PDE Summary

1 General Stuff

• Standard mollifier:

is a C_c^{∞} hump.

$$\eta(x) = \exp\left(\frac{1}{x^2 - 1}\right) \mathbf{1}_{[-1,1]}$$

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \eta(x/\varepsilon).$$

Normalization $(\int = 1)$ is still missing.

Volumes of sphere and ball:

• Gamma function:

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} \mathrm{d}t.$$

$$\begin{aligned} |S^{n-1}| &= \omega_n r^{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)} r^{n-1} \\ |B^n| &= \frac{\omega_n}{n} r^n. \end{aligned}$$

• Green's identities:

$$\int_{U} v\Delta u = -\int_{U} \nabla v \cdot \nabla u + \int_{\partial U} v\partial_{n} u$$
$$\int_{U} v\Delta u - u\Delta v = \int_{\partial U} v\partial_{n} u - u\partial_{n} v$$

• Young's Inequality:

$$\|f * g\|_{L^r} \leq \|f\|_{L^p} \|g\|_{L^q}$$
 with $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$.

- In particular q = 1, r = p.
- Generalized Hölder:

if

$$\begin{split} \|f_1 \cdot f_2 \cdots f_m\|_{L^1} &\leqslant \|f_1\|_{p_1} \|f\|_{p_2} \cdots \|f_m\|_{p_m} \\ & \frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_m} = 1. \end{split}$$

$$P1$$
 $P2$

• Interpolation Inequality for L^p : If $1 \leq s \leq r \leq t \leq \infty$

$$\begin{split} \frac{1}{r} &= \frac{\theta}{s} + \frac{1-\theta}{t}, \\ \|u\|_{L^r} \leqslant \|u\|_{L^s}^{\theta} + \|u\|_{L^t}^{1-\theta}. \end{split}$$

 $u \in L^s \cap L^t$, then $u \in L^r$ and

- Arzelà-Ascoli: (S, d) compact metric space. $M \subset C(S)$ with sup-norm is compact if M is bounded, closed and equicontinuous.
- *Precompact*: has compact closure.
- Compact operator: $T: B_1 \to B_2$ compact if T continuous and T(A) precompact for every bounded A.
- Fredholm Alternative: $T: B \rightarrow B$ linear, continuous, compact:
 - either (I T)x = 0 has a nontrivial solution

• or $(I-T)^{-1}$ exists and is bounded.

"Uniqueness and Compactness \Rightarrow Existence".

- Lax-Milgram: $B: H \times H \to \mathbb{F}$, bounded above and coercive $\Rightarrow B[u, g] = F(u)$ solvable in H for every $g \in H$. Proof: Build operator $T_g: H \to H^*$ that gives $T_g(u) = B[u, g]$ (Riesz rep.). Prove 1-1 and onto.
 - The point is: no symmetry.
- Banach-Steinhaus/Uniform Boundedenss Principle: $X \text{ BR}, Y \text{ NR}, T_i \in L(X, Y) \ (i \in I), \sup_{i \in I} ||T_ix|| < \infty \ (x \in X)$ $\Rightarrow \sup_i ||T_i|| < \infty.$ Read as "linear+pw bounded \Rightarrow uniformly bounded."

2 Equations

• Classification of second order equations:

 $A_{i,j}\partial_i\partial_j u + B_i\partial_i u + C = 0,$

where A is symmetric WLOG can be rewritten into one of

$$\begin{aligned} u_{xx} + u_{yy} + \text{l.o.d.} &= F, \\ u_{xx} - u_{yy} + \text{l.o.d.} &= F, \\ u_{xx} \pm u_{y} + \text{l.o.d.} &= F. \end{aligned}$$

• Minimal surface equation:

$$\operatorname{div}\!\left(\frac{Du}{\sqrt{|Du|^2+1}}\right) = 0$$

$$\det(D^2 u) = K(x)(1 + |Du|^2)^{(n+2)/2}$$

3 Laplace's Equation

U open.

- $u \in C^2(U)$: harmonic, subharmonic $\Delta u \ge 0$, superharmonic.
- Mean Value Inequality: u subharmonic

$$u(x) \leqslant \int_{S(x,r)} u(y) dS_y$$

$$u(x) \leqslant \int_{S(x,r)} u(y) dB$$

(implies *Mean Value Property* if harmonic)

Proof: $0 \leq \int_B \Delta u = \int_S \partial_n u$, then exploit $\partial_n u = \partial_r (x + \rho n)$. $\int_B u = \int_r \int_{|\omega|=1} u = u \int_r dr$.

- Strong Maximum Principle: U bounded, connected, u subharmonic, $u(x) = \sup_U u \Rightarrow u$ constant Proof: Consider $\{u = \sup\}$. By MVI, $u = \sup$ on any ball in U. Thus $\{u = \sup\}$ open. But so is $\{u < \sup\}$. $U = \{u = \sup\} \cup \{u < \sup\}$, both open $\Rightarrow \{u = \sup\} = U$.
- Weak maximum principle: $u \in C(\overline{U})$ and subharmonic. Then u assumes extrema on the boundary. Proof: SMP or: Suppose $x \in U$ is max and $\Delta u > 0$. Then Du = 0 and D^2u negative semidef, contradicting $\Delta u = \operatorname{tr}(D^2u) \ge 0$. If only $\Delta u \ge 0$, consider $u + \varepsilon |x|^2$, which is strictly subharmonic.
- Strong \Rightarrow constant, Weak \Rightarrow extrema on boundary.

- Uniqueness follows directly from the WMP.
- Harnack's Inequality: $u \ge 0$ (!) harmonic, $U' \subset \subset U$ connected $\Rightarrow \exists C$ such that $\sup u < C \inf u$. Proof: Pick $x_1, x_2 \in U$, apply MVP for large and small circle, respectively, then shrink/expand domain by using $u \ge 0$, take \sup/\inf . Use cover of balls to repeat argument as necessary.
- Fundamental solution: look for radial symmetry

$$\psi = C + \begin{cases} \frac{1}{2\pi} \log r & n = 2, \\ \frac{1}{(2-n)\omega_n} r^{2-n} & n \ge 3. \end{cases}$$

Constant chosen because it gives the right constant to prove $\Delta \psi = \delta_0$ (use Green's second id on a ball surrounding the signularity). $K(x,\xi) = \psi(|x-\xi|)$.

- Liouville's Theorem: (only in 2D) Subharmonic functions bounded above are constant.
- $u \in C^2(\bar{U})$:

$$u(\xi) = \int_{U} K(x,\xi) \Delta u \mathrm{d}x + \int_{\partial U} u \partial_{n_x} K(x,\xi) - K(x,\xi) \partial_{n_x} u \mathrm{d}S_x.$$
(1)

Proof: Integrate on $U \setminus B_{\varepsilon}$, $\varepsilon \to 0$. Remains valid if K replaced by K + w with harmonic w.

• Green's function for Dirichlet problem: $\Delta_x G = \delta_{\xi}$, $G(x, \xi) = 0$ for $x \in \partial U$. Use G in (1). To get one, we need to find w with w = -K on ∂U . (Use method of images.) For a ball, we get the Poisson kernel

$$H(x,\xi) = \frac{r^2 - |\xi|^2}{\omega_n r |x - \xi|^n}$$

Poisson's integral formula:

$$u(\xi) = \int_{S(0,r)} H(x,\xi) f(x) \mathrm{d}S_{\xi}.$$

• Kelvin's transformation: u harmonic \Rightarrow

$$|x|^{2-n}u(x/|x|^2)$$
 harmonic for $x \neq 0$.

• Properties of *H*:

$$\circ \quad H(x,\xi) = H(\xi,x)$$

- $\circ \quad H(x,\xi) > 0 \text{ on } B(0,r)$
- $\Delta_{\xi}H(x,\xi) = 0$ for $\xi \in B(0,r)$ and $x \in S(0,r)$
- $\circ \quad \int_{S(0,1)} H(x,\xi) \mathrm{d}S_x = 1$
- Existence on a ball: also gives $C(\overline{B})$ Proof: Differentiate under integral (using DCT). Prove continuity onto the boundary by

$$u(\xi) - f(y) = \int_{S(\xi,r)} H(x,\xi)(f(x) - f(y)) \mathrm{d}S_x$$

Use ε - δ -continuity of f and split integral into $|x - y| < \delta$ and $|x - y| > \delta$. (Method called *approximate identities*.)

- Converse of $MVP: u \in C(U)$ harmonic \Leftrightarrow satisifies MVP for every $B(x, r) \subset U$. Proof: Construct a harmonic function v on B(x, r) with v = u on S(x, r). v - u satisfies MVP on any subcircle, thus it satisfies the strong maximum principle. Thus v = u.
- Real analytic: completely represented by absolutely convergent Taylor series. $\exists M > 0 \forall \alpha: |\partial^{\alpha} f(y)| \leq \frac{M|\alpha|!}{r^{|\alpha|}} \Leftrightarrow \text{ analytic.}$ Real analytic f is completely determined by power series (use similar open-set method on $\{\partial^{\alpha} h(y) = 0 \forall \alpha\}$ as SMP)

- Harmonic \Rightarrow Analytic: Consider $H(x, \xi + i\sigma)$. Find a region of σ where H is differentiable.
- Analyticity estimates can be obtained by the MVP applied to $\partial_{x_j} u$, then coordinatewise Gauß, giving

$$|\partial_{x_j} u(x)| \leq \frac{n}{r} \max_{S(x,r)} |u| \leq \frac{n}{r} \sup_{U} |u|.$$

Then iterate this estimate with $1/|\alpha|$ radius to get

$$|\partial^{\alpha} u(x)| \leqslant \left(\frac{n|\alpha|}{r}\right)^{|\alpha|} \max_{S(x,r)} |u|.$$

• Uniformly (on compact subsets of U) converging sequences of harmonic functions converge to harmonic functions.

Proof: Limit is continuous (because of uniform convergence). Now exchange limits (DCT) in MVP and prove harmonicity.

- Harnack's convergence theorem: u_k harmonic, increasing and bounded at a point. Then (u_k) converges uniformly on compact subsets to a harmonic function. Proof: above + Harnack inequality.
- "Montel's Theorem"-a compactness criterion:
 (u_k) bounded, harmonic ⇒ ∃uniformly (on compact subsets) converging subsequence → harmonic limit.

Proof: (u_k) is equicontinuous because of the derivative estimates and the assumed uniform bound.

