(u)$ solvable in H for every $g \in H$.
Proof: Build operator $T_{g}: H \rightarrow H^{*}$ that gives $T_{g}(u)=B[u, g]$ (Riesz rep.). Prove 1-1 and onto.
The point is: no symmetry.
- Banach-Steinhaus/Uniform Boundedenss Principle:
$X \mathrm{BR}, Y \mathrm{NR}, T_{i} \in L(X, Y)(i \in I), \sup _{i \in I}\left\|T_{i} x\right\|<\infty(x \in X)$
$\Rightarrow \sup _{i}\left\|T_{i}\right\|<\infty$.
Read as "linear +pw bounded \Rightarrow uniformly bounded."

2 Equations

- Classification of second order equations:

$$
A_{i, j} \partial_{i} \partial_{j} u+B_{i} \partial_{i} u+C=0,
$$

where A is symmetric WLOG can be rewritten into one of

$$
\begin{aligned}
u_{x x}+u_{y y}+\text { l.o.d. } & =F \\
u_{x x}-u_{y y}+\text { l.o.d. } & =F \\
u_{x x} \pm u_{y}+\text { l.o.d. } & =F .
\end{aligned}
$$

- Minimal surface equation:

$$
\operatorname{div}\left(\frac{D u}{\sqrt{|D u|^{2}+1}}\right)=0
$$

- Monge-Ampére equation:

$$
\operatorname{det}\left(D^{2} u\right)=K(x)\left(1+|D u|^{2}\right)^{(n+2) / 2}
$$

3 Laplace's Equation

U open.

- $u \in C^{2}(U)$: harmonic, subharmonic $\Delta u \geqslant 0$, superharmonic.
- Mean Value Inequality: u subharmonic

$$
\begin{aligned}
& u(x) \leqslant f_{S(x, r)} u(y) \mathrm{d} S_{y} \\
& u(x) \leqslant f_{S(x, r)} u(y) \mathrm{d} B
\end{aligned}
$$

(implies Mean Value Property if harmonic)
Proof: $0 \leqslant \int_{B} \Delta u=\int_{S} \partial_{n} u$, then exploit $\partial_{n} u=\partial_{r}(x+\rho n) . \int_{B} u=\int_{r} \int_{|\omega|=1} u=u \int_{r}$.

- Strong Maximum Principle: U bounded, connected, u subharmonic, $u(x)=\sup _{U} u \Rightarrow u$ constant

Proof: Consider $\{u=\sup \}$. By MVI, $u=\sup$ on any ball in U. Thus $\{u=\sup \}$ open. But so is $\{u<\sup \} . U=\{u=\sup \} \cup\{u<\sup \}$, both open $\Rightarrow\{u=\sup \}=U$.

- Weak maximum principle: $u \in C(\bar{U})$ and subharmonic. Then u assumes extrema on the boundary.

Proof: SMP or: Suppose $x \in U$ is \max and $\Delta u>0$. Then $D u=0$ and $D^{2} u$ negative semidef, contradicting $\Delta u=\operatorname{tr}\left(D^{2} u\right) \geqslant 0$. If only $\Delta u \geqslant 0$, consider $u+\varepsilon|x|^{2}$, which is strictly subharmonic.

- Strong \Rightarrow constant, Weak \Rightarrow extrema on boundary.
- Uniqueness follows directly from the WMP.
- Harnack's Inequality: $u \geqslant 0$ (!) harmonic, $U^{\prime} \subset \subset U$ connected $\Rightarrow \exists C$ such that $\sup u<C \inf u$. Proof: Pick $x_{1}, x_{2} \in U$, apply MVP for large and small circle, respectively, then shrink/expand domain by using $u \geqslant 0$, take sup/inf. Use cover of balls to repeat argument as necessary.
- Fundamental solution: look for radial symmetry

$$
\psi=C+ \begin{cases}\frac{1}{2 \pi} \log r & n=2 \\ \frac{1}{(2-n) \omega_{n}} r^{2-n} & n \geqslant 3\end{cases}
$$

Constant chosen because it gives the right constant to prove $\Delta \psi=\delta_{0}$ (use Green's second id on a ball surrounding the signularity). $K(x, \xi)=\psi(|x-\xi|)$.

- Liouville's Theorem: (only in 2D) Subharmonic functions bounded above are constant.
- $u \in C^{2}(\bar{U})$:

$$
\begin{equation*}
u(\xi)=\int_{U} K(x, \xi) \Delta u \mathrm{~d} x+\int_{\partial U} u \partial_{n_{x}} K(x, \xi)-K(x, \xi) \partial_{n_{x}} u \mathrm{~d} S_{x} \tag{1}
\end{equation*}
$$

Proof: Integrate on $U \backslash B_{\varepsilon}, \varepsilon \rightarrow 0$.
Remains valid if K replaced by $K+w$ with harmonic w.

- Green's function for Dirichlet problem: $\Delta_{x} G=\delta_{\xi}, G(x, \xi)=0$ for $x \in \partial U$. Use G in (1). To get one, we need to find w with $w=-K$ on ∂U. (Use method of images.) For a ball, we get the Poisson kernel

Poisson's integral formula:

$$
H(x, \xi)=\frac{r^{2}-|\xi|^{2}}{\omega_{n} r|x-\xi|^{n}}
$$

$$
u(\xi)=\int_{S(0, r)} H(x, \xi) f(x) \mathrm{d} S_{\xi}
$$

- Kelvin's transformation: u harmonic \Rightarrow

$$
|x|^{2-n} u\left(x /|x|^{2}\right) \text { harmonic for } x \neq 0
$$

- Properties of H :

$$
\begin{array}{ll}
\circ & H(x, \xi)=H(\xi, x) \\
\circ & H(x, \xi)>0 \text { on } B(0, r) \\
\circ & \Delta_{\xi} H(x, \xi)=0 \text { for } \xi \in B(0, r) \text { and } x \in S(0, r) \\
\circ & \int_{S(0,1)} H(x, \xi) \mathrm{d} S_{x}=1
\end{array}
$$

- Existence on a ball: also gives $C(\bar{B})$

Proof: Differentiate under integral (using DCT). Prove continuity onto the boundary by

$$
u(\xi)-f(y)=\int_{S(\xi, r)} H(x, \xi)(f(x)-f(y)) \mathrm{d} S_{x}
$$

Use ε - δ-continuity of f and split integral into $|x-y|<\delta$ and $|x-y|>\delta$. (Method called approximate identities.)

- Converse of MVP: $u \in C(U)$ harmonic \Leftrightarrow satisifes MVP for every $B(x, r) \subset U$.

Proof: Construct a harmonic function v on $B(x, r)$ with $v=u$ on $S(x, r) . v-u$ satisfies MVP on any subcircle, thus it satisfies the strong maximum principle. Thus $v=u$.

- Real analytic: completely represented by absolutely convergent Taylor series.
$\exists M>0 \forall \alpha:\left|\partial^{\alpha} f(y)\right| \leqslant \frac{M|\alpha|!}{r^{|\alpha|}} \Leftrightarrow$ analytic.
Real analytic f is completely determined by power series (use similar open-set method on $\left\{\partial^{\alpha} h(y)=0 \forall \alpha\right\}$ as SMP)
- Harmonic \Rightarrow Analytic: Consider $H(x, \xi+i \sigma)$. Find a region of σ where H is differentiable.
- Analyticity estimates can be obtained by the MVP applied to $\partial_{x_{j}} u$, then coordinatewise Gauß, giving

$$
\left|\partial_{x_{j}} u(x)\right| \leqslant \frac{n}{r} \max _{S(x, r)}|u| \leqslant \frac{n}{r} \sup _{U}|u| .
$$

Then iterate this estimate with $1 /|\alpha|$ radius to get

$$
\left|\partial^{\alpha} u(x)\right| \leqslant\left(\frac{n|\alpha|}{r}\right)^{|\alpha|} \max _{S(x, r)}|u| .
$$

- Uniformly (on compact subsets of U) converging sequences of harmonic functions converge to harmonic functions.
Proof: Limit is continuous (because of uniform convergence). Now exchange limits (DCT) in MVP and prove harmonicity.
- Harnack's convergence theorem: u_{k} harmonic, increasing and bounded at a point. Then $\left(u_{k}\right)$ converges uniformly on compact subsets to a harmonic function.
Proof: above + Harnack inequality.
- "Montel's Theorem"-a compactness criterion:
$\left(u_{k}\right)$ bounded, harmonic $\Rightarrow \exists$ uniformly (on compact subsets) converging subsequence \rightarrow harmonic limit.
Proof: $\left(u_{k}\right)$ is equicontinuous because of the derivative estimates and the assumed uniform bound.
- Subharmonicity on $C(U)$: Satisfies MVI locally.
- Perron's method:
- $S_{f}:=\{v \in C(\bar{U}), v \leqslant \mathrm{BC}, v$ subharmonic $\}$.
- $u:=\sup S_{f}$ is harmonic.

Proof:

- $\quad S_{f}$ is closed under finite max. (MVI)
- Harmonic lifting: v subharmonic,

$$
V(x)= \begin{cases}\text { harmonic function with matching BCs } & B(\xi, r), \\ v & \text { elsewhere }\end{cases}
$$

$v \in S_{f} \Rightarrow V \in S_{f}, v \leqslant V$.

- Fix a closed ball, grab sequence $v_{k} \rightarrow u$ at a point $\xi . \bar{v}_{k}:=\max \left(v_{1}, \ldots, v_{k}, \min \mathrm{BC}\right)$.
- Replace these by their harmonic lifting V_{k} around ξ.
- HCT for a limit V.
- Prove $V=u$ on ball by finding SMP uniqueness of harmonic liftings of in-between ($V<u$) functions.
- Barrier function at $y \in \partial U /$ regular boundary point:
$w \in C(\bar{U})$ subharmonic, $w(y)=0, w(\partial U \backslash\{y\})<0$.
\exists tangent plane \Rightarrow regular
\exists exterior sphere \Rightarrow barrier $=K$ (boundary point, outside center) $-K$ (x, outside center)
\exists exterior cone \Rightarrow regular
- At regular boundary points, $u=\mathrm{BC}$.

Proof:

- Fix $\varepsilon>0 . \delta$ from $\varepsilon-\delta$ with f.
- $\quad v=\mathrm{BC}+A \cdot$ barrier $-\varepsilon$, where $A w \leqslant-2 \max \mathrm{BC}$ outside a ball around the boundary point in question. v subharmonic by def.
- Show $v \leqslant f(x)$ on boundary and interior.
- Do some funky tricks involving $-f$, its Perron function, and the maximum principle to show opposite inequality.
- The Dirichlet problem is solvable for all continuous BC data iff the domain is regular.

3.1 Energy Methods

- $\quad 0=\int w \Delta w=\int|\nabla w|^{2}$ proves uniqueness in $C^{2}(\bar{U})$.
- Energy Functional:
for g the RHS.

$$
I[w]=\int_{U} \frac{1}{2}|\nabla w|^{2}+w g \mathrm{~d} x
$$

- Dirichlet's principle: $u \in C^{2}(\bar{U})$ solves $\mathrm{PDE}+\mathrm{BC} \Leftrightarrow$ it minimizes $I[u]$ over $\left\{w \in C^{2}(\bar{U}), w=\mathrm{RHS}\right.$ on $\partial \Omega\}$.
Proof: $\mathrm{PDE} \Rightarrow$ min: Start from

$$
0=\int(-\Delta u+g)(u-w)
$$

use Gauß, Cauchy-Schwarz, $\sqrt{a} \sqrt{b} \leqslant 1 / 2\left(a^{2}+b^{2}\right)$.
$\min \Rightarrow$ PDE: $w=u+t v$, for $v \in C_{c}^{\infty}$. Differentiate by t.

