PDE Summary

1 General Stuff

o Standard mollifier:

is a Cg° hump.

Normalization ( [ =1) is still missing.

e  Gamma function:

o Volumes of sphere and ball:

e (reen’s identities:

/vAu = —/ Vv~Vu+/ v,
U U ou

vAu —ulAv = v, u — uOpv
U ou

e  Young’s Inequality:
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”f*gHLTg ||fHLP||g||Lq with 54‘5214—;,
In particular ¢=1, r =p.
o Generalized Holder:
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e Interpolation Inequality for LP: If 1< s<r<t< o0
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e (Compact: Every open cover has finite subcover. Metric space: < sequentially compact. Heine-Borel
(finite-dim): < closed and bounded.

o Arzela-Ascoli: (S, d) compact metric space. M C C(S) with sup-norm is compact if M is bounded,
closed and equicontinuous.

e  Precompact: has compact closure.
e Compact operator: T: By — By compact if T continuous and T'(A) precompact for every bounded A.
e  Fredholm Alternative: T: B— B linear, continuous, compact:

o either (I —T)x =0 has a nontrivial solution
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o or (I —T) ! exists and is bounded.
“Uniqueness and Compactness = Existence”.

Laz-Milgram: B: H x H— T, bounded above and coercive = B[u, g] = F(u) solvable in H for every
geH.

Proof: Build operator T,;: H— H* that gives T,(u) = Blu, g] (Riesz rep.). Prove 1-1 and onto.

The point is: no symmetry.

Banach-Steinhaus/Uniform Boundedenss Principle:

X BR,Y NR, T, € L(X,Y) (i €l), supier ||Tiz|| < o0 (z € X)
= sup; || T3] < co.

Read as “linear+pw bounded = uniformly bounded.”

2 Equations

Classification of second order equations:
Ai,jaﬁju + B;oju+C =0,
where A is symmetric WLOG can be rewritten into one of

Uge +Uyy+1od. = F,
Ugz — Uyy + L.0.d. F,
Ugy Tuy+lod = F.

Minimal surface equation:

. Du
div| — | =
<\/|Du|2+1>

det(D?u) = K (x)(1+ |Du|?)("+2)/2

Monge-Ampére equation:

3 Laplace’s Equation

U open.

u € C%(U): harmonic, subharmonic Au > 0, superharmonic.

Mean Value Inequality: u subharmonic

(implies Mean Value Property if harmonic)
Proof: 0< fB Auzfs Onu, then exploit d,u=,(z + pn). fB usz f\w|:1 u:ufT )

Strong Mazimum Principle: U bounded, connected, u subharmonic, u(x) =supyu=u constant
Proof: Consider {u =sup }. By MVI, w =sup on any ball in U. Thus {u =sup } open. But so is
{u<sup}. U={u=sup}U{u<sup}, both open=-{u=sup}=U.

Weak mazimum principle: w € C(U) and subharmonic. Then u assumes extrema on the boundary.
Proof: SMP or: Suppose z € U is max and Au > 0. Then Du =0 and D?u negative semidef, contra-
dicting Au=tr(D?u) > 0. If only Au >0, consider u + ¢|z|?, which is strictly subharmonic.

Strong = constant, Weak = extrema on boundary.
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e Uniqueness follows directly from the WMP.

e Harnack’s Inequality: u >0 (!) harmonic, U’ C CU connected = 3C such that supu < C'inf u.
Proof: Pick x1, x2 € U, apply MVP for large and small circle, respectively, then shrink/expand
domain by using u > 0, take sup/inf. Use cover of balls to repeat argument as necessary.

o  Fundamental solution: look for radial symmetry

Llogr n=2
v=C+3 ",
m'f’ TL>3

Constant chosen because it gives the right constant to prove Ay = §g (use Green’s second id on a
ball surrounding the signularity). K(z, &)=y (Jz — £]|).

e Liouville’s Theorem: (only in 2D) Subharmonic functions bounded above are constant.
e ucC?*U):
u(&) :/ K(z,&)Audr + / uOn, K (x, &) — K(x,&)0p, udS;y. (1)
U 9]

U

Proof: Integrate on U \ Be, € — 0.
Remains valid if K replaced by K + w with harmonic w.

e Green’s function for Dirichlet problem: AyG =0d¢, G(x, &) =0 for £ € 9U. Use G in (1). To get one,
we need to find w with w = — K on 9U. (Use method of images.) For a ball, we get the Poisson
kernel

el (4

N wnT|.’IJ - §|n

H(z, )

Poisson’s integral formula:

(€)= /S o, A O7@ase

e Kelvin’s transformation: v harmonic =
||~ "u(x/|7|?) harmonic for x # 0.
e Properties of H:
o H(z,&)=H(¢, )
o H(z,§)>0on B(0,7)
o A¢H(z,£§)=0for £€B(0,r) and € 5(0,r)
H(z,&)dS;=1

(e]

fs<o,1)

e Existence on a ball: also gives C(B)
Proof: Differentiate under integral (using DCT'). Prove continuity onto the boundary by

u(€) — f(y) = /5 o, B0/~ f(1)45.