- Subharmonicity on C(U): Satisfies MVI locally.
- Perron's method:

$$\circ \quad S_f := \{ v \in C(\overline{U}), v \leq BC, v \text{ subharmonic} \}.$$

- $\circ \quad u := \sup S_f \text{ is harmonic.}$ Proof:
 - S_f is closed under finite max. (MVI)
 - Harmonic lifting: v subharmonic,

$$V(x) = \begin{cases} \text{harmonic function with matching BCs} & B(\xi, r), \\ v & \text{elsewhere} \end{cases}$$

 $v \in S_f \Rightarrow V \in S_f, v \leq V.$

- Fix a closed ball, grab sequence $v_k \rightarrow u$ at a point ξ . $\bar{v}_k := \max(v_1, ..., v_k, \min BC)$.
- Replace these by their harmonic lifting V_k around ξ .
- HCT for a limit V.
- Prove V = u on ball by finding SMP uniqueness of harmonic liftings of in-between (V < u) functions.
- Barrier function at $y \in \partial U/\text{regular boundary point:}$ $w \in C(\overline{U})$ subharmonic, w(y) = 0, $w(\partial U \setminus \{y\}) < 0$. $\exists \text{tangent plane} \Rightarrow \text{regular}$ $\exists \text{exterior sphere} \Rightarrow \text{barrier} = K(\text{boundary point, outside center}) - K(x, \text{outside center})$ $\exists \text{exterior cone} \Rightarrow \text{regular}$
- At regular boundary points, u = BC. Proof:
 - Fix $\varepsilon > 0$. δ from ε - δ with f.
 - $v = BC + A \cdot barrier \varepsilon$, where $A w \leq -2 \max BC$ outside a ball around the boundary point in question. v subharmonic by def.

- Show $v \leq f(x)$ on boundary and interior.
- Do some funky tricks involving -f, its Perron function, and the maximum principle to show opposite inequality.
- The Dirichlet problem is solvable for all continuous BC data iff the domain is regular.

3.1 Energy Methods

- $0 = \int w \Delta w = \int |\nabla w|^2$ proves uniqueness in $C^2(\overline{U})$.
- Energy Functional:

$$I[w] = \int_U \frac{1}{2} |\nabla w|^2 + w \, g \mathrm{d} x$$

for g the RHS.

• Dirichlet's principle: $u \in C^2(\overline{U})$ solves PDE+BC \Leftrightarrow it minimizes I[u] over $\{w \in C^2(\overline{U}), w = \text{RHS on } \partial \Omega\}$.

Proof: PDE \Rightarrow min: Start from

$$0 = \int (-\Delta u + g)(u - w),$$

use Gauß, Cauchy-Schwarz, $\sqrt{a}\sqrt{b} \leq 1/2(a^2+b^2)$. min \Rightarrow PDE: w = u + t v, for $v \in C_c^{\infty}$. Differentiate by t.

3.2 Potentials

• Potential of a measure:

$$u_{\mu}(x) = \frac{2-n}{\omega_n} \int_{\mathbb{R}^n} K(x, y) \mu(\mathrm{d}y) = \int_{\mathbb{R}^n} |x-y|^{2-n} \mu(\mathrm{d}y) dy = \int_{\mathbb{R}^n} |x-y|^{2-n} \mu(\mathrm{d}y$$

- Computable for a sphere with uniform charge density (same as point charge), finite line, disk.
- $u_{\mu} = 0 \Rightarrow \mu = 0.$ Proof: Show $\mu * f = 0$ for any $f \in C_c^{\infty}$ by

$$\mu * f = \mu * (K * \Delta f) = (\mu * K) * \Delta f = 0.$$

- Potentials of compact set: Harmonic function with BC 1 on compact set F and BC zero at infinity. Perron function on ever-increasing balls-independent of exact domains.
- A (unique) generating (positive) measure on ∂F exists: Proof (if $\partial F \in C^2$): by Poisson's boundary representation formula (with both u and $\partial_n u$)

$$p_F(\xi) = \int_{\partial F} K(x,\xi) \underbrace{\partial_n p_F \mathrm{d} S_x}_{\text{measure!}}.$$

 $\partial_n u \leq 0$ by the max principle (1 on the boundary must be the max value) \Rightarrow positivity. Proof (if not):

- Approximate F through shrinking compact sets with C^{∞} boundary $(1/k^2$ -mollified indicators of $F^{1/k} = \{ \operatorname{dist}(x, F) \leq 1/k \}$. $\psi = \varphi_{1/k^2} * \mathbf{1}_{F^{1/k}}$. Then consider $F^{1/2k} \subset \psi^{-1}([c, 1]) \subset F^{1/k}$ and use Sard's Theorem to deduce boundary smoothness for a.e. c. Generate μ_k by above theorem.
- $\circ p_{F_k} \rightarrow p_F$ uniformly on compact subsets (Harnack)
- Prove $\mu_k(\mathbb{R}^n) \leq \mathbb{R}^{n-2}$ by using a $B(0, \mathbb{R}) \supset F_k$ -use Fubini and the generator of the disk potential. ("Gauß' trick') Thus \exists weak-* convergent subsequence supported on ∂F . Thus convergene of $p_{F_k} \rightarrow p_F$ away from ∂F . Uniqueness by uniqueness of potentials of measures.

3.3 Lebesgue's Thorn

- In 2D, Riemann mapping theorem guarantees that point regularity is topological, not geometric.
- Lebesgue's Thorn: Using level sets of the potential of the measure $x^{\beta} dx$ on (0, 1), one may construct exceptional points.

3.4 Capacity

٠

$$\operatorname{cap}(F) = \mu_F(\mathbb{R}^n) = \frac{2-n}{\omega_n} \int_{\partial F \text{ or enclosing surface}} \partial_n p_F \mathrm{d}S_x.$$

• If $\partial F \in C^2$, Green's 1st id gives

$$\operatorname{cap}(F) = \frac{2-n}{\omega_n} \int_{U \subset \mathbb{R}^n \setminus F} |\nabla p_F|^2.$$

• Wiener's criterion: $y \in \partial U$ regular \Leftrightarrow

$$\lambda^{2-n} \sum_{k=0}^{\infty} \lambda^{k(2-n)} \operatorname{cap}(F_k) \qquad F_k := \{\lambda^{k+1} \leq |x-y| \leq \lambda^k\} \qquad (\lambda \in (0,1)).$$

- Properties of capacity:
 - $\circ \quad F_1 \subset F_2 \Rightarrow \operatorname{cap}(F_1) \leqslant \operatorname{cap}(F_2) \ (Gauß' \ Trick!)$

$$\operatorname{cap}(F_1) = \int_{\mathbb{R}^n} \mu_1(\mathrm{d}x) = \int_{\mathbb{R}^n} p_2 \mu_1(\mathrm{d}x) = \int \int |x - y|^{2-n} \mu_2(\mathrm{d}y) \mu_1(\mathrm{d}y) = \int p_1 \mu_2(\mathrm{d}y) \leqslant \operatorname{cap}(F_2).$$

- (F_k) nested sequence with $\bigcap F_k = F$, then $\operatorname{cap}(F_k) \to \operatorname{cap}(F)$. (smooth $\varphi = 1$ on F_1 , $\operatorname{cap}(F) = \int \varphi \mu_F \leftarrow \int \varphi \mu_{F_k} = \operatorname{cap}(F_k)$)
- $\begin{array}{ll} \circ & \operatorname{cap}(A\cup B) \leqslant \operatorname{cap}(A) + \operatorname{cap}(B). \\ & (p_{\cup} \leqslant p_A + p_B \text{ by WMP. Then use Gauß' trick.}) \end{array}$
- $\circ \quad \operatorname{cap}(A \cup B) + \operatorname{cap}(A \cap B) \leq \operatorname{cap}(A) + \operatorname{cap}(B)$
- $\operatorname{cap}(\overline{B(0,R)}) = \operatorname{cap}(S(0,R)) = R^{n-2}.$
- Screening: nested spheres $A \subset B$. $cap(A \cup B) = cap(B)$ (think of the potentials)
- $\operatorname{cap}(F) = \sup \{\mu(F): \operatorname{supp}(\mu) \subset F, u_{\mu}(F) \leq 1\}$ (Smooth approx F_k to F so that $p_{F_k} = 1$ on ∂F . Then Gauß' trick.)
- Coulomb energy:

Mutual energy:

$$\begin{split} E[\mu] &= \frac{1}{2} \int \int |x - y|^{2 - n} \mu(\mathrm{d}x) \mu(\mathrm{d}y). \\ E[\mu, \nu] &= \frac{1}{2} \int \int |x - y|^{2 - n} \mu(\mathrm{d}x) \nu(\mathrm{d}y) \end{split}$$

- Properties:
 - If $E[|\mu|] < \infty$, then pos.def.
 - CSU
 - $\circ \quad \mu \mapsto E[\mu]$ strictly convex
- Gauß' principle: $\mu \ge 0$ finite measure on F.

$$G[\mu] = E[\mu] - \mu(F) \ge -\frac{1}{2} \operatorname{cap}(F)$$

Proof:

- $G(\mu)$ bounded below (F compact $\Rightarrow |x y|$ bdd.)
- Infinizing sequences are precompact (i.e. have bounded $\mu_k(F)$)
- G is wlsc (take infinizing sequence (μ_k) , use max (M, |x y|) to cut off, $k \to \infty$, $M \to \infty$ (MCT), consider $E[\mu \mu_k]$)
- Minimizer is unique (strict convexity)
- Minimizer is μ_F (Consider Euler-Lagrange Equation)
- \circ Evaluate minimum
- Kelvin's principle:

$$\frac{1}{2\mathrm{cap}(F)} = \inf \{ E[\mu] \colon \mu \ge 0, \mathrm{supp}(\mu) \subset F, \, \mu(F) = 1 \}.$$

Proof: Apply Gaus' principle to $t\mu$, choose $t = \operatorname{cap}(F)$.