3.2 Potentials

- Potential of a measure:

$$
u_{\mu}(x)=\frac{2-n}{\omega_{n}} \int_{\mathbb{R}^{n}} K(x, y) \mu(\mathrm{d} y)=\int_{\mathbb{R}^{n}}|x-y|^{2-n} \mu(\mathrm{~d} y)
$$

- Computable for a sphere with uniform charge density (same as point charge), finite line, disk.
- $u_{\mu}=0 \Rightarrow \mu=0$.

Proof: Show $\mu * f=0$ for any $f \in C_{c}^{\infty}$ by

$$
\mu * f=\mu *(K * \Delta f)=(\mu * K) * \Delta f=0
$$

- Potentials of compact set: Harmonic function with BC 1 on compact set F and BC zero at infinity. Perron function on ever-increasing balls-independent of exact domains.
- A (unique) generating (positive) measure on ∂F exists:

Proof (if $\partial F \in C^{2}$): by Poisson's boundary representation formula (with both u and $\partial_{n} u$)

$$
p_{F}(\xi)=\int_{\partial F} K(x, \xi) \underbrace{\partial_{n} p_{F} \mathrm{~d} S_{x}}_{\text {measure! }}
$$

$\partial_{n} u \leqslant 0$ by the max principle (1 on the boundary must be the max value) \Rightarrow positivity.
Proof (if not):

- Approximate F through shrinking compact sets with C^{∞} boundary ($1 / k^{2}$-mollified indicators of $F^{1 / k}=\{\operatorname{dist}(x, F) \leqslant 1 / k\} . \psi=\varphi_{1 / k^{2}} * \mathbf{1}_{F^{1 / k}}$. Then consider $F^{1 / 2 k} \subset \psi^{-1}([c, 1]) \subset F^{1 / k}$ and use Sard's Theorem to deduce boundary smoothness for a.e. c. Generate μ_{k} by above theorem.
- $\quad p_{F_{k}} \rightarrow p_{F}$ uniformly on compact subsets (Harnack)
- Prove $\mu_{k}\left(\mathbb{R}^{n}\right) \leqslant R^{n-2}$ by using a $B(0, R) \supset F_{k}$-use Fubini and the generator of the disk potential. ("Gauß'trick') Thus \exists weak-* convergent subsequence supported on ∂F. Thus convergene of $p_{F_{k}} \rightarrow p_{F}$ away from ∂F. Uniqueness by uniqueness of potentials of measures.

3.3 Lebesgue's Thorn

- In 2D, Riemann mapping theorem guarantees that point regularity is topological, not geometric.
- Lebesgue's Thorn: Using level sets of the potential of the measure $x^{\beta} \mathrm{d} x$ on $(0,1)$, one may construct exceptional points.

3.4 Capacity

-

$$
\operatorname{cap}(F)=\mu_{F}\left(\mathbb{R}^{n}\right)=\frac{2-n}{\omega_{n}} \int_{\partial F \text { or enclosing surface }} \partial_{n} p_{F} \mathrm{~d} S_{x}
$$

- If $\partial F \in C^{2}$, Green's 1st id gives

$$
\operatorname{cap}(F)=\frac{2-n}{\omega_{n}} \int_{U \subset \mathbb{R}^{n} \backslash F}\left|\nabla p_{F}\right|^{2}
$$

- Wiener's criterion: $y \in \partial U$ regular \Leftrightarrow

$$
\lambda^{2-n} \sum_{k=0}^{\infty} \lambda^{k(2-n)} \operatorname{cap}\left(F_{k}\right) \quad F_{k}:=\left\{\lambda^{k+1} \leqslant|x-y| \leqslant \lambda^{k}\right\} \quad(\lambda \in(0,1))
$$

- Properties of capacity:

$$
\begin{array}{ll}
\circ & F_{1} \subset F_{2} \Rightarrow \operatorname{cap}\left(F_{1}\right) \leqslant \operatorname{cap}\left(F_{2}\right)\left(\text { Gauß } \beta^{\prime} \text { Trick! }\right) \\
& \operatorname{cap}\left(F_{1}\right)=\int_{\mathbb{R}^{n}} \mu_{1}(\mathrm{~d} x)=\int_{\mathbb{R}^{n}} p_{2} \mu_{1}(\mathrm{~d} x)=\iint|x-y|^{2-n} \mu_{2}(\mathrm{~d} y) \mu_{1}(\mathrm{~d} y)=\int p_{1} \mu_{2}(\mathrm{~d} y) \leqslant \operatorname{cap}\left(F_{2}\right) . \\
\circ & \left(F_{k}\right) \text { nested sequence with } \bigcap F_{k}=F, \text { then } \operatorname{cap}\left(F_{k}\right) \rightarrow \operatorname{cap}(F) . \\
& \left(\operatorname{smooth} \varphi=1 \text { on } F_{1}, \operatorname{cap}(F)=\int \varphi \mu_{F} \leftarrow \int \varphi \mu_{F_{k}}=\operatorname{cap}\left(F_{k}\right)\right) \\
\circ & \operatorname{cap}(A \cup B) \leqslant \operatorname{cap}(A)+\operatorname{cap}(B) . \\
& \left(p_{\cup} \leqslant p_{A}+p_{B} \text { by WMP. Then use Gauß' trick. }\right) \\
\circ & \operatorname{cap}(A \cup B)+\operatorname{cap}(A \cap B) \leqslant \operatorname{cap}(A)+\operatorname{cap}(B)
\end{array}
$$

- $\quad \operatorname{cap}(\overline{B(0, R)})=\operatorname{cap}(S(0, R))=R^{n-2}$.
- Screening: nested spheres $A \subset B . \operatorname{cap}(A \cup B)=\operatorname{cap}(B)$ (think of the potentials)
- $\operatorname{cap}(F)=\sup \left\{\mu(F): \operatorname{supp}(\mu) \subset F, u_{\mu}(F) \leqslant 1\right\}$ (Smooth approx F_{k} to F so that $p_{F_{k}}=1$ on ∂F. Then Gauß' trick.)
- Coulomb energy:

$$
E[\mu]=\frac{1}{2} \iint|x-y|^{2-n} \mu(\mathrm{~d} x) \mu(\mathrm{d} y)
$$

Mutual energy:

$$
E[\mu, \nu]=\frac{1}{2} \iint|x-y|^{2-n} \mu(\mathrm{~d} x) \nu(\mathrm{d} y)
$$

- Properties:
- If $E[|\mu|]<\infty$, then pos.def.
- CSU
- $\quad \mu \mapsto E[\mu]$ strictly convex
- Gau β^{\prime} principle: $\mu \geqslant 0$ finite measure on F.

$$
G[\mu]=E[\mu]-\mu(F) \geqslant-\frac{1}{2} \operatorname{cap}(F)
$$

Proof:

- $\quad G(\mu)$ bounded below (F compact $\Rightarrow|x-y|$ bdd.)
- Infimizing sequences are precompact (i.e. have bounded $\mu_{k}(F)$)
- G is wlsc (take infimizing sequence $\left(\mu_{k}\right)$, use $\max (M,|x-y|)$ to cut off, $k \rightarrow \infty, M \rightarrow \infty$ (MCT), consider $E\left[\mu-\mu_{k}\right]$)
- Minimizer is unique (strict convexity)
- Minimizer is μ_{F} (Consider Euler-Lagrange Equation)
- Evaluate minimum
- Kelvin's principle:

$$
\frac{1}{2 \operatorname{cap}(F)}=\inf \{E[\mu]: \mu \geqslant 0, \operatorname{supp}(\mu) \subset F, \mu(F)=1\}
$$

Proof: Apply Gauß' principle to $t \mu$, choose $t=\operatorname{cap}(F)$.

4 Heat Equation

- Conservation of mass: $\partial_{t} u+\operatorname{div}(\boldsymbol{v})=0$
- Fick's law: $\boldsymbol{v}=-\alpha^{2} \nabla u$.
- Together: $u_{t}=\Delta u$.
- Parabolic scaling invariance: $x \mapsto \lambda x, t \mapsto \lambda^{2} t$.
- Use conservation of mass $\left(\partial_{t} \int u=0\right)$ to obtain the ansatz $u(x, t)=t^{-n / 2} g\left(r t^{-1 / 2}\right)$. Plug in heat equation to get the heat kernel

$$
k(x, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-|x|^{2} / 4 t}
$$

- Use

$$
2 \int_{y>a} e^{-y^{2}} \mathrm{~d} y<2 \int_{y>a} \frac{y}{a} e^{-y^{2}}=\frac{e^{-a^{2}}}{a} .
$$

and in-boxing the ball to show

$$
\int_{|x| \geqslant \delta} k(x, t) \mathrm{d} x \rightarrow 0 \quad \text { as } \quad t \rightarrow 0
$$

- $u=k * f$ solves $u_{t}=\Delta u$ for $u \rightarrow f$ for $t \rightarrow 0$.
- Tychonoff counterexample for uniqueness:

$$
u(x, t)=\sum_{k} g_{k}(t) x^{2 k}
$$

- Widder's Theorem: $u \geqslant 0 \Rightarrow$ uniqueness.
- Heat ball: $E(x, t, r)=\left\{k(x-y, t-r) \geqslant r^{-n}\right\}$.
- $\quad V_{T}=U \times[0, T]$,
$\partial_{1} V_{T}=$ all except top "lid", $\partial_{2} V_{T}=$ lid.
- Mean Value Property: $u \in C^{2}\left(V_{T}\right), \partial_{t} u-\Delta u \leqslant 0, E(\ldots) \subset V_{T}$:

$$
u(x, t) \leqslant \frac{1}{4 r^{n}} \iint_{E(x, t, r)} u(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} \mathrm{~d} y \mathrm{~d} s
$$

- Exists for heat spheres as well.
- Converse: Equality and $C^{2}\left(V_{T}\right)$ implies $\partial_{t} u=\Delta u$.

Proof: Let RHS $=\varphi(r) . \varphi(0)=u(x, t)$,
with $\{\psi \geqslant 0\}=E(\ldots)$.

- Strong Maximum Principle: U open, bounded, connected, $u \in C\left(\bar{V}_{T}\right)$ and satisfies MVI. Then

$$
\max _{\bar{V}_{T}} u \leqslant \max _{\partial_{1} V_{T}} u
$$

If max attained at $(x, t) \in V_{T}$, then u is constant in \bar{V}_{t}.
Proof: If max attained in interior, then $u=M$ on heat ball. Then a polygonal path reaches every point on V_{T}.

- Temperatures are analytic:
- Green's functions for the heat equation:
- Strong Converse of MVP.

Proof: Construct parallel solution by Green's functions. Conclude uniqueness by MVP.