Use e-d-continuity of f and split integral into |z — y| < d and |z — y| > . (Method called approzi-
mate identities.)

e Converse of MVP: v € C(U) harmonic < satisifes MVP for every B(z,r) CU.
Proof: Construct a harmonic function v on B(z, r) with v =u on S(z, r). v — u satisfies MVP on
any subcircle, thus it satisfies the strong maximum principle. Thus v=u.
e Real analytic: completely represented by absolutely convergent Taylor series.
M > 0Va: |0°f(y)| < % < analytic.
ks

Real analytic f is completely determined by power series (use similar open-set method on
{0%h(y) =0Va} as SMP)
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Harmonic = Analytic: Consider H(z,£+i0). Find a region of o where H is differentiable.
Analyticity estimates can be obtained by the MVP applied to 0, ,u, then coordinatewise Gauf,
giving

n n
|0z ju(2)] <  Shax ul < 5P |ul.
Then iterate this estimate with 1/|a| radius to get

lex]
|6°‘u(x)|<(m> max |ul.
T S(z,r)

Uniformly (on compact subsets of U) converging sequences of harmonic functions converge to har-
monic functions.

Proof: Limit is continuous (because of uniform convergence). Now exchange limits (DCT) in MVP
and prove harmonicity.

Harnack’s convergence theorem: uy harmonic, increasing and bounded at a point. Then (uj) con-
verges uniformly on compact subsets to a harmonic function.
Proof: above + Harnack inequality.

“Montel’s Theorem”™a compactness criterion:
(ug) bounded, harmonic = Juniformly (on compact subsets) converging subsequence — harmonic
limit.
Proof: (ug) is equicontinuous because of the derivative estimates and the assumed uniform bound.
Subharmonicity on C(U): Satisfies MVI locally.
Perron’s method:

o Sp={veC(U),v<BC,vsubharmonic}.

o wu:=sup Sy is harmonic.
Proof:

— Sy is closed under finite max. (MVI)

—  Harmonic lifting: v subharmonic,

harmonic function with matching BCs B(¢,r),
Vi(z)=
v elsewhere.
veSy=VeS;,vV.
— Fix a closed ball, grab sequence vy — u at a point £. 0 := max (vy, ..., v, min BC).
— Replace these by their harmonic lifting Vj around &.
— HCT for a limit V.

— Prove V = wu on ball by finding SMP uniqueness of harmonic liftings of in-between
(V <u) functions.

Barrier function at y € OU /reqular boundary point:

w € C(U) subharmonic, w(y) =0, w(dU \ {y}) <0.

Jtangent plane = regular

Jexterior sphere = barrier = K (boundary point, outside center) — K (z, outside center)
Jexterior cone = regular

At regular boundary points, u = BC.
Proof:

o Fixe>0. 0 from e-§ with f.

o wv=BC+ A-barrier — ¢, where A w < — 2 max BC outside a ball around the boundary point
in question. v subharmonic by def.
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3.1

3.2

o Show v< f(z) on boundary and interior.

o Do some funky tricks involving — f, its Perron function, and the maximum principle to
show opposite inequality.

The Dirichlet problem is solvable for all continuous BC data iff the domain is regular.

Energy Methods
0= [ wAw= [ |Vw|? proves uniqueness in C?(U).
Energy Functional:
T[] :/ 11V wgds
for g the RHS. v

Dirichlet’s principle: u € C?(U) solves PDE+BC < it minimizes I[u] over {w € C%(U), w = RHS on
20},
Proof: PDE = min: Start from

0= [ (~dutg)uw),

use GauR, Cauchy-Schwarz, \/avb <1/2(a2+ b?).
min = PDE: w=u+tv, for ve C°. Differentiate by ¢.

Potentials

Potential of a measure:

Ko pudy)= [ o =yP~u(dy)

Wn, R" R

Computable for a sphere with uniform charge density (same as point charge), finite line, disk.