4 Heat Equation

- Conservation of mass: $\partial_t u + \operatorname{div}(\boldsymbol{v}) = 0$
- Fick's law: $\boldsymbol{v} = -\alpha^2 \nabla u$.
- Together: $u_t = \Delta u$.
- Parabolic scaling invariance: $x \mapsto \lambda x, t \mapsto \lambda^2 t$.
- Use conservation of mass $(\partial_t \int u = 0)$ to obtain the ansatz $u(x, t) = t^{-n/2}g(r t^{-1/2})$. Plug in heat equation to get the heat kernel

$$k(x,t) = \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}.$$

• Use

$$2\int_{y>a} e^{-y^2} \mathrm{d}y < 2\int_{y>a} \frac{y}{a} e^{-y^2} = \frac{e^{-a^2}}{a}.$$

and in-boxing the ball to show

$$\int_{|x| \ge \delta} k(x,t) \mathrm{d}x \to 0 \quad \text{as} \quad t \to 0.$$

- u = k * f solves $u_t = \Delta u$ for $u \to f$ for $t \to 0$.
- *Tychonoff counterexample* for uniqueness:

$$u(x,t) = \sum_k \ g_k(t) x^{2k}$$

- Widder's Theorem: $u \ge 0 \Rightarrow$ uniqueness.
- Heat ball: $E(x, t, r) = \{k(x y, t r) \ge r^{-n}\}.$
- $V_T = U \times [0, T],$ $\partial_1 V_T = \text{all except top "lid"},$ $\partial_2 V_T = \text{lid.}$
- Mean Value Property: $u \in C^2(V_T), \ \partial_t u \Delta u \leq 0, \ E(...) \subset V_T$:

$$u(x,t) \leqslant \frac{1}{4r^n} \iint_{E(x,t,r)} u(y,s) \frac{|x-y|^2}{(t-s)^2} \mathrm{d}y \mathrm{d}s$$

• Exists for heat spheres as well.

• Converse: Equality and $C^2(V_T)$ implies $\partial_t u = \Delta u$.

Proof: Let RHS= $\varphi(r)$. $\varphi(0) = u(x, t)$,

$$\varphi'(r) = -C \int (\partial_s u - \Delta u) \psi \, \mathrm{d}y \mathrm{d}s \ge 0$$

with $\{\psi \ge 0\} = E(\dots)$.

• Strong Maximum Principle: U open, bounded, connected, $u \in C(\bar{V}_T)$ and satisfies MVI. Then

$$\max_{\bar{V}_T} u \leqslant \max_{\partial_1 V_T} u.$$

If max attained at $(x, t) \in V_T$, then u is constant in \overline{V}_t . Proof: If max attained in interior, then u = M on heat ball. Then a polygonal path reaches every point on V_T .

- Temperatures are analytic:
- Green's functions for the heat equation:
- Strong Converse of MVP. Proof: Construct parallel solution by Green's functions. Conclude uniqueness by MVP.

4.1 Difference Schemes and Probabilistic Interpretation

- Work on a lattice.
- Strong Maximum Principle (subharmonic \Rightarrow assume max M in interior $\Rightarrow M = u \leq E[x + h\omega] \leq M$.)
- Implies discrete Laplacian has trivial null-space $\Rightarrow \exists !$
- Allows Discrete Poisson Integral Formula. (by solving for δ on the boundary)
- Markov property: $E[X_{m+1}|X_1, ..., X_m] = E[X_{m+1}|X_m].$
- (Super)Martingale property: u subharmonic $\Rightarrow E[u(X_{m+1})|X_m] \ge u(X_m)$ (just like discrete SMP) [with X_m a random walk]
- Strong Martingale Property: m may be a stopping time.
- If M_U is first passage time to ∂U , then $u = E[f(x + W_{M_U})]$. (f = BC, u harmonic)

$$E[f(x+W_{M_U})] = \sum_{y \in \partial U_h} H(x,y)f(y) = \sum_{y \in \partial U_h} \underbrace{P(\operatorname{hit} y)}_{H} f(y).$$

• Method of relaxation:

 $u^{(l+1)}(x) = \operatorname{avg}(u^{(l)} \text{ on pixels surrounding } x)$

- Brownian motion: Same formula as above holds for continuous-time.
 (Central Limit Theorem, path space version of it, W_t ~ k(x, t/2). Cylinder sets. Convergence in weak-* topology. Law of iterated logarithm. Proof of CLT: Convolution of densities becomes multiplication after Fourier transform. Use independence. Done.)
- Feynman-Kac formula: $u_t = \frac{1}{2}\Delta u$ with IC f.

$$E(f(x+W_t)) = u(x,t)$$

- Implications on boundary regularity:
 - \circ *u defined* by F-K is the Perron function
 - $y \in \partial U$ is regular iff $P(T_y = 0) = 1$ (BM immediately exits U.)
 - \circ Littlewood's crocodile
 - \circ Lebesgue's thorn

4.2 Hearing the shape of a drum

Spectral measure:

Weyl's result:

$$A(\lambda) = \sum_{k=1}^{\infty} \mathbf{1}_{\lambda_k \leqslant \lambda}(\lambda).$$

 $\lim_{\lambda\to\infty}\frac{A(\lambda)}{\lambda^{n/2}} = \frac{|U|}{(2\pi)^{n/2}\Gamma(n/2)}.$

Kac's result:

•

$$\lim_{t \to 0+} (2\pi t)^{n/2} \sum_{k=1} e^{-\lambda_k t} = (2\pi t)^{n/2} \int e^{-t\lambda} A(\mathrm{d}\lambda) = |U|.$$

(Weyl \Rightarrow Kac: Integrate by parts, rescale. Proof of Kac: represent Green's function in terms of eigenfunctions somehow.)

5 Wave equation

•
$$u_{tt} = c^2 u_{xx}$$

D'Alembert's formula:

$$u(x,t) = \frac{1}{2} \left[f(x+ct) + f(x-ct) + \frac{1}{c} \int_{x-ct}^{x+ct} g(y) dy \right].$$

- Characteristics.
- Parallelogram identity:

$$u(top) + u(bottom) = u(left) + u(right).$$

- Good/bad BCs, Inflow/outflow. Domain of dependence. Method of reflection. Odd/even extension. .
- D'Alembertian: $\Box u := u_{tt} c^2 \Delta u = 0$. u = f, $u_t = g$.
- Fourier Analysis: $\hat{u}(\xi,t) = \hat{f}(\xi)\cos(c|\xi|t) + \hat{g}(\xi)\sin(c|\xi|t/|\xi|t) = \hat{f}(\xi)\cos(c|\xi|t) + \hat{g}(\xi)\partial_t\cos(c|\xi|t)$: .

$$u(x,t) = \int_{\mathbb{R}^n} k(x-y,t)g(y)dy + \partial_t \int_{\mathbb{R}^n} k(x-y,t)f(y)dy$$

Needs to coincide with solution formula.

- For n = 3, $k = t \cdot \text{uniform}$ measure on $\{|x| = ct\}$
- Method of Spherical means: Observe: •

$$M_u(x,r) = \int_{S(x,r)} u(y) \mathrm{d}S_y$$

satisfies Darboux's Equation:

$$\Delta_x M_u = ``\Delta_r "M_u = \left(\partial_{rr} - \frac{n-1}{r}\partial_r\right) M_u$$

Similarly, if u solves $u_{tt} = u_{xx}$, then M_u solves the Euler-Poisson-Darboux equation:

$$(M_u)_{tt} - \Delta_r M_u = 0$$

In 3D, this reduces the wave equation to $\partial_t^2(r M_u) = \partial_r^2(r M_u)$, which we can solve by D'Alembert's formula for all x. Then M

$$u = \lim_{r \to 0} \frac{m_u}{r}.$$
$$\frac{1}{(2\pi)^{n/2}} \int_{|y| = ct} e^{-i\xi \cdot y} \mathrm{d}S_y = \frac{\sin(c|\xi|t)}{c|\xi|}.$$

•

- Huygens' principle.
- Hadamard's method of descent: Treat 2D equation as 3D equation, independent of third coordinate.
- General solution for odd $n \ge 3$: Assume u'(0) = 0. Define

$$v(x,t) := \int k(s,t)u(x,s)\mathrm{d}s$$

as a temporal heat kernel average. Oddly, $\partial_t v = \Delta_x v$. Solve this. Rewrite using spherical means. Change variables as $\lambda = 1/4t$ and invert using the Laplace transform

$$h^{\#}(\lambda) = \int_0^{\infty} e^{-\lambda \varphi} h(\varphi) \mathrm{d}\varphi.$$

• Uniqueness by energy norm.

6 Distributions/Fourier Transform

 $U \subset \mathbb{R}^n$ open

- $\mathcal{D}(U) := C_c^{\infty}(U). \ \varphi_k \to \varphi \text{ iff}$
 - $\circ \quad \exists \text{ fixed compact set } F : \operatorname{supp}(\varphi_k) \subset F$
 - $\circ \quad \forall \alpha : \sup_F \left| \partial^{\alpha} \varphi_k \partial^{\alpha} \varphi \right| \to 0.$
- Distribution: $\mathcal{D}'(U)$
 - Convergence: $L_k \xrightarrow{\mathcal{D}} L \Leftrightarrow \forall \varphi \in \mathcal{D}(U): (L_k, \varphi) \to (L, \varphi).$
- Examples: $L_{loc}^p \subset \mathcal{D}'(U)$. Aside: $L_{loc}^p \subset L_{loc}^q$ for $p \ge q$. (not for L^p), Radon measure (A Borel measure that is finite on compact sets.), δ function, Cauchy Principal value.
- Derivative: $(\partial^{\alpha}L, \varphi) = (-1)^{|\alpha|}(L, \partial^{\alpha}\varphi).$
- Differentiation is continuous.
- Partial differential operator: $P = \sum_{|\alpha| \leq N} c_{\alpha}(x) \partial^{\alpha}$, adjoint, fundamental solution: $PK = \delta$.
- Schwartz class: $\mathcal{S}(\mathbb{R}^n) \subset C^{\infty}(\mathbb{R}^n)$

$$\|\varphi\|_{\alpha,\beta} := \sup |x^{\alpha}\partial^{\beta}\varphi(x)| < \infty \quad \forall \alpha, \beta.$$

A polynormed, metrizable space (Use $\sum 2^{-k} \sum_{|\alpha|+|\beta|=k} \frac{\|\cdot\|_{\alpha,\beta}}{1+\|\cdot\|_{\alpha,\beta}}$). Complete, too. (Arzelà-Ascoli).

- Examples:
 - $\mathcal{D} \subset \mathcal{S}$ (convergence carries over, too.)
 - $\circ \quad \exp(-|x|^2) \in \mathcal{S}, \text{ but not } \in \mathcal{D}.$
- Fourier Transform:

$$\hat{\varphi}(\xi) = \mathcal{F}\varphi(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i\xi \cdot x} \varphi(x) \mathrm{d}x$$

Basic estimates:

$$\begin{aligned} \|\hat{\varphi}(\xi)\|_{L^{\infty}} &\leqslant C \|(1+|x|)^{n+1}\varphi(x)\|_{L^{\infty}} \leqslant C \|\varphi\|_{L^{1}} < \infty, \\ \|\partial_{\xi}^{\beta}\hat{\varphi}(\xi)\|_{L^{\infty}} &\leqslant C \|(1+|x|)^{n+1}x^{\beta}\varphi\|_{L^{\infty}} \\ \|\xi^{\alpha}\hat{\varphi}(\xi)\|_{L^{\infty}} &\leqslant C \|(1+|x|)^{n+1}\partial_{x}^{\alpha}\varphi\|_{L^{\infty}} \\ \|\hat{\varphi}\|_{\alpha,\beta} &\leqslant C \|(1+|x|)^{n+1}x^{\beta}\partial_{x}^{\alpha}\varphi\|_{L^{\infty}} \Rightarrow \hat{\varphi} \in C^{\infty}. \end{aligned}$$

• Dilation: $\sigma_{\lambda}\varphi(x) = \varphi(x/\lambda)$. $(\mathcal{F}\sigma_{\lambda}\varphi) = \lambda^n \sigma_{1/\lambda}\mathcal{F}\varphi$.