4.1 Difference Schemes and Probabilistic Interpretation

- Work on a lattice.
- Strong Maximum Principle (subharmonic \Rightarrow assume max M in interior $\Rightarrow M=u \leqslant E[x+h \omega] \leqslant M$.)
- Implies discrete Laplacian has trivial null-space $\Rightarrow \exists$!
- Allows Discrete Poisson Integral Formula. (by solving for δ on the boundary)
- Markov property: $E\left[X_{m+1} \mid X_{1}, \ldots, X_{m}\right]=E\left[X_{m+1} \mid X_{m}\right]$.
- (Super)Martingale property: u subharmonic $\Rightarrow E\left[u\left(X_{m+1}\right) \mid X_{m}\right] \geqslant u\left(X_{m}\right)$ (just like discrete SMP) [with X_{m} a random walk]
- Strong Martingale Property: m may be a stopping time.
- If M_{U} is first passage time to ∂U, then $u=E\left[f\left(x+W_{M_{U}}\right)\right] .(f=\mathrm{BC}, u$ harmonic $)$

$$
E\left[f\left(x+W_{M_{U}}\right)\right]=\sum_{y \in \partial U_{h}} H(x, y) f(y)=\sum_{y \in \partial U_{h}} \underbrace{P(\text { hit } y)}_{H} f(y) .
$$

- Method of relaxation:

$$
u^{(l+1)}(x)=\operatorname{avg}\left(u^{(l)} \text { on pixels surrounding } x\right)
$$

- Brownian motion: Same formula as above holds for continuous-time.
(Central Limit Theorem, path space version of it, $W_{t} \sim k(x, t / 2)$. Cylinder sets. Convergence in weak-* topology. Law of iterated logarithm. Proof of CLT: Convolution of densities becomes multiplication after Fourier transform. Use independence. Done.)
- Feynman-Kac formula: $u_{t}=\frac{1}{2} \Delta u$ with IC f.

$$
E\left(f\left(x+W_{t}\right)\right)=u(x, t)
$$

- Implications on boundary regularity:
- u defined by F-K is the Perron function
- $\quad y \in \partial U$ is regular iff $P\left(T_{y}=0\right)=1$ (BM immediately exits U.)
- Littlewood's crocodile
- Lebesgue's thorn

4.2 Hearing the shape of a drum

- Spectral measure:

$$
A(\lambda)=\sum_{k=1}^{\infty} \mathbf{1}_{\lambda_{k} \leqslant \lambda}(\lambda) .
$$

- Weyl's result:

$$
\lim _{\lambda \rightarrow \infty} \frac{A(\lambda)}{\lambda^{n / 2}}=\frac{|U|}{(2 \pi)^{n / 2} \Gamma(n / 2)} .
$$

- Kac's result:

$$
\lim _{t \rightarrow 0+}(2 \pi t)^{n / 2} \sum_{k=1} e^{-\lambda_{k} t}=(2 \pi t)^{n / 2} \int e^{-t \lambda} A(\mathrm{~d} \lambda)=|U| .
$$

(Weyl \Rightarrow Kac: Integrate by parts, rescale. Proof of Kac: represent Green's function in terms of eigenfunctions somehow.)

5 Wave equation

- $u_{t t}=c^{2} u_{x x}$
- D'Alembert's formula:
- Characteristics.
- Parallelogram identity:

$$
u(\text { top })+u(\text { bottom })=u(\text { left })+u(\text { right }) .
$$

- Good/bad BCs, Inflow/outflow. Domain of dependence. Method of reflection. Odd/even extension.
- D'Alembertian: $\square u:=u_{t t}-c^{2} \Delta u=0 . u=f, u_{t}=g$.
- Fourier Analysis: $\hat{u}(\xi, t)=\hat{f}(\xi) \cos (c|\xi| t)+\hat{g}(\xi) \sin (c|\xi| t /|\xi| t)=\hat{f}(\xi) \cos (c|\xi| t)+\hat{g}(\xi) \partial_{t} \cos (c|\xi| t)$:

$$
u(x, t)=\int_{\mathbb{R}^{n}} k(x-y, t) g(y) \mathrm{d} y+\partial_{t} \int_{\mathbb{R}^{n}} k(x-y, t) f(y) \mathrm{d} y
$$

Needs to coincide with solution formula.

- For $n=3, k=t$. uniform measure on $\{|x|=c t\}$
- Method of Spherical means: Observe:

$$
M_{u}(x, r)=f_{S(x, r)} u(y) \mathrm{d} S_{y}
$$

satisfies Darboux's Equation:

$$
\Delta_{x} M_{u}=" \Delta_{r} " M_{u}=\left(\partial_{r r}-\frac{n-1}{r} \partial_{r}\right) M_{u} .
$$

Similarly, if u solves $u_{t t}=u_{x x}$, then M_{u} solves the Euler-Poisson-Darboux equation:

$$
\left(M_{u}\right)_{t t}-\Delta_{r} M_{u}=0 .
$$

In 3D, this reduces the wave equation to $\partial_{t}^{2}\left(r M_{u}\right)=\partial_{r}^{2}\left(r M_{u}\right)$, which we can solve by D'Alembert's formula for all x. Then

$$
\begin{gathered}
u=\lim _{r \rightarrow 0} \frac{M_{u}}{r} \\
\frac{1}{(2 \pi)^{n / 2}} \int_{|y|=c t} e^{-i \xi \cdot y} \mathrm{~d} S_{y}=\frac{\sin (c|\xi| t)}{c|\xi|} .
\end{gathered}
$$

- Huygens' principle.
- Hadamard's method of descent: Treat 2D equation as 3D equation, independent of third coordinate.
- General solution for odd $n \geqslant 3$: Assume $u^{\prime}(0)=0$. Define

$$
v(x, t):=\int k(s, t) u(x, s) \mathrm{d} s
$$

as a temporal heat kernel average. Oddly, $\partial_{t} v=\Delta_{x} v$. Solve this. Rewrite using spherical means. Change variables as $\lambda=1 / 4 t$ and invert using the Laplace transform

$$
h^{\#}(\lambda)=\int_{0}^{\infty} e^{-\lambda \varphi} h(\varphi) \mathrm{d} \varphi
$$

- Uniqueness by energy norm.

6 Distributions/Fourier Transform

$U \subset \mathbb{R}^{n}$ open

- $\mathcal{D}(U):=C_{c}^{\infty}(U) . \varphi_{k} \rightarrow \varphi$ iff
- \exists fixed compact set $F: \operatorname{supp}\left(\varphi_{k}\right) \subset F$
- $\forall \alpha: \sup _{F}\left|\partial^{\alpha} \varphi_{k}-\partial^{\alpha} \varphi\right| \rightarrow 0$.
- Distribution: $\mathcal{D}^{\prime}(U)$
- Convergence: $L_{k} \xrightarrow{\mathcal{D}} L \Leftrightarrow \forall \varphi \in \mathcal{D}(U):\left(L_{k}, \varphi\right) \rightarrow(L, \varphi)$.
- Examples: $L_{\mathrm{loc}}^{p} \subset \mathcal{D}^{\prime}(U)$. Aside: $L_{\mathrm{loc}}^{p} \subset L_{\mathrm{loc}}^{q}$ for $p \geqslant q$. (not for L^{p}), Radon measure (A Borel measure that is finite on compact sets.), δ function, Cauchy Principal value.
- Derivative: $\left(\partial^{\alpha} L, \varphi\right)=(-1)^{|\alpha|}\left(L, \partial^{\alpha} \varphi\right)$.
- Differentiation is continuous.
- Partial differential operator: $P=\sum_{|\alpha| \leqslant N} c_{\alpha}(x) \partial^{\alpha}$, adjoint, fundamental solution: $P K=\delta$.
- Schwartz class: $\mathcal{S}\left(\mathbb{R}^{n}\right) \subset C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\|\varphi\|_{\alpha, \beta}:=\sup _{x}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|<\infty \quad \forall \alpha, \beta .
$$

A polynormed, metrizable space (Use $\sum 2^{-k} \sum_{|\alpha|+|\beta|=k} \frac{\|\cdot\|_{\alpha, \beta}}{1+\|\cdot\|_{\alpha, \beta}}$). Complete, too. (ArzelàAscoli).

- Examples:
- $\mathcal{D} \subset \mathcal{S}$ (convergence carries over, too.)
- $\exp \left(-|x|^{2}\right) \in \mathcal{S}$, but not $\in \mathcal{D}$.
- Fourier Transform:

$$
\hat{\varphi}(\xi)=\mathcal{F} \varphi(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} \varphi(x) \mathrm{d} x
$$

- Basic estimates:

$$
\begin{aligned}
\|\hat{\varphi}(\xi)\|_{L^{\infty}} & \leqslant C\left\|(1+|x|)^{n+1} \varphi(x)\right\|_{L^{\infty}} \leqslant C\|\varphi\|_{L^{1}}<\infty \\
\left\|\partial_{\xi}^{\beta} \hat{\varphi}(\xi)\right\|_{L^{\infty}} & \leqslant C\left\|(1+|x|)^{n+1} x^{\beta} \varphi\right\|_{L^{\infty}} \\
\left\|\xi^{\alpha} \hat{\varphi}(\xi)\right\|_{L^{\infty}} & \leqslant C\left\|(1+|x|)^{n+1} \partial_{x}^{\alpha} \varphi\right\|_{L^{\infty}} \\
\|\hat{\varphi}\|_{\alpha, \beta} & \leqslant C\left\|(1+|x|)^{n+1} x^{\beta} \partial_{x}^{\alpha} \varphi\right\|_{L^{\infty}} \quad \Rightarrow \quad \hat{\varphi} \in C^{\infty} .
\end{aligned}
$$

- Dilation: $\sigma_{\lambda} \varphi(x)=\varphi(x / \lambda) .\left(\mathcal{F} \sigma_{\lambda} \varphi\right)=\lambda^{n} \sigma_{1 / \lambda} \mathcal{F} \varphi$.
- Translation: $\tau_{h} \varphi(x)=\varphi(x-h) .\left(\mathcal{F} \tau_{h} \varphi\right)=e^{-i h \cdot \xi \mathcal{F} \varphi .}$
- Inversion formula:

$$
\varphi(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} \hat{\varphi}(\xi) \mathrm{d} \xi=\mathcal{F}^{*} \hat{\varphi}=\mathcal{F} \mathcal{R} \hat{\varphi}
$$

where $\mathcal{R} \varphi(x)=\varphi(-x)$.
\mathcal{F} is an isomorphism of \mathcal{S}, with $\mathcal{F F}^{*}=\mathrm{Id}$.
Proof: Prove $\left(\mathcal{F F} \mathcal{F}^{*}-\mathrm{Id}\right) e^{-|x|^{2}}=0$, then for dilations and translations, linear comb. of which are dense in $\mathcal{S} . \mathcal{F}$ is $1-1, \mathcal{F}^{*}$ is onto, but $\mathcal{F}^{*}=\mathcal{R} \mathcal{F}$.

- \mathcal{F} isometry of L^{2}, \mathcal{F} continuous from L^{p} to L^{q}, where

$$
\frac{1}{p}+\frac{1}{q}=1, \quad p \in[1,2] .
$$

In particular $p=1, q=\infty$.
Proof: Show \mathcal{S} dense in L^{p} (see below), extend \mathcal{F}, use Plancherel for L^{2}.