Uy, =0=pu=0.
Proof: Show pux f=0 for any f € Cg® by

pwx f=px (KxAf)=(uxK)*Af=0.

Potentials of compact set: Harmonic function with BC 1 on compact set F' and BC zero at infinity.
Perron function on ever-increasing balls-independent of exact domains.

A (unique) generating (positive) measure on OF exists:
Proof (if OF € C?): by Poisson’s boundary representation formula (with both u and d,u)

pF(é): K(Ivg)aondSz
——

oF ,
measure:

Onu <0 by the max principle (1 on the boundary must be the max value) = positivity.
Proof (if not):

o Approximate F through shrinking compact sets with C° boundary (1/k?-mollified indica-
tors of F'/*={dist(z,F) <1/k}. ¥ = ¢1/k2% 1 pi/k. Then consider F'/2* C ¢y=1([c,1]) C F'/*
and use Sard’s Theorem to deduce boundary smoothness for a.e. c. Generate up by above
theorem.

o pp,— pr uniformly on compact subsets (Harnack)

o Prove pi(R") < R"~2 by using a B(0, R) D Fj—use Fubini and the generator of the disk
potential. (“Gauf’ trick’) Thus Fweak-* convergent subsequence supported on OF. Thus
convergene of pp, — pr away from OF. Uniqueness by uniqueness of potentials of measures.
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3.3 Lebesgue’s Thorn
e In 2D, Riemann mapping theorem guarantees that point regularity is topological, not geometric.

e Lebesgue’s Thorn: Using level sets of the potential of the measure z%dx on (0, 1), one may con-
struct exceptional points.

3.4 Capacity

[ )
2—n

cap(F) = ur(R") = 221 [
Wn OF or enclosing surface

8ondSz

o If OF € C?, Green’s 1st id gives
cap(F) =

2—n

/ |VpF|2.
Wn  JUCR»\F

o  Wiener’s criterion: y € OU regular <

AN N Meap(Fy) Fe={MHIla—y <A (A (0,1)).
k=0

e Properties of capacity:

o F|C Fy=cap(Fy) < cap(Fa) (Gaufy’ Trick!)

Cap(Fl):[Rn m(dx):[Rn pzm(dx):// Ix—yl”"uz(dy)m(dy):/pluz(dy)<cap(F2)-

o (F) nested sequence with (| Fi=F, then cap(Fy) — cap(F).
(smooth ¢ =1 on Iy, cap(F) = [ wur«— [ oup,=cap(Fy))

o cap(AU B) < cap(A)+ cap(B).
(pu<pa+ ps by WMP. Then use Gaul’ trick.)

o cap(AUB)+cap(ANB) < cap(4) + cap(B)
e cap(B(0,R))=cap(S(0,R))=R""2
e Screening: nested spheres A C B. cap(AU B) =cap(B) (think of the potentials)

o cap(F)=sup{pu(F):supp(p) C F,u,(F)<1} (Smooth approx Fj to F so that pr, =1 on OF. Then
Gau®’ trick.)

e (Coulomb energy:
1 —-n
E[u]=§/ |z —y >~ p(dz) p(dy).
Mutual energy:
1 —-n
Bl =3 [ [ lo =yl "ntdo(ay)
e Properties:
o If E[|u|] < oo, then pos.def.
o CSU
o s E[p] strictly convex

e  Gauf’ principle: u >0 finite measure on F.

Gl = Blu] ~ n(F) >~ geap(F)
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Proof:
o G(p) bounded below (F compact = |z — y| bdd.)
o Infimizing sequences are precompact (i.e. have bounded py(F))

o @ is wlsc (take infimizing sequence (uy), use max (M, |x — y|) to cut off, k — oo, M — oo
(MCT), consider E[u — ug])

o Minimizer is unique (strict convexity)
o Minimizer is ur (Consider Euler-Lagrange Equation)
o Evaluate minimum

e Kelvin’s principle:

m:inf{E[ﬂ]i p=0,supp(p) C F, u(F)=1}.

Proof: Apply Gau®’ principle to tu, choose t = cap(F).