- Translation: $\tau_h \varphi(x) = \varphi(x-h)$. $(\mathcal{F}\tau_h \varphi) = e^{-ih \cdot \xi} \mathcal{F}\varphi$.
- Inversion formula:

$$\varphi(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \hat{\varphi}(\xi) d\xi = \mathcal{F}^* \hat{\varphi} = \mathcal{F} \mathcal{R} \hat{\varphi},$$

 \mathcal{F} is an isomorphism of \mathcal{S} , with $\mathcal{F}\mathcal{F}^* = \mathrm{Id}$.

Proof: Prove $(\mathcal{FF}^* - \mathrm{Id})e^{-|x|^2} = 0$, then for dilations and translations, linear comb. of which are dense in \mathcal{S} . \mathcal{F} is 1-1, \mathcal{F}^* is onto, but $\mathcal{F}^* = \mathcal{RF}$.

• \mathcal{F} isometry of L^2 , \mathcal{F} continuous from L^p to L^q , where

$$\frac{1}{p} + \frac{1}{q} = 1, \quad p \in [1, 2].$$

In particular $p=1, q=\infty$.

where $\mathcal{R}\varphi(x) = \varphi(-x)$.

Proof: Show \mathcal{S} dense in L^p (see below), extend \mathcal{F} , use Plancherel for L^2 .

- Mollifier: $\eta \in C_c^{\infty}$. $\int \eta = 1$. $\eta_N(x) := N^n \eta(Nx)$.
- $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$. $(1 \leq p < \infty)$ Proof: $\|\eta_N * f - f\|_{L^p} \to 0$ holds for step functions. Step functions are dense in $L^p(\mathbb{R}^n)$. $\|f * \eta_N\|_{L^p} \leq C \|f\|_{L^p}$ (Young's) Pick g a step function such that $\|f - g\|_{L^p} < \varepsilon$. Now measure

$$\|f * \eta_N - f\|_{L^p} = \|f * \eta_N - g * \eta_N + g * \eta_N - g + g - f\|_{L^p}$$

- $C_c^{\infty}(\mathbb{R}^n)$ is dense in \mathcal{S} . Proof: Smooth cutoff.
- Plancherel's Theorem: $(\mathcal{F}f, \mathcal{F}g)_{L^2} = (f, g)_{L^2}$. Proof: by Fubini.
- $\mathcal{F}: L^1(\mathbb{R}^n) \to \dot{C}(\mathbb{R}^n)$, with $\dot{C} := \{h: \mathbb{R}^n \to \mathbb{R}: h(x) \to 0 (x \to \infty)\}$. Proof: \mathcal{S} is dense in L^1 . Well-defined: Take $\varphi_k, \psi_k \to f \in L^1$, show $\mathcal{F}\varphi_k - \mathcal{F}\psi_k \to 0$ in L^∞ . Goes to \dot{C} : unproven.
- Linear operator of type (r, s):

$$\|K\varphi\|_{L^s} \leqslant C(r,s) \|\varphi\|_{L^r}$$

 \mathcal{F} is of type $(1, \infty)$ and (2, 2).

• Riesz-Thorin Convexity Theorem: \mathcal{F} of type (r_0, s_0) and (r_1, s_1)

$$\frac{1}{r} = \frac{\theta}{r_0} + \frac{1-\theta}{r_1}$$
$$\frac{1}{s} = \frac{\theta}{s_0} + \frac{1-\theta}{s_1}$$

Then \mathcal{F} of type (r, s) for $\theta \in [0, 1]$.

6.1 Tempered Distributions

- Tempered Distributions: S', convergence as in \mathcal{D}' . $\mathcal{D} \subset S \subset S' \subset \mathcal{D}'$. Examples: L^1 functions, $e^{|x|^2}$ not, $e^{-|x|^2}$, $\left\|(1+|x|^2)^{-M}f\right\|_{L^1} < \infty$.
- A tempered distribution is no worse than a certain derivative coupled with a monomial multiplication.

 $L \in \mathcal{S}' \Rightarrow \exists C, N \forall \varphi \in \mathcal{S} \colon |(L, \varphi)| \leqslant \sum_{|\alpha|, |\beta| \leqslant N} \left\| x^{\alpha} \partial^{\beta} \varphi \right\|_{L^{\infty}} \text{ (continuity)}.$

- $(\eta * L, \varphi) = (L, (\mathcal{R}\eta) * \varphi)$ for $L \in D', \mathcal{R}$ is reflection and η a mollifier
- $\eta * L$ is a C^{∞} function, namely $\gamma(x) = (L, \tau_x \mathcal{R} \eta)$, where $\tau_x f(y) = (y x)$.

Proof: 1. γ maps to \mathbb{R} . 2. γ sequentially continuous. 3. $\gamma \in C^1$ (FD). 4. $\gamma \in C^{\infty}$ (induction). 5. $(\eta * L, \varphi) = (\gamma, \varphi)$ (Riemann sums).

- \mathcal{D} is dense in \mathcal{D}' . Proof: $\chi_m := \mathbf{1}_{[-m,m]}$. Fix $L \in \mathcal{D}'$, $L_m := \chi_m(\eta_m * L) \in D \to L$ in \mathcal{D}' .
- S is dense in S'.
 (because D is already dense in D'.)
- Transpose $K^t: S \to S$ for $K: S \to S$ as by $(K^tL, \varphi) := (L, K\varphi)$.
- $K: \mathcal{S} \to \mathcal{S}$ linear and continuous. $K^t|_{\mathcal{S}}$ continuous. \exists !unique, continuous extension of K^t onto \mathcal{S}' .
- $\mathcal{F}: \mathcal{S}' \to \mathcal{S}'$ continuous.
- $\mathcal{F}\delta = 1/(2\pi)^{n/2}$.
- $0 < \beta < n, C_{\beta} = \Gamma((n-\beta)/2)$

$$\mathcal{F}(C_{\beta}|x|^{-\beta}) = C_{n-\beta}|x|^{-(n-\beta)}$$

Use this to solve Laplace's equation.

7 Hyperbolic Equations

- General constant coefficient problem. $P(D, \tau) = \tau^m + \tau^{m-1}P_1(D) + \dots + P_m(D)$
- Duhamel's principle: Solve $P(D, \tau)u = f$ by solving the standard problem $P(D, \tau)u_s = 0$, $u_s(0) = 0$, $\partial_t^{m-1}u_s(0) = g$ and finding

$$u(x,t) = \int_0^t \, u_s \mathrm{d}s$$

- Treat remaining ICs by solving standard problems for $\tau^{m-1}P_1, ..., \tau^0 P_m$, each time adding to the right hand side, which can finally be killed with the above approach.
- Fourier-transforms to $P(i\xi, \tau)\hat{u} = 0$, with $\tau = \partial_t$. Initial conditions $\tau^{0\dots m-2}\hat{u}(\xi, 0), \tau^{m-1}\hat{u}(\xi, 0)$.
- Representation of the solution:

$$\begin{split} Z(\xi,t) &= \frac{1}{2\pi} \int_{\Gamma} \frac{e^{i\lambda t}}{P(i\xi,i\lambda)} \mathrm{d}\lambda \\ P(i\xi,\tau)Z &= \frac{1}{2\pi} \int_{\Gamma} P(i\xi,i\lambda) \frac{e^{i\lambda t}}{P(i\xi,i\lambda)} \mathrm{d}\lambda = \frac{1}{2\pi} \int_{\Gamma} e^{i\lambda t} \mathrm{d}\lambda = 0, \end{split}$$

where Γ is a path around the roots.

• Classical solution requires $u \in C^m$. Requires $\forall T \exists C_T, N$:

$$|\tau^k Z(\xi, t)| \leqslant C_T (1+|\xi|)^N.$$

- Hyperbolicity: A standard problem is hyperbolic: $\Leftrightarrow \exists a \ C^m$ solution for all $g \in \mathcal{S}(\mathbb{R}^n)$.
- Gårding's Criterion: It's hyperbolic iff $\exists c \in \mathbb{R}: P(i\xi, i\lambda) \neq 0$ for all ξ and $\operatorname{Im} \lambda \leq -c$. Proof: Estimate around in the above representation for Z.
- Paley-Wiener Theorem: $g \in L^1 \Rightarrow \hat{g}$ entire.

8 Conservation Laws

• $u_t + f(u)_x = 0.$

Why are they called called conservation laws?

$$\frac{\mathrm{d}}{\mathrm{d}t}\int u = \int u_t = \int f(u)_x = f(b) - f(a) \to 0.$$

- Inviscid Burgers' Equation: $u_t + (u^2)_x = 0$.
- Characteristics: Assume u = u(x(t), t),

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{\partial u}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial u}{\partial t}$$

Compare shape with

$$0 = u_x f'(u) + u_t,$$

obtain dx/dt = f'(u).

- Weak solution: slap test function onto equation, integrate by parts.
- Rankine-Hugoniot:

shock speed =
$$\frac{\llbracket f(u) \rrbracket}{\llbracket u \rrbracket}$$

Apply weak solution formula across a jump, consider normal geometrically to obtain speed.

- *Riemann problem*: Jump IC. \rightarrow non-uniqueness of the weak solution for jump up: rarefaction wave or shock with correct speed?
- Hopf's treatment of Burger's Equation:
 - Add viscosity to get $u_t + (u^2/2)_x = \varepsilon u_{xx}$.
 - $\circ \quad \text{Put } U \text{ as an antiderivative of } u.$
 - Gives Hamilton-Jacobi PDE $U_t + U_x^2/2 = \varepsilon U_{xx}$.
 - Now try to rewrite that into a linear equation, by assuming $\psi = \psi(u)$. Yields ODE $C\varphi'' + C\varphi' = 0$, solution $\psi = \exp(-U/2\varepsilon)$.
 - This gives the heat equation $\psi_t = \varepsilon \psi_{xx}$.