- Mollifier: $\eta \in C_{c}^{\infty} \cdot \int \eta=1 . \eta_{N}(x):=N^{n} \eta(N x)$.
- $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right) .(1 \leqslant p<\infty)$

Proof: $\left\|\eta_{N} * f-f\right\|_{L^{p}} \rightarrow 0$ holds for step functions. Step functions are dense in $L^{p}\left(\mathbb{R}^{n}\right)$.
$\left\|f * \eta_{N}\right\|_{L^{p}} \leqslant C\|f\|_{L^{p}}$ (Young's)
Pick g a step function such that $\|f-g\|_{L^{p}}<\varepsilon$. Now measure

$$
\left\|f * \eta_{N}-f\right\|_{L^{p}}=\left\|f * \eta_{N}-g * \eta_{N}+g * \eta_{N}-g+g-f\right\|_{L^{p}} .
$$

- $\quad C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in \mathcal{S}.

Proof: Smooth cutoff.

- Plancherel's Theorem: $(\mathcal{F} f, \mathcal{F} g)_{L^{2}}=(f, g)_{L^{2}}$.

Proof: by Fubini.

- $\mathcal{F}: L^{1}\left(\mathbb{R}^{n}\right) \rightarrow \dot{C}\left(\mathbb{R}^{n}\right)$, with $\dot{C}:=\left\{h: \mathbb{R}^{n} \rightarrow \mathbb{R}: h(x) \rightarrow 0(x \rightarrow \infty)\right\}$.

Proof: \mathcal{S} is dense in L^{1}. Well-defined: Take $\varphi_{k}, \psi_{k} \rightarrow f \in L^{1}$, show $\mathcal{F} \varphi_{k}-\mathcal{F} \psi_{k} \rightarrow 0$ in L^{∞}. Goes to \dot{C} : unproven.

- Linear operator of type (r, s) :

$$
\|K \varphi\|_{L^{s}} \leqslant C(r, s)\|\varphi\|_{L^{r}}
$$

\mathcal{F} is of type $(1, \infty)$ and $(2,2)$.

- Riesz-Thorin Convexity Theorem: \mathcal{F} of type $\left(r_{0}, s_{0}\right)$ and $\left(r_{1}, s_{1}\right)$

$$
\begin{aligned}
& \frac{1}{r}=\frac{\theta}{r_{0}}+\frac{1-\theta}{r_{1}} \\
& \frac{1}{s}=\frac{\theta}{s_{0}}+\frac{1-\theta}{s_{1}}
\end{aligned}
$$

Then \mathcal{F} of type (r, s) for $\theta \in[0,1]$.

6.1 Tempered Distributions

- Tempered Distributions: \mathcal{S}^{\prime}, convergence as in $\mathcal{D}^{\prime} . \mathcal{D} \subset \mathcal{S} \subset \mathcal{S}^{\prime} \subset \mathcal{D}^{\prime}$.

Examples: L^{1} functions, $e^{|x|^{2}}$ not, $e^{-|x|^{2}},\left\|\left(1+|x|^{2}\right)^{-M} f\right\|_{L^{1}}<\infty$.

- A tempered distribution is no worse than a certain derivative coupled with a monomial multiplication.
$L \in \mathcal{S}^{\prime} \Rightarrow \exists C, N \forall \varphi \in \mathcal{S}:|(L, \varphi)| \leqslant \sum_{|\alpha|,|\beta| \leqslant N}\left\|x^{\alpha} \partial^{\beta} \varphi\right\|_{L^{\infty}}$ (continuity).
- $\quad(\eta * L, \varphi)=(L,(\mathcal{R} \eta) * \varphi)$ for $L \in D^{\prime}, \mathcal{R}$ is reflection and η a mollifier
- $\quad \eta * L$ is a C^{∞} function, namely $\gamma(x)=\left(L, \tau_{x} \mathcal{R} \eta\right)$, where $\tau_{x} f(y)=(y-x)$.

Proof: 1. γ maps to \mathbb{R}. 2. γ sequentially continuous. 3. $\gamma \in C^{1}$ (FD). 4. $\gamma \in C^{\infty}$ (induction). 5. $(\eta * L, \varphi)=(\gamma, \varphi)$ (Riemann sums).

- \mathcal{D} is dense in \mathcal{D}^{\prime}.

Proof: $\chi_{m}:=\mathbf{1}_{[-m, m]}$. Fix $L \in \mathcal{D}^{\prime}, L_{m}:=\chi_{m}\left(\eta_{m} * L\right) \in D \rightarrow L$ in \mathcal{D}^{\prime}.

- \mathcal{S} is dense in \mathcal{S}^{\prime}.
(because \mathcal{D} is already dense in \mathcal{D}^{\prime}.)
- Transpose $K^{t}: \mathcal{S} \rightarrow \mathcal{S}$ for $K: \mathcal{S} \rightarrow \mathcal{S}$ as by $\left(K^{t} L, \varphi\right):=(L, K \varphi)$.
- $K: \mathcal{S} \rightarrow \mathcal{S}$ linear and continuous. $\left.K^{t}\right|_{\mathcal{S}}$ continuous. \exists ! unique, continuous extension of K^{t} onto \mathcal{S}^{\prime}.
- $\mathcal{F}: \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$ continuous.
- $\mathcal{F} \delta=1 /(2 \pi)^{n / 2}$.
- $0<\beta<n, C_{\beta}=\Gamma((n-\beta) / 2)$

$$
\mathcal{F}\left(C_{\beta}|x|^{-\beta}\right)=C_{n-\beta}|x|^{-(n-\beta)}
$$

Use this to solve Laplace's equation.

7 Hyperbolic Equations

- General constant coefficient problem. $P(D, \tau)=\tau^{m}+\tau^{m-1} P_{1}(D)+\cdots+P_{m}(D)$
- Duhamel's principle: Solve $P(D, \tau) u=f$ by solving the standard problem $P(D, \tau) u_{s}=0, u_{s}(0)=0$, $\partial_{t}^{m-1} u_{s}(0)=g$ and finding

$$
u(x, t)=\int_{0}^{t} u_{s} \mathrm{~d} s
$$

- Treat remaining ICs by solving standard problems for $\tau^{m-1} P_{1}, \ldots, \tau^{0} P_{m}$, each time adding to the right hand side, which can finally be killed with the above approach.
- Fourier-transforms to $P(i \xi, \tau) \hat{u}=0$, with $\tau=\partial_{t}$.

Initial conditions $\tau^{0 \ldots m-2} \hat{u}(\xi, 0), \tau^{m-1} \hat{u}(\xi, 0)$.

- Representation of the solution:

$$
\begin{aligned}
Z(\xi, t) & =\frac{1}{2 \pi} \int_{\Gamma} \frac{e^{i \lambda t}}{P(i \xi, i \lambda)} \mathrm{d} \lambda \\
P(i \xi, \tau) Z & =\frac{1}{2 \pi} \int_{\Gamma} P(i \xi, i \lambda) \frac{e^{i \lambda t}}{P(i \xi, i \lambda)} \mathrm{d} \lambda=\frac{1}{2 \pi} \int_{\Gamma} e^{i \lambda t} \mathrm{~d} \lambda=0
\end{aligned}
$$

where Γ is a path around the roots.

- Classical solution requires $u \in C^{m}$. Requires $\forall T \exists C_{T}, N$:

$$
\left|\tau^{k} Z(\xi, t)\right| \leqslant C_{T}(1+|\xi|)^{N}
$$

- Hyperbolicity: A standard problem is hyperbolic: $\Leftrightarrow \exists \mathrm{a} C^{m}$ solution for all $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
- Gårding's Criterion: It's hyperbolic iff $\exists c \in \mathbb{R}: P(i \xi, i \lambda) \neq 0$ for all ξ and $\operatorname{Im} \lambda \leqslant-c$. Proof: Estimate around in the above representation for Z.
- Paley-Wiener Theorem: $g \in L^{1} \Rightarrow \hat{g}$ entire.

8 Conservation Laws

- $u_{t}+f(u)_{x}=0$.

Why are they called called conservation laws?

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int u=\int u_{t}=\int f(u)_{x}=f(b)-f(a) \rightarrow 0
$$

- Inviscid Burgers' Equation: $u_{t}+\left(u^{2}\right)_{x}=0$.
- Characteristics: Assume $u=u(x(t), t)$,

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\partial u}{\partial x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial u}{\partial t}
$$

Compare shape with

$$
0=u_{x} f^{\prime}(u)+u_{t}
$$

obtain $\mathrm{d} x / \mathrm{d} t=f^{\prime}(u)$.

- Weak solution: slap test function onto equation, integrate by parts.
- Rankine-Hugoniot:

$$
\text { shock speed }=\frac{\llbracket f(u) \rrbracket}{\llbracket u \rrbracket}
$$

Apply weak solution formula across a jump, consider normal geometrically to obtain speed.

- Riemann problem: Jump IC. \rightarrow non-uniqueness of the weak solution for jump up: rarefaction wave or shock with correct speed?
- Hopf's treatment of Burger's Equation:
- Add viscosity to get $u_{t}+\left(u^{2} / 2\right)_{x}=\varepsilon u_{x x}$.
- Put U as an antiderivative of u.
- Gives Hamilton-Jacobi PDE $U_{t}+U_{x}^{2} / 2=\varepsilon U_{x x}$.
- Now try to rewrite that into a linear equation, by assuming $\psi=\psi(u)$. Yields ODE $C \varphi^{\prime \prime}+$ $C \varphi^{\prime}=0$, solution $\psi=\exp (-U / 2 \varepsilon)$.
- This gives the heat equation $\psi_{t}=\varepsilon \psi_{x x}$.

○

$$
u=2 \varepsilon \frac{\psi_{x}}{\psi}=\frac{\int \frac{x-y}{t} \exp (-G / 2 \varepsilon) \mathrm{d} y}{\int \exp (-G / 2 \varepsilon) \mathrm{d} y}=\frac{x}{t}-\frac{\langle y\rangle}{t} \rightarrow \frac{x}{t}-\frac{\operatorname{argmin} G}{t}
$$

with $G=(x-y)^{2} / 2 t+U_{0}$.

- $a_{-}=\inf \operatorname{argmin} G, a_{+}=\sup \operatorname{argmin} G$.
- Properties: well-defined, increasing, $a_{+}(\leftarrow) \leqslant a_{-}(\rightarrow)$, a_{-}left-continuous, a_{+}right-continuous, go to $\pm \infty$. Equal except for a countable set of shocks.
- Hopf's theorem:

$$
\frac{x-a_{+}}{t} \leqslant \liminf _{\varepsilon \rightarrow 0} u^{\varepsilon} \leqslant \limsup _{\varepsilon \rightarrow 0} u^{\varepsilon} \leqslant \frac{x-a_{-}}{t}
$$

- $\quad u_{0} \in \mathrm{BC}$ (bounded, continuous) $\Rightarrow u(\cdot, t) \in \mathrm{BV}_{\text {loc }}$. Globally BV?

Proof: x, a_{+}, a_{-}are increasing \Rightarrow differences in $\mathrm{BV}_{\text {loc }}$.

- Vanishing viscosity solutions are weak solutions.

Proof: Pass to vanishing viscosity under integral using DCT and boundedness.