4 Heat Equation

o Conservation of mass: O+ div(v) =0

o Fick’s law: v=—a*Vu.

e Together: u; = Auw.

e Parabolic scaling invariance: x — Az, t— A\t

e Use conservation of mass (9; [ u = 0) to obtain the ansatz u(z,t) = t=™2g(r t~1/?). Plug in heat
equation to get the heat kernel

1 2
T P R 2
k(z,t)= (47rt)"/2€ .

a2
2/ efyzdy<2/ ey =C i .
y>a y>a a a

and in-boxing the ball to show

o Use

/ E(x,t)dz—0 as t—0.
2| >6

o u=kx* f solves uy=Au for u— f for t—0.

e Tychonoff counterexample for uniqueness:

u(z,t) = Z ar(t)z?*

k

o Widder’s Theorem: u > 0 = uniqueness.
o Heat ball: E(Jf, t, r) = {k(g; —y,t— 7”) > Tfn}.

o Vp=Ux|[0,T],
01Vr = all except top “lid”,
0-Vr=lid.

e Mean Value Property: u € C*(Vy), Oyu — Au<0, E(...) C Ve

1 // [z —y|?
u(z,t) < — u(y, s dyds
( ) 4rm E(z,t,r) ( )(t_5)2

o Exists for heat spheres as well.
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o Converse: Equality and C?(V7) implies dyu = Au.
Proof: Let RHS=y(r). ¢(0)=u(z,t),

o'(r)y=-— C’/ (Osu — Au)p dyds >0
with {1 >0} = E(...).
Strong Mazximum Principle: U open, bounded, connected, u € C(Vr) and satisfies MVI. Then

max u < maxu.
Vr OhVr

If max attained at (x,t) € Vz, then u is constant in V;.
Proof: If max attained in interior, then u = M on heat ball. Then a polygonal path reaches every
point on V7.

Temperatures are analytic:
Green’s functions for the heat equation:

Strong Converse of MVP.
Proof: Construct parallel solution by Green’s functions. Conclude uniqueness by MVP.

Difference Schemes and Probabilistic Interpretation

Work on a lattice.

Strong Mazimum Principle (subharmonic = assume max M in interior= M =u < E[z + hw] < M)
Implies discrete Laplacian has trivial null-space = 3!

Allows Discrete Poisson Integral Formula. (by solving for § on the boundary)

Markov property: E[ X411 X1, -y Xin] = E[Xm+1]|Xom)]-

(Super)Martingale property: u subharmonic = Elu(Xp+1)|Xm] = (X)) (just like discrete SMP)
[with X, a random walk]

Strong Martingale Property: m may be a stopping time.
If My is first passage time to OU, then u= E[f(x + Wy,)]. (f=BC, u harmonic)
Elf(x+ W)= > H(,y)fly)= > Phity)f(y).
y€eoUy y€eUy
Method of relazation:
w1V (z) = avg(uV) on pixels surrounding )
Brownian motion: Same formula as above holds for continuous-time.
(Central Limit Theorem, path space version of it, W; ~ k(xz, t/2). Cylinder sets. Convergence in

weak-* topology. Law of iterated logarithm. Proof of CLT: Convolution of densities becomes multi-
plication after Fourier transform. Use independence. Done.)

Feynman-Kac formula: uy= %Au with IC f.
B(f(x+Wy) = ulw,1)
Implications on boundary regularity:
o wu defined by F-K is the Perron function
o yeU is regular iff P(T,=0)=1 (BM immediately exits U.)
o Littlewood’s crocodile

o Lebesgue’s thorn



‘WAVE EQUATION 9

4.2 Hearing the shape of a drum

Spectral measure:
oo
= Z Ly.<a(N)
k=1

i A U]
A—oo A2 (27)"/2(n/2)’

Weyl’s result:

Kac’s result:
t~>0+

lim (2mt)"/? Z e~ Mt = (27t)"/? /eft)‘A(d)\) =|U|.

(Weyl = Kac: Integrate by parts, rescale. Proof of Kac: represent Green’s function in terms of
eigenfunctions somehow.)

5 Wave equation

— 2
Utt = C Uz

D’Alembert’s formula:

x+ct

ule, ) =2 f(a:+ct)+f(:z:—ct)+%/ g(y)dy].

—ct
Characteristics.
Parallelogram identity:
u(top) + u(bottom) = u(left) + u(right).
Good/bad BCs, Inflow/outflow. Domain of dependence. Method of reflection. Odd/even extension.

D’Alembertian: Ou:=usy — c2Au=0. u=f, us=g.

Fourier Analysis: 4(€,t) = f(&)cos(c|[t) + §(&)sin(c|€[t/|£]t) = f (€)cos(c|€[t) + §(€)Dcos(c|¢|t):
u(wat)Z/n k(:v—y,t)g(y)der@t/n k(x —y,t) f(y)dy

Needs to coincide with solution formula.
For n=3, k=t - uniform measure on {|z|=ct}

Method of Spherical means: Observe:

My (x,7) :][ u(y)dSy
S(x,r
satisfies Darbouz’s Fquation: @)
n—1

ApM,=“NM, = (&T — 8T>Mu.