0

$$u = 2\varepsilon \frac{\psi_x}{\psi} = \frac{\int \frac{x - y}{t} \exp(-G/2\varepsilon) \mathrm{d}y}{\int \exp(-G/2\varepsilon) \mathrm{d}y} = \frac{x}{t} - \frac{\langle y \rangle}{t} \to \frac{x}{t} - \frac{\operatorname{argmin} G}{t}$$

with $G = (x - y)^2 / 2t + U_0$.

- $a_{-} = \inf \operatorname{argmin} G, a_{+} = \sup \operatorname{argmin} G.$
- Properties: well-defined, increasing, $a_+(\leftarrow) \leq a_-(\rightarrow)$, a_- left-continuous, a_+ right-continuous, go to $\pm \infty$. Equal except for a countable set of shocks.
- Hopf's theorem:

$$\frac{x-a_+}{t} \leqslant \liminf_{\varepsilon \to 0} u^{\varepsilon} \leqslant \limsup_{\varepsilon \to 0} u^{\varepsilon} \leqslant \frac{x-a_-}{t}$$

- $u_0 \in BC$ (bounded, continuous) $\Rightarrow u(\cdot, t) \in BV_{loc}$. Globally BV? Proof: x, a_+, a_- are increasing \Rightarrow differences in BV_{loc} .
- Vanishing viscosity solutions are weak solutions. Proof: Pass to vanishing viscosity under integral using DCT and boundedness.
- Cole-Hopf solutions produce rarefaction x/t for jump up, shock for jump down.
- More properties:
 - $\lim_{\varepsilon \to 0} u^{\varepsilon}$ exists except for a countable set. $u = \lim u^{\varepsilon} \in BV_{loc}$ with left and right limits. Proof: u is a difference of increasing functions.
 - Lax-Oleinik entropy condition: $u(x_{-}, t) > u(x_{+}, t)$ at jumps.

"Characteristics never leave a shock."

Proof: Travelling waves for Burgers with viscosity only exist for $u_{-} > u_{+}$.

 \circ x a shock location:

The last equation here is a momentum conservation equality. Proof: $G(a^+) = G(a^-)$.

• Entropy/entropy-flux pair: $\Phi, \Psi: \mathbb{R}^m \to \mathbb{R}$ smooth are an e/ef pair for $u_t + f(u)_x = 0$: $\Leftrightarrow \Phi$ convex, $\Phi' f' = \Psi'$. Then $\Phi(u)_t + \Psi(u)_x = 0$ for perfectly smooth solutions, otherwise $\Phi(u_t) + \Psi(u)_x \leq 0$ in the distributional sense, which means

$$\int_0^\infty \int_{-\infty}^\infty \Phi(u)v_t + \Psi(u)v_x \mathrm{d}x \mathrm{d}t \ge 0.$$

for smooth non-negative v.

- By the vanishing viscosity method, we get an entropy solution. Proof: Multiply the viscosity-added c.law by Φ' . Use chain rule on $\Phi(u^{\varepsilon})_{xx}$. Use convexity of Φ to show one term involving φ'' non-negative. Multiply by a non-negative smooth function, let $\varepsilon \to 0$ to obtain entropy inequality.
- Entropy solution: u is an entropy solution of a c.law if u is a weak solution that satisfies the entropy condition for every e/ef pair.
- Dissipation measure:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int (u^{\varepsilon})^2 = -2\varepsilon \int (u^{\varepsilon}_x)^2.$$

Assuming a traveling wave solution of the form

$$u^{\varepsilon} = v \left(\frac{x - ct}{\varepsilon} \right),$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \int (u^{\varepsilon})^2 = \frac{(u_- - u_+)^3}{6}$$

we find

• Kružkov's Uniqueness Theorem: L^{∞} Entropy solutions u, v, S_t cuts of the event cone (given by max. speed $c^* = \max_{\text{range } u} |f'|$. Then for $t_1 < t_2$

$$\int_{S_{t_2}} |u-v| \leqslant \int_{S_{t_1}} |u-v|.$$

Proof: Doubling trick, clever choice of test functions. Implies uniqueness.

9 Hamilton-Jacobi Equations

- $u_t + H(Du, x) = 0.$
- Example: Curve evolving with normal velocity: $u_t + \sqrt{1 + |D_x u|^2} = 0.$
- Non-Example: Motion by mean curvature $u_t = u_{xx}/(1+u_x)^2$ (parabolic).
- Example: Substitute $U = \int u$ in conservation laws.

• PDE is infinitely-many-particle limit of Hamilton ODE

$$\dot{x} = \partial_p H(p, x)$$

$$\dot{p} = -\partial_x H(p, x),$$

which coincides with characteristic equation of PDE.

- Mechanics motivation:
 - $\circ \quad L(q,x) = T V$
 - Lagrange's Equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial x}.$$

Way to see this: If RHS = 0, then L symmetric in x, so LHS becomes conserved. (Noether's theorem.)

Equivalent to Hamilton's ODE (Proof: $H = \max_q (q p - L(x, q, t))$, where q = q(x, p, t) is the solution of $p = \partial_q L(v)$.

• Action, given path x(t):

$$S(x) = \int_0^t L(\dot{x}, x, t) \mathrm{d}t$$

- Principle of least action: min $S \Leftrightarrow$ Lagrange's Equation. Proof: $u + \varepsilon v$, derivative by ε , the usual.
- Generalized momentum: $p = \partial_q L$. Assumed solvable for q.
- Hamiltonian: $H = T + V = p \cdot q L = 2T (T V) = T + V$.
- Legendre transform: More general way of obtaining H. Assume L(q) (dropping dependencies!) convex, $\lim_{|q|\to\infty} L(q)/|q| = \infty$. Then

$$H(p) = L^{*}(p) = \sup_{q} \{ p \cdot q - L(q) \}.$$

Solved when $p = \partial_q L$, but in a more general sense. Duality: Edge \leftrightarrow Corner. Subdifferentials.

 $\circ \quad L \text{ convex} \Rightarrow L^{**} = L.$ Proof: Prove convexity and superlinearity of L^* . Use symmetry

$$H(p) + L(q) \ge p \cdot q$$

to prove two sides of the equality $H^* = L$.

• *Hopf-Lax formula: g* is IC

$$u(x,t) = \inf\left\{\int L(\dot{x})dx + g(y), x(0) = y, x(t) = x\right\} = \min\left\{t L\left(\frac{x-y}{t}\right) + g(y)\right\}.$$

Proof: Inf bounded above by straight-line characteristic. Lower bound works by Jensen's inequality.

• Semigroup Property.

Proof: Always pick particular solutions, prove both sides of the inequality.

- u defined by Hopf-Lax is Lipschitz if g is Lipschitz. Proof: Lipschitzicity for given t is immediate (pick good z). Transform problem to comparison with t=0 by semigroup property. Temporal estimate is screwy, involves special choices in inf.
- u by Hopf-Lax is differentiable a.e. and satisfies the H-J PDE where it is. Proof: Rademacher's Theorem. Prove $u_t + H(Du) \leq 0$ for forward in time by taking increments $\rightarrow 0$, using inequality with Legendre transform.

- Lipschitz+Differentiable solution a.e. is not sufficient for uniqueness. (45-degree angle trough vs. 90-degree trough)
- $f: \mathbb{R}^n \to \mathbb{R}$ semiconcave if

$$f(x+z) - 2f(x) + f(x-z) \leqslant C|z|^2$$

for some z.

 $\Leftrightarrow f(z) - C/2|z|^2 \text{ is concave.}$ $\Leftrightarrow \text{``can be forced into concavity by subtracting a parabola.''}$ $\Leftarrow C^2 \text{ and bounded second derivatives implies semiconcavity.}$

- $g \text{ semiconcave} \Rightarrow u \text{ semiconcave}.$ Clever choice of test locations in Hopf-Lax.
- $H: \mathbb{R}^n \to \mathbb{R}$ uniformly convex: \Leftrightarrow

$$\sum_{i,j} H_{p_i p_j} \xi_i \xi_j \ge j |\xi|^2$$

- If *H* uniformly convex. Then *u* is semiconcave (indep. of initial data) Proof: Taylor, mess about with Hopf-Lax.
- Now $H(p) \rightarrow H(p, x)$ nonconvex.
- Vanishing Viscosity Method: Use $u_t + H(Du, x) = \varepsilon \Delta u$. Locally uniform convergence follows from Arzelà-Ascoli.
- u is a viscosity solution: $\Leftrightarrow u = g$ on $\mathbb{R}^n \times \{t = 0\}$, for each $v \in C^{\infty}(\mathbb{R}^n \times (0, \infty))$

u-v has a local maximum at $(x_0, t_0) \Rightarrow v_t(x_0, t_0) + H(Dv(x_0, t_0)) \leq 0$ (and $\min \rightarrow \geq$).

- If u is a vanishing viscosity solution, then it is a viscosity solution.
 Proof: Convergence is locally uniform as ε_j→0. Thus for each fixed ball around a local strict maximum in u − v, a local maximum in u^ε − v exists if ε is small enough. There, v_x = u^ε_x and v_t = u^ε_t and −Δu^ε ≥ −Δv. v_t + H(Dv) ≤ 0 follows. Generalize to non-strict maxima by adding parabolas.
- A classical solution of a H-J PDE is a viscosity solution. Proof: Maximum of $u - v \Rightarrow$ derivatives are equal \Rightarrow PDE.
- Touching by C^1 function: u continuous. u differentiable at x_0 . Then $\exists v \in C^1: v(x_0) = u(x_0), u v$ has a strict local max.
- u viscosity solution ⇒ u satisfies H-J wherever it is differentiable Proof: Mollify touching function, u − v^ε maintains strict max., verify definition of Viscosity solution. (Mollification necessary because test functions are required to be C[∞].)
- Uniqueness: $H \in \text{Lip}_p(C) \cap \text{Lip}_x(C1 + |p|) \Rightarrow$ uniqueness. Proof: doubling trick again.