- Cole-Hopf solutions produce rarefaction x / t for jump up, shock for jump down.
- More properties:
- $\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}$ exists except for a countable set. $u=\lim u^{\varepsilon} \in \mathrm{BV}_{\text {loc }}$ with left and right limits. Proof: u is a difference of increasing functions.
- Lax-Oleinik entropy condition: $u\left(x_{-}, t\right)>u\left(x_{+}, t\right)$ at jumps.
"Characteristics never leave a shock."
Proof: Travelling waves for Burgers with viscosity only exist for $u_{-}>u_{+}$.
- x a shock location:

$$
\begin{aligned}
\text { shock speed } & =\frac{\llbracket f(u) \rrbracket}{u}=\frac{1}{2}\left(u_{+}+u_{-}\right) \\
\text {shock speed }=\frac{1}{2}\left(u\left(x_{-}, t\right)+u\left(x_{+}, t\right)\right) & =f_{a_{-}}^{a_{+}} u_{0}(y) \mathrm{d} y \\
\left(a_{+}-a_{-}\right) \text {shock speed } & =\int_{a_{-}}^{a_{+}} u_{0}(y) \mathrm{d} y
\end{aligned}
$$

The last equation here is a momentum conservation equality.
Proof: $G\left(a^{+}\right)=G\left(a^{-}\right)$.

- Entropy/entropy-flux pair: $\Phi, \Psi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ smooth are an e/ef pair for $u_{t}+f(u)_{x}=0: \Leftrightarrow \Phi$ convex, $\Phi^{\prime} f^{\prime}=\Psi^{\prime}$. Then $\Phi(u)_{t}+\Psi(u)_{x}=0$ for perfectly smooth solutions, otherwise $\Phi\left(u_{t}\right)+\Psi(u)_{x} \leqslant 0$ in the distributional sense, which means
for smooth non-negative v.

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} \Phi(u) v_{t}+\Psi(u) v_{x} \mathrm{~d} x \mathrm{~d} t \geqslant 0
$$

- By the vanishing viscosity method, we get an entropy solution.

Proof: Multiply the viscosity-added c.law by Φ^{\prime}. Use chain rule on $\Phi\left(u^{\varepsilon}\right)_{x x}$. Use convexity of Φ to show one term involving $\varphi^{\prime \prime}$ non-negative. Multiply by a non-negative smooth function, let $\varepsilon \rightarrow 0$ to obtain entropy inequality.

- Entropy solution: u is an entropy solution of a c.law if u is a weak solution that satisfies the entropy condition for every e/ef pair.
- Dissipation measure:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int\left(u^{\varepsilon}\right)^{2}=-2 \varepsilon \int\left(u_{x}^{\varepsilon}\right)^{2}
$$

Assuming a traveling wave solution of the form
we find

$$
u^{\varepsilon}=v\left(\frac{x-c t}{\varepsilon}\right)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int\left(u^{\varepsilon}\right)^{2}=\frac{\left(u_{-}-u_{+}\right)^{3}}{6}
$$

- Kružkov's Uniqueness Theorem: L^{∞} Entropy solutions u, v, S_{t} cuts of the event cone (given by max. speed $c^{*}=\max _{\text {range } u}\left|f^{\prime}\right|$. Then for $t_{1}<t_{2}$

$$
\int_{S_{t_{2}}}|u-v| \leqslant \int_{S_{t_{1}}}|u-v|
$$

Proof: Doubling trick, clever choice of test functions.
Implies uniqueness.

9 Hamilton-Jacobi Equations

- $u_{t}+H(D u, x)=0$.
- Example: Curve evolving with normal velocity: $u_{t}+\sqrt{1+\left|D_{x} u\right|^{2}}=0$.
- Non-Example: Motion by mean curvature $u_{t}=u_{x x} /\left(1+u_{x}\right)^{2}$ (parabolic).
- Example: Substitute $U=\int u$ in conservation laws.
- PDE is infinitely-many-particle limit of Hamilton ODE

$$
\begin{aligned}
\dot{x} & =\partial_{p} H(p, x) \\
\dot{p} & =-\partial_{x} H(p, x)
\end{aligned}
$$

which coincides with characteristic equation of PDE.

- Mechanics motivation:
- $L(q, x)=T-V$
- Lagrange's Equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial q}\right)=\frac{\partial L}{\partial x}
$$

Way to see this: If RHS $=0$, then L symmetric in x, so LHS becomes conserved. (Noether's theorem.)
Equivalent to Hamilton's ODE (Proof: $H=\max _{q}(q p-L(x, q, t)$), where $q=q(x, p, t)$ is the solution of $p=\partial_{q} L(v)$.

- Action, given path $x(t)$:

$$
S(x)=\int_{0}^{t} L(\dot{x}, x, t) \mathrm{d} t
$$

- Principle of least action: $\min S \Leftrightarrow$ Lagrange's Equation.

Proof: $u+\varepsilon v$, derivative by ε, the usual.

- Generalized momentum: $p=\partial_{q} L$. Assumed solvable for q.
- Hamiltonian: $H=T+V=p \cdot q-L=2 T-(T-V)=T+V$.
- Legendre transform: More general way of obtaining H. Assume $L(q)$ (dropping dependencies!) convex, $\lim _{|q| \rightarrow \infty} L(q) /|q|=\infty$. Then

$$
H(p)=L^{*}(p)=\sup _{q}\{p \cdot q-L(q)\}
$$

Solved when $p=\partial_{q} L$, but in a more general sense.
Duality: Edge \leftrightarrow Corner. Subdifferentials.

- $\quad L$ convex $\Rightarrow L^{* *}=L$.

Proof: Prove convexity and superlinearity of L^{*}. Use symmetry

$$
H(p)+L(q) \geqslant p \cdot q
$$

to prove two sides of the equality $H^{*}=L$.

- Hopf-Lax formula: g is IC

$$
u(x, t)=\inf \left\{\int L(\dot{x}) \mathrm{d} x+g(y), x(0)=y, x(t)=x\right\}=\min \left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\}
$$

Proof: Inf bounded above by straight-line characteristic. Lower bound works by Jensen's inequality.

- Semigroup Property.

Proof: Always pick particular solutions, prove both sides of the inequality.

- $\quad u$ defined by Hopf-Lax is Lipschitz if g is Lipschitz.

Proof: Lipschitzicity for given t is immediate (pick good z). Transform problem to comparison with $t=0$ by semigroup property. Temporal estimate is screwy, involves special choices in inf.

- u by Hopf-Lax is differentiable a.e. and satisfies the H-J PDE where it is.

Proof: Rademacher's Theorem. Prove $u_{t}+H(D u) \leqslant 0$ for forward in time by taking increments \rightarrow 0, using inequality with Legendre transform.

- Lipschitz + Differentiable solution a.e. is not sufficient for uniqueness. (45-degree angle trough vs. 90-degree trough)
- $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ semiconcave if

$$
f(x+z)-2 f(x)+f(x-z) \leqslant C|z|^{2}
$$

for some z.
$\Leftrightarrow f(z)-C / 2|z|^{2}$ is concave.
\Leftrightarrow "can be forced into concavity by subtracting a parabola."
$\Leftarrow C^{2}$ and bounded second derivatives implies semiconcavity.

- $\quad g$ semiconcave $\Rightarrow u$ semiconcave.

Clever choice of test locations in Hopf-Lax.

- $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ uniformly convex: \Leftrightarrow

$$
\sum_{i, j} H_{p_{i} p_{j}} \xi_{i} \xi_{j} \geqslant j|\xi|^{2}
$$

- If H uniformly convex. Then u is semiconcave (indep. of initial data)

Proof: Taylor, mess about with Hopf-Lax.

- Now $H(p) \rightarrow H(p, x)$ nonconvex.
- Vanishing Viscosity Method: Use $u_{t}+H(D u, x)=\varepsilon \Delta u$. Locally uniform convergence follows from Arzelà-Ascoli.
- u is a viscosity solution: $\Leftrightarrow u=g$ on $\mathbb{R}^{n} \times\{t=0\}$, for each $v \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$

$$
u-v \text { has a local maximum at }\left(x_{0}, t_{0}\right) \Rightarrow v_{t}\left(x_{0}, t_{0}\right)+H\left(D v\left(x_{0}, t_{0}\right)\right) \leqslant 0(\text { and } \min \rightarrow \geqslant)
$$

- If u is a vanishing viscosity solution, then it is a viscosity solution.

Proof: Convergence is locally uniform as $\varepsilon_{j} \rightarrow 0$. Thus for each fixed ball around a local strict maximum in $u-v$, a local maximum in $u^{\varepsilon}-v$ exists if ε is small enough. There, $v_{x}=u_{x}^{\varepsilon}$ and $v_{t}=u_{t}^{\varepsilon}$ and $-\Delta u^{\varepsilon} \geqslant-\Delta v . v_{t}+H(D v) \leqslant 0$ follows. Generalize to non-strict maxima by adding parabolas.

- A classical solution of a H-J PDE is a viscosity solution.

Proof: Maximum of $u-v \Rightarrow$ derivatives are equal $\Rightarrow \mathrm{PDE}$.

- Touching by C^{1} function: u continuous. u differentiable at x_{0}. Then $\exists v \in C^{1}: v\left(x_{0}\right)=u\left(x_{0}\right), u-v$ has a strict local max.
- $\quad u$ viscosity solution $\Rightarrow u$ satisfies H-J wherever it is differentiable

Proof: Mollify touching function, $u-v^{\varepsilon}$ maintains strict max., verify definition of Viscosity solution. (Mollification necessary because test functions are required to be C^{∞}.)

- Uniqueness: $H \in \operatorname{Lip}_{p}(C) \cap \operatorname{Lip}_{x}(C 1+|p|) \Rightarrow$ uniqueness.

Proof: doubling trick again.

10 Sobolev Spaces

$1 \leqslant p<\infty$.

- $\|u\|_{k, p ; \Omega}=\sum_{|\alpha| \leqslant k}\left\|D^{\alpha} u\right\|_{p}$.
- $W^{k, p}(\Omega):=\left\{u \in \mathcal{D}^{\prime}(\Omega): D^{\alpha} u \in L^{p}(\Omega),|\alpha| \leqslant k\right\}$ Banach space.
- $W_{0}^{k, p}(\Omega):=\operatorname{cl}\left(\mathcal{D}(\Omega),\|\cdot\|_{k, p ; \Omega}\right)$.
- $u \in W^{l, p}(\Omega) . \Omega^{\prime} \subset \subset \Omega$ open $\Rightarrow \exists u_{k} \in C_{c}^{\infty}\left(\Omega^{\prime}\right):\left\|u_{k}-u\right\|_{l, p ; \Omega^{\prime}} \rightarrow 0$.

Proof: Mollification, throw derivatives onto u by integration by parts.

- $u \in W^{l, p}(\Omega), \Omega$ bounded $\Rightarrow \exists u_{k} \in C^{\infty}(\Omega) \cap W^{l, p}(\Omega):\left\|u_{k}-u\right\|_{l, p ; \Omega} \rightarrow 0$.

Proof: Exhaust Ω by $U_{k}:=\{\operatorname{dist}(x, \partial U)>1 / k\}$. Consider smooth partition of unity ζ_{i} subordinate to $V_{i}:=\Omega_{i+3} \backslash \bar{\Omega}_{i+1} . u_{i}:=\eta_{\varepsilon_{i}} *\left(\zeta_{i} u\right)$ s.t. $\left\|u_{i}-\zeta_{i} u\right\|_{l, p}<\delta 2^{-i-1}$. Give one more set of wiggle room on each side for mollification. $v:=\sum \zeta_{i} u_{i} \in C^{\infty}$ because there's only a finite number of terms for fixed point/set. Then estimate $\|u-v\|_{l, p}$.

- Typical idea: Consider

$$
f^{*}(x)=\lim _{r \rightarrow 0} f_{B(x, r)} f(y) \mathrm{d} y
$$

- $u \in W^{1, p}(\Omega), \Omega^{\prime} \subset \subset \Omega$. Then
- There exists a representative on Ω^{\prime} that is absolutely continuous on a line and whose classical derivative agrees a.e. with the weak one.
- If the above is true of a function, then $u \in W^{1, p}(\Omega)$.

Proof: WLOG $p=1$ (Jensen). WTF?
Consequences: $W^{1, p}$ closed wrt. max, min, abs. value, $.^{+} . \Omega$ connected, $D u=0 \Rightarrow u$ constant.

10.1 Campanato

- Oscillation:

$$
\operatorname{osc}_{U}=\sup _{x, y \in U}|u(x)-u(y)|
$$

- $\quad C^{0, \alpha}:=\left\{|u(x)-u(y)| \leqslant C|x-y|^{\alpha}\right\} .\|u\|_{C^{0, \alpha}}:=\|u\|_{C(\bar{U})}+\sup _{x \neq y}|u(x)-u(y)| /|x-y|^{\alpha}$.
- $C^{k, \alpha}:=D^{\alpha} \in C^{0, \alpha}$. Norm: sum over multi-indices.
- Campanato's Inequality: $u \in L_{\mathrm{loc}}^{1}(\Omega), 0<\alpha \leqslant 1, \exists M>0$:

$$
f_{B}\left|u(x)-\bar{u}_{B}(x)\right| \mathrm{d} x \leqslant M r^{\alpha} .
$$

Then $u \in C^{0, \alpha}(\Omega)$ and $\operatorname{osc}_{B(x, r / 2)} u \leqslant C M r^{\alpha} . \bar{u}_{B}$ is the mean over B.
Proof: x a Lebesgue point of $u, B(x, r / 2) \subset B(z, r)$. Then $\left|\bar{u}_{B(x, r / 2)}-\bar{u}_{B(z, r)}\right| \leqslant 2^{n} M r^{\alpha}$. Iteration via geometric series and Lebesgue-pointy-ness yields

$$
\left|u(x)-\bar{u}_{B(z, r)}\right| \leqslant C(n, \alpha) M r^{\alpha} .
$$

For two Lebesgue points,

$$
|u(x)-u(y)| \leqslant\left|u(x)-\bar{u}_{B(z, r)}\right|+\left|\bar{u}_{B(z, r)}-u(y)\right| \leqslant C(n, \alpha) M r^{\alpha}
$$

10.2 Sobolev

- Gagliardo-Nirenberg-Sobolev: $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right), 1 \leqslant p<n \Rightarrow$

$$
\|u\|_{p^{*}} \leqslant C\|D u\|_{p}
$$

where

$$
\frac{1}{p^{*}}+\frac{1}{n}=\frac{1}{p} \quad \Rightarrow \quad p^{*}>p
$$

- Considering what happens when you scale functions $u \rightarrow u_{\lambda}(x):=u(\lambda x)$, these exponents are the only ones possible.
- If we choose $p=1$, then the best constant comes to light by choosing $u=\mathbf{1}_{B(0,1)}$, giving the isoperimetric inequality.
- Proof: Suppose $p=1$ at first. Compact support \Rightarrow

$$
u(x) \leqslant \int_{-\infty}^{\infty}\left|D u\left(x \ldots x, y_{i}, x, \ldots, x\right)\right| \mathrm{d} y_{i} \quad(i=1, \ldots, n)
$$

Then

$$
|u(x)|^{n /(n-1)} \leqslant\left(\prod_{i} \int \ldots \mathrm{~d} y_{i}\right)^{1 /(n-1)}
$$

Integrating this gives

$$
\int|u|^{n /(n-1)} \mathrm{d} x_{1} \leqslant\left(\int|D u| \mathrm{d} x_{1}\right)^{1 /(n-1)}\left(\prod_{i=2} \iint|D u| \mathrm{d} x_{1} \mathrm{~d} y_{i}\right)^{1 /(n-1)}
$$

by pulling out an independent part and using generalized Hölder. Then iterate the same trick. To obtain for general p, use on $v=|u|^{\gamma}$ with suitable γ.

10.3 Poincaré and Morrey

- Riesz potential: $0<\alpha<n$

$$
I_{\alpha}(x)=|x|^{\alpha-n} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right) .
$$

- $\left\|I_{1} * f\right\|_{L^{p}} \leqslant C\|f\|_{L^{p}}$.
- Poincaré's Inequality: Ω convex, $|\Omega|<\infty, d=\operatorname{diam}(\Omega), u \in W^{1, p}(\Omega)$. Then

$$
\left(f_{\Omega}\left|u(x)-\bar{u}_{\Omega}\right|^{p}\right)^{1 / p} \leqslant C d\left(f_{\Omega}|D u|^{p}\right)^{1 / p}
$$

Proof: Use calculus to derive

$$
|u(x)-\bar{u}| \leqslant \frac{d^{n}}{n} f_{\Omega} \frac{|D u(y)|}{|x-y|^{n-1}} \mathrm{~d} y .
$$

Then use potential estimate.

- Morrey's Inequality: $u \in W_{\operatorname{loc}}^{1,1}(\Omega), 0<\alpha \leqslant 1$. If $\exists M>0$ with

$$
\int_{B(x, r)}|D u| \leqslant M r^{n-1+\alpha}
$$

for all $B(x, r) \subset \Omega$. Then $u \in C^{0, \alpha}(\Omega)$ and $\operatorname{osc}_{B(x, r)} u \leqslant C M r^{\alpha}$.

- Morrey=Poincaré + Campanato in $W^{1,1}$.
- More general Morrey: $u \in W^{1, p}\left(\mathbb{R}^{n}\right), n<p \leqslant \infty$. Then $u \in C_{\mathrm{loc}}^{0,1-n / p}\left(\mathbb{R}^{n}\right)$ and

$$
\operatorname{osc}_{B(x, r)} u \leqslant r^{1-n / p}\|D u\|_{L^{p}}
$$

If $p=\infty, u$ is locally Lipschitz.
Proof: Use Jensen $(\cdot)^{p \cdot \frac{1}{p}}$ on Poincaré's RHS. Then apply Campanato.

10.4 BMO

- BMO seminorm:

$$
[u]_{\mathrm{BMO}}:=\sup _{B} f_{B}\left|u-\bar{u}_{B}\right| \mathrm{d} x
$$

- $\quad \mathrm{BMO}:=\left\{[u]_{\mathrm{BMO}}<\infty\right\}$.
- John-Nirenberg: $W^{1, n}\left(\mathbb{R}^{n}\right)\left(\cap L^{1}\left(\mathbb{R}^{n}\right)\right) \subset \operatorname{BMO}\left(\mathbb{R}^{n}\right)$.

Proof: Poincaré-then-Jensen.

- For a compact domain, $L^{p} \subset L^{\infty} \subset$ BMO.

10.5 Imbeddings

- Imbedding $B_{1} \rightarrow B_{2}: \exists$ continuous, linear, injective map.
- $W^{1, p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p^{*}}$ for $1 \leqslant p<n$ (Sobolev inequality)
- $\quad W^{1, p}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{BMO}$ for $p=n$
- $W^{1, p}\left(\mathbb{R}^{n}\right) \rightarrow C_{\mathrm{loc}}^{0,1-n / p}$ (Morrey)
Ω bounded now.
- $W^{1, p}(\Omega) \rightarrow L^{q}(\Omega)$ for $1<p<n$ and $1 \leqslant q<p^{*}$. Proof: Hölder-then-Sobolev:

$$
\|u\|_{L^{q}} \leqslant\|u\|_{L^{p^{*}}}|\Omega|^{1-q / p^{*}} \leqslant\|D u\|_{W^{1, p}}
$$

- $W_{0}^{1, p}(\Omega) \rightarrow C^{0,1-n / p}(\bar{\Omega})$ for $n<p \leqslant \infty$.
- Compact imbedding $B_{1} \hookrightarrow B_{2}$: The image of every bounded set in B_{1} is precompact in B_{2}. (precompact: has compact closure)
- Rellich-Kondrachev:
- $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for $1<p<n$ and $1 \leqslant q<p^{*}$.

In Evans, we need $\partial U \in C^{1}$. Our notes do not.
Proof:

- Mollify it to u_{m}^{ε}
- Use an ε-derivative trick to show $\left\|u_{m}^{\varepsilon}-u_{m}\right\|_{L^{1}} \leqslant \varepsilon\left\|D u_{m}\right\|_{L^{p}} \rightarrow 0$
- Interpolation inequality for $L^{p}:\left\|u_{m}^{\varepsilon}-u_{m}\right\|_{L^{q}} \leqslant\left\|u_{m}^{\varepsilon}-u_{m}\right\|_{L^{1}}^{\theta}\left\|u_{m}^{\varepsilon}-u_{m}\right\|_{L^{p^{*}}} \rightarrow 0$, also using GNS.
- For fixed $\varepsilon, u_{m}^{\varepsilon}$ is bounded and equicontinuous (directly mess with convolution).
- Use Arzelà-Ascoli and a diagonal argument to finish off.
- $W_{0}^{1, p}(\Omega) \hookrightarrow C^{0}(\bar{\Omega}) \subset L^{p}(\Omega)$ for $n<p \leqslant \infty$.

Proof: Morrey's Inequality, then Arzelà-Ascoli.

11 Scalar Elliptic Equations

- $L u=\operatorname{div}(A D u+b u)+c \cdot D u+d u$.
- Motivation: Calculus of Variations.
- Weak Formulation: $u \in W^{1,2}(\Omega), v \in C_{c}^{1}(\Omega)$

$$
B[u, v]:=\int_{\Omega}\left(D v^{T} A D u+b \cdot D v u\right)-(c \cdot D u+d u) v \mathrm{~d} x
$$

- Generalized Dirichlet Problem: $L u=g+\operatorname{div} f$ on $\Omega, u=\varphi$ on $\partial \Omega$, i.e. $B[u, v]=F(v)$ with

$$
F(v):=\int_{\Omega} D v \cdot f-g v d \mathrm{~d} x
$$

- Assumptions:
($\boldsymbol{E}_{\mathbf{1}}$). Strict ellipticity: $\exists \lambda>0: \xi^{T} A \xi \geqslant \lambda|\xi|^{2}$
$\left(\boldsymbol{E}_{\mathbf{2}}\right)$. Boundedness: $A, b, c, d \in L^{\infty}$, i.e. $\left\|\operatorname{Tr}\left(A^{T} A\right)\right\|_{L^{\infty}} \leqslant \Lambda^{2}, \frac{1}{\lambda^{2}}\left(\|b\|_{\infty}+\|c\|_{\infty}\right)+\frac{1}{\lambda}\left(\|d\|_{\infty}\right) \leqslant \nu$.
$\left(\boldsymbol{E}_{\mathbf{3}}\right) . \operatorname{div} b+d \leqslant 0$ weakly, i.e.

$$
\int_{\Omega} d v-b \cdot D v \mathrm{~d} x \leqslant 0
$$

$$
\text { for } v \in C_{c}^{1}(\Omega), v \geqslant 0
$$

- " \leqslant " on the boundary: $u \leqslant v \Leftrightarrow(u-v) \leqslant 0: \Leftrightarrow(u-v)^{+} \in W_{0}^{1,2}(\Omega)$.
- "sup" on the boundary: $\sup _{\partial \Omega} u=\inf \{k \in \mathbb{R}: u \leqslant k$ on $\partial \Omega\}$.
- u is a subsolution: $\Leftrightarrow B[u, v] \leqslant F(v) \Leftrightarrow L u \geqslant g+\operatorname{div} f$.
- Non-divergence form:

$$
0=A D^{2} U+b \cdot D u+d u
$$

(Not equivalent!)