10 Sobolev Spaces

 $1\leqslant p<\infty.$

- $||u||_{k,p;\Omega} = \sum_{|\alpha| \leq k} ||D^{\alpha}u||_p.$
- $W^{k,p}(\Omega) := \{ u \in \mathcal{D}'(\Omega) : D^{\alpha}u \in L^p(\Omega), |\alpha| \leq k \}$ Banach space.
- $W_0^{k,p}(\Omega) := \operatorname{cl}(\mathcal{D}(\Omega), \|\cdot\|_{k,p;\Omega}).$
- $u \in W^{l,p}(\Omega)$. $\Omega' \subset \subset \Omega$ open $\Rightarrow \exists u_k \in C_c^{\infty}(\Omega') : ||u_k u||_{l,p;\Omega'} \to 0$. Proof: Mollification, throw derivatives onto u by integration by parts.
- $u \in W^{l,p}(\Omega), \Omega$ bounded $\Rightarrow \exists u_k \in C^{\infty}(\Omega) \cap W^{l,p}(\Omega) : ||u_k u||_{l,p:\Omega} \to 0.$

Proof: Exhaust Ω by $U_k := \{ \operatorname{dist}(x, \partial U) > 1/k \}$. Consider smooth partition of unity ζ_i subordinate to $V_i := \Omega_{i+3} \setminus \overline{\Omega}_{i+1}$. $u_i := \eta_{\varepsilon_i} * (\zeta_i u)$ s.t. $\|u_i - \zeta_i u\|_{l,p} < \delta 2^{-i-1}$. Give one more set of wiggle room on each side for mollification. $v := \sum \zeta_i u_i \in C^{\infty}$ because there's only a finite number of terms for fixed point/set. Then estimate $\|u - v\|_{l,p}$.

• Typical idea: Consider

$$f^*(x) = \lim_{r \to 0} \oint_{B(x,r)} f(y) \mathrm{d}y.$$

- $u \in W^{1,p}(\Omega), \ \Omega' \subset \subset \Omega$. Then
 - There exists a representative on Ω' that is absolutely continuous on a line and whose classical derivative agrees a.e. with the weak one.
 - If the above is true of a function, then $u \in W^{1,p}(\Omega)$.

Proof: WLOG p = 1 (Jensen). WTF? Consequences: $W^{1,p}$ closed wrt. max, min, abs. value, \cdot^+ . Ω connected, $Du = 0 \Rightarrow u$ constant.

10.1 Campanato

• Oscillation:

$$\operatorname{osc}_U = \sup_{x, y \in U} |u(x) - u(y)|.$$

- $\bullet \quad C^{0,\alpha} := \{ |u(x) u(y)| \leqslant C |x y|^{\alpha} \}. \ \|u\|_{C^{0,\alpha}} := \|u\|_{C(\bar{U})} + \sup_{x \neq y} |u(x) u(y)| / |x y|^{\alpha}.$
- $C^{k,\alpha} := D^{\alpha} \in C^{0,\alpha}$. Norm: sum over multi-indices.
- Campanato's Inequality: $u \in L^1_{loc}(\Omega), 0 < \alpha \leq 1, \exists M > 0$:

$$\int_{B} |u(x) - \bar{u}_B(x)| \mathrm{d}x \leqslant M r^{\alpha}.$$

Then $u \in C^{0,\alpha}(\Omega)$ and $\operatorname{osc}_{B(x,r/2)} u \leq C M r^{\alpha}$. \bar{u}_B is the mean over B. Proof: x a Lebesgue point of u, $B(x, r/2) \subset B(z, r)$. Then $|\bar{u}_{B(x,r/2)} - \bar{u}_{B(z,r)}| \leq 2^n M r^{\alpha}$. Iteration via geometric series and Lebesgue-pointy-ness yields

$$|u(x) - \bar{u}_{B(z,r)}| \leq C(n,\alpha) M r^{\alpha}.$$

For two Lebesgue points,

$$|u(x) - u(y)| \leq |u(x) - \bar{u}_{B(z,r)}| + |\bar{u}_{B(z,r)} - u(y)| \leq C(n,\alpha)Mr^{\alpha}.$$

10.2 Sobolev

• Gagliardo-Nirenberg-Sobolev: $u \in C_c^1(\mathbb{R}^n), 1 \leq p < n \Rightarrow$

$$\|u\|_{p^*} \leqslant C \|Du\|_p,$$

where

$$\frac{1}{p^*}\!+\!\frac{1}{n}\!=\!\frac{1}{p}\quad\Rightarrow\quad p^*\!>p.$$

- Considering what happens when you scale functions $u \to u_{\lambda}(x) := u(\lambda x)$, these exponents are the only ones possible.
- If we choose p = 1, then the best constant comes to light by choosing $u = \mathbf{1}_{B(0,1)}$, giving the isoperimetric inequality.
- Proof: Suppose p = 1 at first. Compact support \Rightarrow

$$u(x) \leq \int_{-\infty}^{\infty} |Du(x...x, y_i, x, ..., x)| dy_i \quad (i = 1, ..., n).$$

Then

$$|u(x)|^{n/(n-1)} \leq \left(\prod_{i} \int \dots \mathrm{d}y_{i}\right)^{1/(n-1)}$$

Integrating this gives

$$\int |u|^{n/(n-1)} \mathrm{d}x_1 \leqslant \left(\int |Du| \mathrm{d}x_1\right)^{1/(n-1)} \left(\prod_{i=2} \iint |Du| \mathrm{d}x_1 \mathrm{d}y_i\right)^{1/(n-1)}$$

by pulling out an independent part and using generalized Hölder. Then iterate the same trick. To obtain for general p, use on $v = |u|^{\gamma}$ with suitable γ .

10.3 Poincaré and Morrey

• Riesz potential: $0 < \alpha < n$

$$I_{\alpha}(x) = |x|^{\alpha - n} \in L^{1}_{\text{loc}}(\mathbb{R}^{n}).$$

- $||I_1 * f||_{L^p} \leq C ||f||_{L^p}$.
- Poincaré's Inequality: Ω convex, $|\Omega| < \infty$, $d = \operatorname{diam}(\Omega)$, $u \in W^{1,p}(\Omega)$. Then

$$\left(\int_{\Omega} |u(x) - \bar{u}_{\Omega}|^p\right)^{1/p} \leq C d \left(\int_{\Omega} |Du|^p\right)^{1/p}.$$

Proof: Use calculus to derive

$$|u(x) - \bar{u}| \leq \frac{d^n}{n} \int_{\Omega} \frac{|Du(y)|}{|x - y|^{n-1}} \mathrm{d}y.$$

Then use potential estimate.

• Morrey's Inequality: $u \in W^{1,1}_{loc}(\Omega), 0 < \alpha \leq 1$. If $\exists M > 0$ with

$$\int_{B(x,r)} |Du| \leqslant M r^{n-1+\alpha}$$

for all $B(x,r) \subset \Omega$. Then $u \in C^{0,\alpha}(\Omega)$ and $\operatorname{osc}_{B(x,r)} u \leq C M r^{\alpha}$.

- Morrey=Poincaré+Campanato in $W^{1,1}$.
- More general Morrey: $u \in W^{1,p}(\mathbb{R}^n)$, $n . Then <math>u \in C^{0,1-n/p}_{\text{loc}}(\mathbb{R}^n)$ and

$$\operatorname{osc}_{B(x,r)} u \leqslant r^{1-n/p} \| Du \|_{L^p}$$

If $p = \infty$, u is locally Lipschitz.

Proof: Use Jensen $(\cdot)^{p \cdot \frac{1}{p}}$ on Poincaré's RHS. Then apply Campanato.

10.4 BMO

• BMO seminorm:

$$[u]_{\rm BMO} := \sup_B \int_B |u - \bar{u}_B| \mathrm{d}x$$

- BMO := $\{[u]_{BMO} < \infty\}$.
- John-Nirenberg: $W^{1,n}(\mathbb{R}^n)(\cap L^1(\mathbb{R}^n)) \subset BMO(\mathbb{R}^n)$. Proof: Poincaré-then-Jensen.
- For a compact domain, $L^p \subset L^\infty \subset BMO$.

10.5 Imbeddings

• Imbedding $B_1 \rightarrow B_2$: \exists continuous, linear, injective map.

- $W^{1,p}(\mathbb{R}^n) \to L^{p^*}$ for $1 \leq p < n$ (Sobolev inequality)
- $W^{1,p}(\mathbb{R}^n) \to \text{BMO for } p = n$
- $W^{1,p}(\mathbb{R}^n) \to C^{0,1-n/p}_{\text{loc}}$ (Morrey)

 Ω bounded now.

• $W^{1,p}(\Omega) \to L^q(\Omega)$ for $1 and <math>1 \leq q < p^*$. Proof: Hölder-then-Sobolev:

$$\|u\|_{L^{q}} \leq \|u\|_{L^{p^{*}}} |\Omega|^{1-q/p^{*}} \leq \|Du\|_{W^{1,p}}.$$

- $W_0^{1,p}(\Omega) \to C^{0,1-n/p}(\overline{\Omega})$ for n .
- Compact imbedding $B_1 \hookrightarrow B_2$: The image of every bounded set in B_1 is precompact in B_2 . (precompact: has compact closure)
- Rellich-Kondrachev:
 - $\circ \quad W^{1,p}(\Omega) \hookrightarrow L^q(\Omega) \text{ for } 1 In Evans, we need <math>\partial U \in C^1$. Our notes do not. Proof:
 - Grab a $W^{1,p}$ -bounded sequence u_m .
 - Mollify it to u_m^{ε}
 - Use an ε -derivative trick to show $\|u_m^{\varepsilon} u_m\|_{L^1} \leqslant \varepsilon \|Du_m\|_{L^p} \to 0$
 - Interpolation inequality for L^p : $||u_m^{\varepsilon} u_m||_{L^q} \leq ||u_m^{\varepsilon} u_m||_{L^1}^{\theta} ||u_m^{\varepsilon} u_m||_{L^{p^*}} \to 0$, also using GNS.
 - For fixed ε , u_m^{ε} is bounded and equicontinuous (directly mess with convolution).
 - Use Arzelà-Ascoli and a diagonal argument to finish off.
 - $\circ \quad W_0^{1,p}(\Omega) \hookrightarrow C^0(\bar{\Omega}) \subset L^p(\Omega) \text{ for } n Proof: Morrey's Inequality, then Arzelà-Ascoli.$

11 Scalar Elliptic Equations

- $Lu = \operatorname{div}(ADu + bu) + c \cdot Du + du$.
- Motivation: Calculus of Variations.
- Weak Formulation: $u \in W^{1,2}(\Omega), v \in C_c^1(\Omega)$

$$B[u,v] := \int_{\Omega} \left(Dv^T A Du + b \cdot Dv u \right) - (c \cdot Du + du) v \, \mathrm{d}x.$$

• Generalized Dirichlet Problem: $Lu = g + \operatorname{div} f$ on Ω , $u = \varphi$ on $\partial \Omega$, i.e. B[u, v] = F(v) with

$$F(v) := \int_{\Omega} Dv \cdot f - g v d \mathrm{d}x.$$

- Assumptions:
 - (E₁). Strict ellipticity: $\exists \lambda > 0: \xi^T A \xi \ge \lambda |\xi|^2$
 - (E₂). Boundedness: $A, b, c, d \in L^{\infty}$, i.e. $\|\operatorname{Tr}(A^T A)\|_{L^{\infty}} \leq \Lambda^2, \frac{1}{\lambda^2} (\|b\|_{\infty} + \|c\|_{\infty}) + \frac{1}{\lambda} (\|d\|_{\infty}) \leq \nu.$
 - (E_3) . div $b + d \leq 0$ weakly, i.e.

$$\int_{\Omega} dv - b \cdot Dv \mathrm{d}x \leqslant 0$$

for $v \in C_c^1(\Omega), v \ge 0$.