- Classical Maximum Principle: Holds if $d \leqslant 0$.
- Weak Maximum Principle: $L u \geqslant 0 \Leftrightarrow B[u, v] \leqslant 0$ for $v \geqslant 0$ and $\left(E_{1}\right),\left(E_{2}\right),\left(E_{3}\right)$. Then $\sup _{\Omega} u \leqslant$ $\sup _{\partial \Omega} u^{+}$.
Proof:
- Use $B[u, v] \leqslant 0$ for $v \geqslant 0$ and $\left(E_{3}\right)$ to establish

$$
\int D v^{T} A D v-(b+c) D u \cdot v \leqslant \int d(u v)-b \cdot D(u v) \leqslant 0
$$

Note that $u v$ is the new test function in $\left(E_{3}\right)$. Consequently

$$
\int D v^{T} A D v \leqslant \int(b+c) D u \cdot v
$$

- Suppose $l=\sup _{\partial \Omega} u \leqslant k<\sup _{\Omega} u$. Set $\Gamma:=\{u>k\}$ and achieve a $\|D v\|_{L^{2}} \leqslant C\|v\|_{L^{2}}$ estimate by using ellipticity, the above and boundedness. Use the Sobolev inequality to get $\|v\|_{L^{2^{*}}} \leqslant \cdots \leqslant|\Gamma|^{1 / n}\|v\|_{L^{2^{*}}}$, and so $|\Gamma|>0$ independently of k. Let $k \rightarrow \sup _{\Omega}$ to obtain a contradiction. (Note $\sup _{\Omega}<\infty$ because $u \in W^{1,2}(\Omega)$.)
Remarks:
- Implies uniqueness.
- No assumptions on boundedness, smoothness or connectedness of Ω.
- Implies uniqueness.

11.1 Existence Theory

- Existence: Ω bounded, $\left(E_{1}\right),\left(E_{2}\right),\left(E_{3}\right)$. Then \exists ! solution of the generalized Dirichlet problem.
- Reduce BC to $H_{0}^{1,2}$ by subtracting arbitrary function and handling RHS.
- Prove coercivity estimate

$$
B[u, u] \geqslant \frac{\lambda}{2} \int_{\Omega}|D u|^{2} \mathrm{~d} x-\lambda \nu^{2} \int_{\Omega}|u|^{2} \mathrm{~d} x
$$

(Uses: $\left(E_{1}\right),\left(E_{2}\right), 2 a b \leqslant \lambda a^{2}+b^{2} / \lambda$.
(In Evans, Poincaré enters here. How?)
(For Δ, Poincaré suffices to show coercivity.)

- Id: $W_{0}^{1,2} \rightarrow\left(W_{0}^{1,2}\right)^{*}$ is compact.

$$
\operatorname{Id}=\underbrace{\left(L^{2} \rightarrow \mathcal{H}^{*}\right)}_{\text {continous }} \circ \underbrace{\left(\mathcal{H} \rightarrow L^{2}\right)}_{\text {compact }}
$$

- $\quad L_{\sigma}:=L-\sigma$ Id. $(L \approx \Delta$ has negative eigenvalues already. But they might be pushed upward by the first- and zeroth-order junk. So we might have to make them even more negative to succeed.)
- $\quad \rightarrow B_{\sigma}[u, v]=B[u, v]+\sigma(u, v)_{L^{2}}$, coercivity is maintained.
- Lax-Milgram shows existence of inverse L_{σ}^{-1} for the not-so-bad operator L_{σ}.
- Start with $L u=g+\operatorname{div} f$, introduce L_{σ}, multiply by L_{σ}^{-1} and see what happens.
- Weak maximum principle provides uniqueness for L, so that the Fredholm alternative provides existence when combined with Rellich.

11.2 Regularity

- Assumptions:
- $\quad\left(R_{1}\right):\left(E_{1}\right),\left(E_{2}\right)$.
- $\left(R_{2}\right): f \in L^{q}(\Omega), g \in L^{q / 2}, q>n$.
- $\left(R_{1}\right), L u=g . \quad A, b$ Lipschitz. Then for $\Omega^{\prime} \subset \subset \Omega$ we have

$$
\|u\|_{W^{2,2}\left(\Omega^{\prime}\right)} \leqslant C\left(\|u\|_{W^{1,2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right)
$$

Proof:

- Finite Differences.

11.3 Harnack Inequality Stuff

- (Ladyzhenskaya/Uraltseva): $\left(R_{1}\right),\left(R_{2}\right) . u \in W^{1,2}$ a subsolution, $u \leqslant 0$ on $\partial \Omega$. Then:
where

$$
\sup _{\Omega} u \leqslant C\left(\left\|u^{+}\right\|_{L^{2}(\Omega)}+k\right)
$$

$$
k=\frac{1}{\lambda}\left(\|f\|_{L^{q}}+\|g\|_{L^{q / 2}}\right)
$$

Proof:
-

- Local Boundedness: $\left(R_{1}\right),\left(R_{2}\right) . u \in W^{1,2}$ a subsolution. Then:
where

$$
\sup _{B(y, R)} u \leqslant C\left(R^{-n / p}\left\|u^{+}\right\|_{L^{2}(\Omega)}+k(R)\right),
$$

$$
k(R)=\frac{R^{1-n / q}}{\lambda}\left(\|f\|_{L^{q}}+R^{1-n / q}\|g\|_{L^{q / 2}}\right)
$$

- Weak Harnack Inequality: $\left(R_{1}\right),\left(R_{2}\right), u \in W^{1,2}(\Omega)$ a supersolution and $u \geqslant 0$ in $B(y, 4 R) \subset \Omega$. Then

$$
R^{-n / p}\|u\|_{L^{p}(B(2 R))} \leqslant C\left(\inf _{y \in B(y, R)} u+k(R)\right)
$$

- Strong Harnack Inequality: $\left(R_{1}\right),\left(R_{2}\right), u \in W^{1,2}(\Omega)$ a solution with $u \geqslant 0$. Then

$$
\sup _{B(y, R)} u \leqslant C\left(\inf _{B(y, R)} u+k(R)\right)
$$

- Strong Maximum Principle: $\left(R_{1}\right),\left(R_{2}\right),\left(E_{3}\right), \Omega$ connected, $u \in W^{1,2}$ a subsolution $L u \geqslant 0$. If

$$
\sup _{B} u=\sup _{\Omega} u,
$$

then $u=$ const.
Proof: Weak Harnack shows $\left\{u=\sup _{\Omega} u\right\}$ is open. $\left\{u=\sup _{\Omega} u\right\}$ is relatively closed in Ω. Therefore $\left\{u=\sup _{\Omega} u\right\}=\Omega$.
Why is L const $=0$?
How dow we know the "relatively closed" part?

- DeGiorgi/Nash: $\left(R_{1}\right),\left(R_{2}\right), u \in W^{1,2}$ solution of $L u=g+\operatorname{div} f$. Then f is locally Hölder and

$$
\operatorname{osc}_{B(y, R)} u \leqslant C R^{\alpha}\left(R_{0}^{-\alpha} \sup _{B\left(y, R_{0}\right)}|u|+k\right)
$$

if $0<R \leqslant R_{0}$.
Proof:
0

12 Calculus of Variations

Ω open, bounded.

- Idea: solution u, smooth variation φ, functional $I .\left.\partial_{\varepsilon} I(u+\varepsilon \varphi)\right|_{\varepsilon=0}=0$. Integrate by parts, φ was arbitrary \rightarrow PDE.
- $u: \Omega \rightarrow \mathbb{R}^{m}$ deformation, $D u: \Omega \rightarrow \mathbb{R}^{m \times n}, F: \mathbb{R}^{m \times n}\left[\times \mathbb{R}^{n}\right] \rightarrow \mathbb{R}$.

$$
I[u]=\int_{\Omega} F(D u(x), u) \mathrm{d} x .
$$

Looking for $\inf _{u \in \mathcal{A}} I[u]$, where $\mathcal{A}=W_{0}^{1,2}(\Omega)$.

- Example: Dirichlet's Principle: Ω open, bounded

$$
I[u]=\int_{\Omega}\left(\frac{1}{2}|D u|^{2}-g u\right) \mathrm{d} x .
$$

- Bounded below: $\varepsilon a^{2}+b^{2} / \varepsilon$, Sobolev $\left(2^{*}>2\right)$, Hölder as $\|u\|_{L^{2}} \leqslant\|u\|_{L^{2^{*}}}|\Omega|^{1 / n}$, gives

$$
I[u] \geqslant c\|u\|_{W_{0}^{1,2}}^{2}-\frac{1}{2 \varepsilon}\|g\|_{L^{2}}^{2} .
$$

- Bounded above by $\|u\|_{W_{0}^{1,2}}^{2}+\|g\|_{L^{2}}$.
- $\quad I$ wlsc because F convex.
- strictly convex (unproven) \Rightarrow uniqueness.
- Weak lower semicontinuity: $u_{k} \rightharpoonup u \Rightarrow I[u] \leqslant \liminf _{k \rightarrow \infty} I\left[u_{k}\right]$.
- $\quad F$ convex $\Rightarrow I$ wlsc in $W_{0}^{1, p}(\Omega)$.

Proof: Use representation of convex F as limit of increasing sequence $\left\{F_{N}\right\}$ of piecewise affine functions. Implies $\int F_{N}\left(D u_{k}\right) \xrightarrow{k} \int F_{N}(D u)$ (weak convergence \odot linear/affine functions). Then
and MCT.

$$
\int F_{N}(D u) \stackrel{F_{N} \text { incr. }}{\leqslant} \liminf _{k \rightarrow \infty} \int F\left(D u_{k}\right)=\liminf _{k \rightarrow \infty} I\left[u_{k}\right]
$$

- Jensen: $F\left(\mathrm{w}-* \lim g_{k}\right) \leqslant \mathrm{w}-* \lim F\left(g_{k}\right)$.
- Euler-Lagrange Equation: Weak form obtained from $i(\tau)=I[u+\tau v]$, where $u=\operatorname{argmin} I[u]$ and looking at $i^{\prime}(0)=0$.

$$
-\operatorname{div}\left(F_{p}(D u)\right)+F_{u}(D u, u)=0
$$

Also $i^{\prime \prime}(0) \geqslant 0$.

- Motivation for Convexity: $\rho(s)=0-1$ sawtooth. $\rho^{\prime}=1$ a.e.. $v_{\varepsilon}(x)=\varepsilon \zeta(x) \rho(x \cdot \xi / \varepsilon)$.

$$
\frac{\partial v_{\varepsilon}}{\partial x_{i}}(x) \approx \zeta(x) \rho^{\prime}(x \cdot \xi / \varepsilon) \approx \zeta(x) \xi
$$

Consider $i^{\prime \prime}(0) \geqslant 0 \Rightarrow \xi^{T} D^{2} F \xi \geqslant 0$ pops out.

- $\quad m=1 \Rightarrow$ (wlsc \Leftrightarrow convexity).

Proof: " $\Leftarrow "$: shown above. " $\Rightarrow ": 2^{n k}$ cube grid on $[0,1]^{n}, v \in C_{c}^{\infty}$.

$$
\begin{aligned}
u_{k}(x) & =\frac{1}{2^{k}} v\left(2^{k}(x-\text { cell center })\right)+z \cdot x \\
D u_{k}(x) & =D v\left(2^{k}(x-\text { cell center })\right)+z
\end{aligned}
$$

$u_{k} \rightarrow z \cdot x, D u_{k} \rightharpoonup D u$. Then

$$
F(z) \stackrel{\text { wlsc }}{\leqslant} \liminf _{k \rightarrow \infty} \sum_{l} \int_{Q_{l}} F\left(D u_{k}\right)=\int_{[0,1]^{n}} F(z+D v)
$$

Thus $I[u]$ has a minimum at the straight line, and for $i(\tau)=I[u+\tau v], i^{\prime}(0)=0, i^{\prime \prime}(0) \geqslant 0$, convexity follows as above.

12.1 Quasiconvexity

$m \geqslant 2, \mathcal{A}=W^{1, p} \cap\{u=g\}_{\partial \Omega} .1<p<\infty . F \in C^{\infty}, F(A) \geqslant c_{1}|A|^{p}-c_{2}$.

$$
I[u]=\int_{\Omega} F(D u(x)) \mathrm{d} x
$$

- Sawtooth calculation yields rank-one convexity

$$
(\eta \otimes \xi)^{T} D^{2} F(P)(\eta \otimes \xi)
$$

$\Leftrightarrow F(P+t(\eta \otimes \xi))$ convex in t.

- Quasiconvexity: F quasiconvex: $\Leftrightarrow \forall A \in \mathbb{R}^{m \times n}, v \in C_{c}^{\infty}\left([0,1]^{n}, \mathbb{R}^{m}\right)$:

$$
F(A) \leqslant \int_{[0,1]^{n}} F(A+D v)
$$

- If $|F(A)| \leqslant C\left(1+|A|^{p}\right)$, then $F \mathrm{QC} \Leftrightarrow I$ wlsc.
- " \Rightarrow ": Subdivide domain into cubes,

$$
\int_{\Omega} F(D u) \approx \int_{\Omega} F(\text { affine approx to } D u) \stackrel{\mathrm{QC}}{\leqslant} \int_{\Omega} F\left(D u_{k}\right)+\text { errors. }
$$

Use measure theory to keep concentrations (Dirac bumps?) of $D u$ or $D u_{k}$ away from cube boundaries. Mop up the error terms.

- " $\Leftarrow "$: cubes calculation above.
- Polyconvex: F is a convex function of minors of A.
- Convex $\Rightarrow \mathrm{PC} \Rightarrow \mathrm{QC} \Rightarrow \mathrm{R} 1 \mathrm{C}$ (converse false).

Proof of $\mathrm{PC} \Rightarrow \mathrm{QC}: \mathrm{PC} \Rightarrow$ wlsc (use convex \Rightarrow wlsc argument for each minor). wlsc $\Rightarrow \mathrm{QC}$.

- $|D F(A)| \leqslant C\left(1+|A|^{p-1}\right)$.

Proof: Exploit growth estimate above, and $\mathrm{QC} \Rightarrow \mathrm{R} 1 \mathrm{C}$. Use $f(t)=F(A+t(\eta \otimes \xi))$, which is convex \Rightarrow locally Lip \Rightarrow locally $\left|f^{\prime}(0)\right| \leqslant \max |f|$.

12.2 Null Lagrangians, Determinants

- $\quad F(D u)$ is a null Lagrangian if E-L

$$
\operatorname{div}(D F(D u))=\partial x_{j}\left(\partial_{A_{i, j}} F(D u)\right)=0
$$

holds for every $u \in C^{2}$.

- F null Langrangian. Then

$$
u=\tilde{u} \text { on } \partial \Omega \quad \Rightarrow \quad I[u]=I[\tilde{u}]
$$

Proof: $i(\tau):=I[\tau u+(1-\tau) u] . i^{\prime}(\tau)=0$ by E-L.

- Cofactor matrix:
- $\quad \operatorname{cof}\left(A_{i, j}\right)=\operatorname{det}\left(A_{\backslash i, \backslash j}\right)$.
- $\quad A^{-1}=\frac{1}{\operatorname{det} A}(\operatorname{cof} A)^{T}$.
- $\Rightarrow A^{T} \operatorname{cof} A=\operatorname{det} A \cdot \mathrm{Id}$
- $\quad \Rightarrow \partial_{A_{i, j}} \operatorname{det}(A)=(\operatorname{cof} A)_{i, j}$
- $\operatorname{det}(D u)$ is a null Lagrangian, i.e.
- $\operatorname{div}(D \operatorname{det}(D u))=\operatorname{div}(\operatorname{cof}(D u))=0$
- Plug and chug if $\operatorname{det}(D u) \neq 0$, otherwise add ε Id.
- $u_{k} \rightharpoonup u$ in $W^{1, p}, n<p<\infty$. $\Rightarrow \operatorname{det}\left(D u_{k}\right) \rightharpoonup \operatorname{det}(D u)$ in $L^{p / n}$. (Morrey/Reshetnyak)
- Reduce dimension of problem by one by reducing to "does the cofactor matrix converge"?
- Use $\operatorname{det}(D u)=\operatorname{div}\left(\frac{1}{n} \operatorname{cof}(D u)^{T} u\right)$.
- Morrey ($n<p$!) implies uniform boundedness in $C^{0,1-n / p}$, then use A-A to extract uniformly converging subsequence, settling the deal for the leftover u besides the cofactor matrix.
- (also holds for $p=n$ if $\operatorname{det}\left(D u_{k}\right) \geqslant 0$-no proof.)
- No Retract Theorem: $B=B(0,1)$. There is no continuous map $u: \bar{B} \rightarrow \partial \bar{B}$ with $u(x)=x$ on ∂B.

Proof: Suppose there is a retract w. By comparison with Id and identity on the boundary,

$$
\int \operatorname{det}(D w)=|B|
$$

OTOH, $|w|^{2}=1 \Rightarrow(D w)^{T} w=0 \Rightarrow \operatorname{det}(D w)=0$. Lose smoothness requirement by continuously extending by Id, mollifying and using $B(0,2)$ then.

- Brouwer's Fixed Point Theorem: $u: \bar{B} \rightarrow \bar{B}$ continuous. $\exists x \in \bar{B}: u(x)=x$.

Proof: Assume no fixed point. $w: B \rightarrow \partial B$ is the point on ∂B hit by the ray from $u(x)$ to x. w is a retract because w hits ∂B in x if $x \in \partial B . w$ is continuous.

- Degree of a map: $u \in W^{1,1}$

$$
\operatorname{deg}(u)=f_{B} \operatorname{det}(D u)
$$

Definable for continuous functions by approximation. Is an integer.

13 Navier-Stokes Equations

G open, $\hat{G}:=G \times(0, \infty)$ space-time.

- Navier-Stokes Equations:

$$
D u / D t=(\nu \Delta u-\nabla p)+f,
$$

$(*)$ is the material derivative $D * / D t=\partial_{t} *+u \cdot \nabla *$.

- $\nu=0 \Rightarrow$ Euler equation. $\nu \neq 0 \Rightarrow$ may as well assume $\nu=1$.
- Conservation of mass: $\partial_{t} \rho+\operatorname{div}(\rho u)=0$. Assume $D \rho / D t=0 \Rightarrow \nabla \cdot u=0$.
- Pressures in a smooth incompressible flow are superharmonic: Take div of NSE.
- Steady flows: $u \cdot \nabla u+\nabla p=\nu \Delta u$.
- Bernoulli's Theorem: ideal $(\nu=0)$, steady flow $u \cdot \nabla u+\nabla p=0 \Rightarrow \nabla\left(u^{2} / 2+p\right)=0$
$\Rightarrow u^{2} / 2+p=$ const (still need conservation of mass $\nabla \cdot u=0$)
- Vorticity: $\omega=\operatorname{curl} u$

$$
\begin{aligned}
\partial_{t} \omega+\nabla \times(u \cdot \nabla u) & =\Delta \omega, \\
\nabla \cdot u & =0, \\
\nabla \times u & =\omega .
\end{aligned}
$$

In $2 \mathrm{D}, \nabla \times(u \cdot \nabla u)$ becomes $u \cdot \nabla u$.

- Helmholtz Projection: $P=L^{2}$-closure $\left\{\nabla \varphi: \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\right\} . P^{\perp}$ (note P closed!) is divergence-free. $L^{2}=P \oplus P^{\perp}$
Example: Divergence-free field from sem. 1 final: (continuous) boundary-normal field matters, (discontinuous) tangential field does not.
- Weak formulation:
- Take $a \in C_{c}^{\infty}\left(\hat{G}, \mathbb{R}^{n}\right)$ div-free, dot NSE with it,
- i. by parts second term, popping the derivative onto a u-product, pull apart, one term is zero,
- $\int a \cdot \nabla p=-\int(\operatorname{div} a) p=0$
gives

$$
\begin{align*}
(W 1)-\int_{\hat{G}} \partial_{t} a \cdot u+\nabla a \cdot(u \otimes u)+\Delta a \cdot u \mathrm{~d} x \mathrm{~d} t & =0 \\
(W 2) \int_{\hat{G}} \nabla \varphi \cdot u & =0 \quad\left(\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\right) \tag{W2}
\end{align*}
$$

(where $A \cdot B=\operatorname{tr}\left(A^{T} B\right)$)

- $\quad V:=\|\cdot\|_{V}$-closure $\left\{a \in C_{c}^{\infty}\left(\hat{G}, \mathbb{R}^{n}\right), \nabla \cdot a=0\right\}$

$$
\|a\|_{V}:=\int_{\hat{G}}|a|^{2}+|\nabla a|^{2} \mathrm{~d} x \mathrm{~d} t
$$

- Space for ICs: $P_{0}:=P \cap L^{2}$-closure $\left\{C_{c}^{\infty}\right\}$ to replicate $u=0$ on ∂G.
- Existence, Energy Inequality: $u_{0} \in P_{0}^{\perp} . \exists u \in V$:
- (W1), (W2)
- continuous docking to $I C:\left\|u(t, \cdot)-u_{0}\right\|_{L^{2}(G)} \rightarrow 0$ as $t \rightarrow 0$,
- energy equality:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|u\|_{L^{2}}=2\|\nabla u\|_{L^{2}}
$$

Equivalently for $t>0$,

$$
\int_{G}|u(x, t)|^{2}+\int_{0}^{t} \int_{G}|\nabla u(x, s)|^{2} \mathrm{~d} x \mathrm{~d} s \leqslant \frac{1}{2} \int_{G}\left|u_{0}(x)\right|^{2} \mathrm{~d} x .
$$