- " \leqslant " on the boundary: $u \leqslant v \Leftrightarrow (u-v) \leqslant 0$: $\Leftrightarrow (u-v)^+ \in W_0^{1,2}(\Omega)$.
- "sup" on the boundary: $\sup_{\partial\Omega} u = \inf \{k \in \mathbb{R} : u \leq k \text{ on } \partial\Omega \}.$
- u is a subsolution: $\Leftrightarrow B[u, v] \leqslant F(v) \Leftrightarrow Lu \ge g + \operatorname{div} f$.
- Non-divergence form:

$$0 = A D^2 U + b \cdot Du + du$$

(Not equivalent!)

- Classical Maximum Principle: Holds if $d \leq 0$.
- Weak Maximum Principle: $Lu \ge 0 \Leftrightarrow B[u, v] \le 0$ for $v \ge 0$ and (E_1) , (E_2) , (E_3) . Then $\sup_{\Omega} u \le \sup_{\partial \Omega} u^+$.

Proof:

• Use $B[u, v] \leq 0$ for $v \geq 0$ and (E_3) to establish

$$\int Dv^T A Dv - (b+c)Du \cdot v \leqslant \int d(uv) - b \cdot D(uv) \leqslant 0.$$

Note that u v is the new test function in (E_3) . Consequently

$$\int \! Dv^T \! A \, Dv \leqslant \int \, (b+c) D \, u \cdot v$$

• Suppose $l = \sup_{\partial\Omega} u \leq k < \sup_{\Omega} u$. Set $\Gamma := \{u > k\}$ and achieve a $\|Dv\|_{L^2} \leq C \|v\|_{L^2}$ estimate by using ellipticity, the above and boundedness. Use the Sobolev inequality to get $\|v\|_{L^{2^*}} \leq \cdots \leq |\Gamma|^{1/n} \|v\|_{L^{2^*}}$, and so $|\Gamma| > 0$ independently of k. Let $k \to \sup_{\Omega}$ to obtain a contradiction. (Note $\sup_{\Omega} < \infty$ because $u \in W^{1,2}(\Omega)$.)

Remarks:

- Implies uniqueness.
- No assumptions on boundedness, smoothness or connectedness of Ω .
- Implies uniqueness.

11.1 Existence Theory

- Existence: Ω bounded, (E_1) , (E_2) , (E_3) . Then $\exists!$ solution of the generalized Dirichlet problem.
 - $\circ~$ Reduce BC to $H_0^{1,2}$ by subtracting arbitrary function and handling RHS.
 - Prove coercivity estimate

$$B[u,u] \! \geqslant \! \frac{\lambda}{2} \int_{\Omega} |Du|^2 \mathrm{d}x - \lambda \nu^2 \int_{\Omega} |u|^2 \mathrm{d}x$$

(Uses: (E_1) , (E_2) , $2 a b \leq \lambda a^2 + b^2/\lambda$. (In Evans, Poincaré enters here. How?) (For Δ , Poincaré suffices to show coercivity.)

 $\circ \quad \mathrm{Id}: W_0^{1,2} \to (W_0^{1,2})^* \text{ is compact.}$

$$\mathrm{Id} = \underbrace{(L^2 \to \mathcal{H}^*)}_{\mathrm{continous}} \circ \underbrace{(\mathcal{H} \to L^2)}_{\mathrm{compact}}.$$

- $L_{\sigma} := L \sigma \text{Id.}$ ($L \approx \Delta$ has negative eigenvalues already. But they might be pushed upward by the first- and zeroth-order junk. So we might have to make them even more negative to succeed.)
- $\circ \quad \rightarrow B_{\sigma}[u,v] = B[u,v] + \sigma(u,v)_{L^2}, \, \text{coercivity is maintained}.$

- Lax-Milgram shows existence of inverse L_{σ}^{-1} for the not-so-bad operator L_{σ} .
- Start with $Lu = g + \operatorname{div} f$, introduce L_{σ} , multiply by L_{σ}^{-1} and see what happens.
- \circ Weak maximum principle provides uniqueness for L, so that the Fredholm alternative provides existence when combined with Rellich.

11.2 Regularity

- Assumptions:
 - \circ (*R*₁): (*E*₁), (*E*₂).
 - (R_2) : $f \in L^q(\Omega), g \in L^{q/2}, q > n$.
- $(R_1), Lu = g$. A, b Lipschitz. Then for $\Omega' \subset \subset \Omega$ we have

$$||u||_{W^{2,2}(\Omega')} \leq C \Big(||u||_{W^{1,2}(\Omega)} + ||g||_{L^{2}(\Omega)} \Big).$$

Proof:

• Finite Differences.

11.3 Harnack Inequality Stuff

• (Ladyzhenskaya/Uraltseva): (R₁), (R₂). $u \in W^{1,2}$ a subsolution, $u \leq 0$ on $\partial \Omega$. Then:

where

$$\begin{split} \sup_{\Omega} u &\leqslant C \Big(\left\| u^+ \right\|_{L^2(\Omega)} + k \Big), \\ k &= \frac{1}{\lambda} \Big(\left\| f \right\|_{L^q} + \left\| g \right\|_{L^{q/2}} \Big). \end{split}$$

Proof: o

• Local Boundedness: $(R_1), (R_2). u \in W^{1,2}$ a subsolution. Then:

$$\sup_{B(y,R)} u \leqslant C \Big(\left. R^{-n/p} \right\| u^+ \big\|_{L^2(\Omega)} + k(R) \, \Big),$$

where

$$k(R) = \frac{R^{1-n/q}}{\lambda} \Big(\|f\|_{L^q} + R^{1-n/q} \|g\|_{L^{q/2}} \Big)$$

• Weak Harnack Inequality: $(R_1), (R_2), u \in W^{1,2}(\Omega)$ a supersolution and $u \ge 0$ in $B(y, 4R) \subset \Omega$. Then

$$R^{-n/p} \|u\|_{L^p(B(2R))} \leq C \left(\inf_{y \in B(y,R)} u + k(R) \right)$$

• Strong Harnack Inequality: $(R_1), (R_2), u \in W^{1,2}(\Omega)$ a solution with $u \ge 0$. Then

$$\sup_{B(y,R)} u \leq C \bigg(\inf_{B(y,R)} u + k(R) \bigg).$$

• Strong Maximum Principle: $(R_1), (R_2), (E_3), \Omega$ connected, $u \in W^{1,2}$ a subsolution $Lu \ge 0$. If

$$\sup_{B} u = \sup_{\Omega} u,$$

then u = const.

Proof: Weak Harnack shows $\{u = \sup_{\Omega} u\}$ is open. $\{u = \sup_{\Omega} u\}$ is relatively closed in Ω . Therefore $\{u = \sup_{\Omega} u\} = \Omega$.

Why is $L \operatorname{const} = 0$?

How dow we know the "relatively closed" part?

• $DeGiorgi/Nash: (R_1), (R_2), u \in W^{1,2}$ solution of Lu = g + div f. Then f is locally Hölder and

$$\operatorname{osc}_{B(y,R)} u \leq C R^{\alpha} \left(R_0^{-\alpha} \sup_{B(y,R_0)} |u| \right)$$

+k

if $0 < R \leq R_0$. Proof:

12 Calculus of Variations

 Ω open, bounded.

- Idea: solution u, smooth variation φ , functional I. $\partial_{\varepsilon}I(u + \varepsilon\varphi)|_{\varepsilon=0} = 0$. Integrate by parts, φ was arbitrary \rightarrow PDE.
- $u: \Omega \to \mathbb{R}^m$ deformation, $Du: \Omega \to \mathbb{R}^{m \times n}, F: \mathbb{R}^{m \times n}[\times \mathbb{R}^n] \to \mathbb{R}.$

$$I[u] = \int_{\Omega} F(Du(x), u) \mathrm{d}x.$$

Looking for $\inf_{u \in \mathcal{A}} I[u]$, where $\mathcal{A} = W_0^{1,2}(\Omega)$.

• Example: Dirichlet's Principle: Ω open, bounded

$$I[u] = \int_{\Omega} \left(\frac{1}{2} |Du|^2 - gu \right) \mathrm{d}x.$$

• Bounded below: $\varepsilon a^2 + b^2/\varepsilon$, Sobolev (2*>2), Hölder as $||u||_{L^2} \leq ||u||_{L^{2*}} |\Omega|^{1/n}$, gives

$$I[u] \ge c \|u\|_{W_0^{1,2}}^2 - \frac{1}{2\varepsilon} \|g\|_{L^2}^2.$$

- Bounded above by $\|u\|_{W_0^{1,2}}^2 + \|g\|_{L^2}$.
- \circ I wlsc because F convex.
- strictly convex (unproven) \Rightarrow uniqueness.
- Weak lower semicontinuity: $u_k \rightarrow u \Rightarrow I[u] \leq \liminf_{k \rightarrow \infty} I[u_k]$.
- $F \operatorname{convex} \Rightarrow I \operatorname{wlsc}$ in $W_0^{1,p}(\Omega)$. Proof: Use representation of convex F as limit of increasing sequence $\{F_N\}$ of piecewise affine functions. Implies $\int F_N(Du_k) \xrightarrow{k} \int F_N(Du)$ (weak convergence \heartsuit linear/affine functions). Then

$$\int F_N(Du) \stackrel{F_N \text{ incr.}}{\leqslant} \liminf_{k \to \infty} \int F(Du_k) = \liminf_{k \to \infty} I[u_k]$$

and MCT.

- Jensen: $F(\mathbf{w} * \lim g_k) \leq \mathbf{w} * \lim F(g_k)$.
- Euler-Lagrange Equation: Weak form obtained from $i(\tau) = I[u + \tau v]$, where $u = \operatorname{argmin} I[u]$ and looking at i'(0) = 0.

$$-\operatorname{div}(F_p(Du)) + F_u(Du, u) = 0.$$

Also $i''(0) \ge 0$.

• Motivation for Convexity: $\rho(s) = 0$ -1 sawtooth. $\rho' = 1$ a.e., $v_{\varepsilon}(x) = \varepsilon \zeta(x) \rho(x \cdot \xi/\varepsilon)$.

$$\frac{\partial v_{\varepsilon}}{\partial x_i}(x) \approx \zeta(x) \rho'(x \cdot \xi/\varepsilon) \approx \zeta(x)\xi.$$

Consider $i''(0) \ge 0 \Rightarrow \xi^T D^2 F \xi \ge 0$ pops out.

• $m = 1 \Rightarrow (wlsc \Leftrightarrow convexity).$

Proof: " \Leftarrow ": shown above. " \Rightarrow ": 2^{nk} cube grid on $[0,1]^n$, $v \in C_c^{\infty}$.

$$u_k(x) = \frac{1}{2^k} v(2^k(x - \text{cell center})) + z \cdot x.$$

$$Du_k(x) = Dv(2^k(x - \text{cell center})) + z.$$

 $u_k \rightarrow z \cdot x, Du_k \rightarrow Du$. Then

$$F(z) \stackrel{\text{wlsc}}{\leqslant} \liminf_{k \to \infty} \sum_{l} \int_{Q_l} F(Du_k) = \int_{[0,1]^n} F(z + Dv)$$

Thus I[u] has a minimum at the straight line, and for $i(\tau) = I[u + \tau v]$, i'(0) = 0, $i''(0) \ge 0$, convexity follows as above.

12.1 Quasiconvexity

 $m \ge 2, \ \mathcal{A} = W^{1,p} \cap \{u = g\}_{\partial \Omega}. \ 1$

$$I[u] = \int_{\Omega} F(Du(x)) \mathrm{d}x$$

• Sawtooth calculation yields rank-one convexity

$$(\eta \otimes \xi)^T D^2 F(P)(\eta \otimes \xi)$$

 $\Leftrightarrow F(P + t(\eta \otimes \xi)) \text{ convex in } t.$

• Quasiconvexity: F quasiconvex: $\Leftrightarrow \forall A \in \mathbb{R}^{m \times n}, v \in C_c^{\infty}([0,1]^n, \mathbb{R}^m)$:

$$F(A) \leqslant \int_{[0,1]^n} F(A + Dv)$$

- $\bullet \quad \text{If } |F(A)| \leqslant C(1+|A|^p), \, \text{then } F \ \mathrm{QC} \Leftrightarrow I \ \text{wlsc.}$
 - \circ " \Rightarrow ": Subdivide domain into cubes,

$$\int_{\Omega} F(Du) \approx \int_{\Omega} F(\text{affine approx to } Du) \stackrel{\text{QC}}{\leqslant} \int_{\Omega} F(Du_k) + \text{errors.}$$

Use measure theory to keep concentrations (Dirac bumps?) of Du or Du_k away from cube boundaries. Mop up the error terms.

- $\circ \quad ``\Leftarrow": cubes calculation above.$
- *Polyconvex*: *F* is a convex function of minors of *A*.
- Convex \Rightarrow PC \Rightarrow QC \Rightarrow R1C (converse false). Proof of PC \Rightarrow QC: PC \Rightarrow wlsc (use convex \Rightarrow wlsc argument for each minor). wlsc \Rightarrow QC.
- $|DF(A)| \leq C(1+|A|^{p-1})$. Proof: Exploit growth estimate above, and QC \Rightarrow R1C. Use $f(t) = F(A + t(\eta \otimes \xi))$, which is convex \Rightarrow locally Lip \Rightarrow locally $|f'(0)| \leq \max |f|$.

12.2 Null Lagrangians, Determinants

• F(Du) is a null Lagrangian if E-L

$$\operatorname{div}(DF(Du)) = \partial x_j(\partial_{A_{i,j}}F(Du)) = 0$$

holds for every $u \in C^2$.

• F null Langrangian. Then

$$u = \tilde{u} \text{ on } \partial \Omega \quad \Rightarrow \quad I[u] = I[\tilde{u}].$$

Proof: $i(\tau) := I[\tau u + (1 - \tau)u]$. $i'(\tau) = 0$ by E-L.

• Cofactor matrix:

$$\circ \quad \operatorname{cof}(A_{i,j}) = \det(A_{\setminus i,\setminus j}).$$

$$\circ A^{-1} = \frac{1}{\det A} (\operatorname{cof} A)^T.$$

 $\circ \quad \Rightarrow A^T \mathrm{cof} \; A = \det A \cdot \mathrm{Id}$

$$\circ \quad \Rightarrow \partial_{A_{i,j}} \det(A) = (\operatorname{cof} A)_{i,j}$$

- det(Du) is a null Lagrangian, i.e.
 - $\circ \quad \operatorname{div}(D\operatorname{det}(Du)) = \operatorname{div}(\operatorname{cof}(Du)) = 0$
 - Plug and chug if $det(Du) \neq 0$, otherwise add εId .
- $u_k \rightarrow u$ in $W^{1,p}$, $n . <math>\Rightarrow \det(Du_k) \rightarrow \det(Du)$ in $L^{p/n}$. (Morrey/Reshetnyak)
 - Reduce dimension of problem by one by reducing to "does the cofactor matrix converge"?

• Use
$$\det(Du) = \operatorname{div}\left(\frac{1}{n}\operatorname{cof}(Du)^T u\right)$$

- Morrey (n < p!) implies uniform boundedness in $C^{0,1-n/p}$, then use A-A to extract uniformly converging subsequence, settling the deal for the leftover u besides the cofactor matrix.
- (also holds for p = n if $\det(Du_k) \ge 0$ -no proof.)
- No Retract Theorem: B = B(0, 1). There is no continuous map $u: \overline{B} \to \partial \overline{B}$ with u(x) = x on ∂B . Proof: Suppose there is a retract w. By comparison with Id and identity on the boundary,

$$\int \det(Dw) = |B|.$$

OTOH, $|w|^2 = 1 \Rightarrow (Dw)^T w = 0 \Rightarrow \det(Dw) = 0$. Lose smoothness requirement by continuously extending by Id, mollifying and using B(0,2) then.

- Brouwer's Fixed Point Theorem: u: B→ B continuous. ∃x ∈ B: u(x) = x.
 Proof: Assume no fixed point. w: B→ ∂B is the point on ∂B hit by the ray from u(x) to x.
 w is a retract because w hits ∂B in x if x ∈ ∂B. w is continuous.
- Degree of a map: $u \in W^{1,1}$

$$\deg(u) = \oint_B \det(Du).$$

Definable for continuous functions by approximation. Is an integer.

13 Navier-Stokes Equations

G open, $\hat{G} := G \times (0, \infty)$ space-time.

• Navier-Stokes Equations:

$$Du/Dt = (\nu\Delta u - \nabla p) + f,$$

(*) is the material derivative $D * / Dt = \partial_t * + u \cdot \nabla *$.

- $\nu = 0 \Rightarrow$ Euler equation. $\nu \neq 0 \Rightarrow$ may as well assume $\nu = 1$.
- Conservation of mass: $\partial_t \rho + \operatorname{div}(\rho u) = 0$. Assume $D\rho/Dt = 0 \Rightarrow \nabla \cdot u = 0$.
- Pressures in a smooth incompressible flow are superharmonic: Take div of NSE.
- Steady flows: $u \cdot \nabla u + \nabla p = \nu \Delta u$.
- Bernoulli's Theorem: ideal ($\nu = 0$), steady flow $u \cdot \nabla u + \nabla p = 0 \Rightarrow \nabla (u^2/2 + p) = 0$

 $\Rightarrow u^2/2 + p = \text{const}$ (still need conservation of mass $\nabla \cdot u = 0$)

• Vorticity: $\omega = \operatorname{curl} u$

$$\partial_t \omega + \nabla \times (u \cdot \nabla u) = \Delta \omega,$$

$$\nabla \cdot u = 0,$$

$$\nabla \times u = \omega.$$

In 2D, $\nabla \times (u \cdot \nabla u)$ becomes $u \cdot \nabla u$.

• Helmholtz Projection: $P = L^2$ -closure $\{\nabla \varphi : \varphi \in C_c^{\infty}(\mathbb{R}^n)\}$. P^{\perp} (note P closed!) is divergence-free. $L^2 = P \oplus P^{\perp}$

Example: Divergence-free field from sem. 1 final: (continuous) boundary-normal field matters, (discontinuous) tangential field does not.

- Weak formulation:
 - Take $a \in C_c^{\infty}(\hat{G}, \mathbb{R}^n)$ div-free, dot NSE with it,
 - $\circ~$ i. by parts second term, popping the derivative onto $a~u\mbox{-}\mathrm{product},$ pull apart, one term is zero,

$$\circ \quad \int a \cdot \nabla p = - \int (\operatorname{div} a) p = 0$$

gives

$$(W1) \quad -\int_{\hat{G}} \partial_t a \cdot u + \nabla a \cdot (u \otimes u) + \Delta a \cdot u dx dt = 0$$
$$(W2) \quad \int_{\hat{G}} \nabla \varphi \cdot u = 0 \quad (\varphi \in C_c^{\infty}(\mathbb{R}^n))$$

(where $A \cdot B = \operatorname{tr}(A^T B)$)

• $V := \| \cdot \|_V$ -closure $\{ a \in C_c^{\infty}(\hat{G}, \mathbb{R}^n), \nabla \cdot a = 0 \}$

$$\|a\|_V := \int_{\hat{G}} |a|^2 + |\nabla a|^2 \mathrm{d}x \mathrm{d}t.$$

- Space for ICs: $P_0 := P \cap L^2$ -closure $\{C_c^{\infty}\}$ to replicate u = 0 on ∂G .
- Existence, Energy Inequality: $u_0 \in P_0^{\perp}$. $\exists u \in V$:
 - \circ (W1), (W2)
 - $\circ \quad \mbox{continuous docking to IC: } \|u(t,\cdot)-u_0\|_{L^2(G)} \!\rightarrow\! 0 \mbox{ as } t\!\rightarrow\! 0,$
 - \circ energy equality:

$$\frac{\mathrm{d}}{\mathrm{d}t} \|u\|_{L^2} = 2 \|\nabla u\|_{L^2}.$$

Equivalently for t > 0,

$$\int_{G} |u(x,t)|^{2} + \int_{0}^{t} \int_{G} |\nabla u(x,s)|^{2} \mathrm{d}x \mathrm{d}s \leqslant \frac{1}{2} \int_{G} |u_{0}(x)|^{2} \mathrm{d}x$$