Similarly, if u solves uss = Uz, then M, solves the Fuler-Poisson-Darboux equation:
(My)ee — ARM,=0.

In 3D, this reduces the wave equation to 97(r M,) = 8%(r M,), which we can solve by D’Alembert’s
formula for all . Then
.M,
u=lim —.
r—0 T

1 715 dS Sln( |€|t)
(271')”/2 ~/|y|_ct ’ |€| .
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e  Huygens’ principle.

SECTION 6

e Hadamard’s method of descent: Treat 2D equation as 3D equation, independent of third coordinate.

o  General solution for odd n>3: Assume u'(0) =0. Define

v(z,t) = /k(s,t)u(x,s)ds

as a temporal heat kernel average. Oddly, 0;v = A, v. Solve this. Rewrite using spherical means.

Change variables as A =1/4¢ and invert using the Laplace transform

h#(\) 2/000 e~ h(p)dp.

e Uniqueness by energy norm.

6 Distributions/Fourier Transform

U CR" open
o D) =CXU). pp— o iff
o 3 fixed compact set F: supp(py) C F
o VYa:supp [0%pr — 0%| — 0.
e Distribution: D'(U)
o Convergence: Lk3L<:>V(p eDU): (Li,¢)— (L, ).

e Examples: LY. C D'(U). Aside: LY . C Li. for p > q. (not for L), Radon measure (A Borel mea-

sure that is finite on compact sets.), ¢ function, Cauchy Principal value.
e Derivative: (0°L, o) = (—1)1*I(L, d%p).
e Differentiation is continuous.

e Partial differential operator: P = E|a‘<N Ca

e Schwartz class: S(R™) C C*°(R")
Il 5:=sup|z*0Pp(x)| < oo Va,f.

s

A polynormed, metrizable space (Use Y. 27* Ela\-irlﬁ\:k T
a,B

Ascoli).
e Examples:
o DCS (convergence carries over, t0o.)
o exp(—|z]?) €S, but not €D.

o  Fourier Transform:

61 =Fol6) = s [ <ol
e Basic estimates:
1@l < CHA+|z))" ()|l < Cllg|l L2 < 00,
102 ()]l < ClI(1+ |2+ 2P oo
1€20(l= < COll(14|z)"T1ogp L=
[@llas < ClA+[z)" 2PO2p)e = ¢eC™.

.7:0')\@) = /\nal/A]:(p.

(z)0%, adjoint, fundamental solution: PK =4.

. Complete, too.

(Arzela-
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6.1

Translation: Tho(x) = @(x —h). (Frup) =e~ " EFp.
Inversion formula:
1

QD(.’L') = (27‘1’)"/2

[ emepeae=Fro=rre,
where Ro(x) = ¢( — ).
F is an isomorphism of S, with FF*=1d.

Proof: Prove (FF* — Id)e*‘””|2 = 0, then for dilations and translations, linear comb. of which are
dense in S§. F is 1-1, F* is onto, but F*=RF.

F isometry of L?, F continuous from LP to L9, where

1 1
—+-—=1, e[1,2].
| P pe(l,2]
In particular p=1, g= 0.
Proof: Show S dense in L? (see below), extend F, use Plancherel for L.

Mollifier: ne C°. [ n=1. nn(z):= N"n(Nz).

C°(R™) is dense in LP(R™). (1< p<o0)
Proof: ||nx* f — f|.»— 0 holds for step functions. Step functions are dense in LP(IR").
”f * 77N||LP < C”fHLP (Young7s)
Pick g a step function such that || f — g||,, <e. Now measure

[fxnn = fllpp=If*nn—gxnn+g*xnn—g+g— fl»
C°(R™) is dense in S.
Proof: Smooth cutoff.

Plancherel’s Theorem: (Ff,Fg) .= (f,9) .-
Proof: by Fubini.

F:LYR"™) — C(R"), with C := {h: R” — R: h(x) — 0(z — o0)}.
Proof: S is dense in L'. Well-defined: Take @y, tx — f € L', show Fipp — Fipp— 0 in L.
Goes to C': unproven.

Linear operator of type (r,s):

1Kl <Crss)llell
F is of type (1,00) and (2,2).
Riesz-Thorin Convexity Theorem: F of type (ro, so) and (r1, $1)

1_6,1-6
T o To 1
1 0 1-40
—_ = __|_

S So S1

Then F of type (r, s) for 6 €[0,1].

Tempered Distributions

Tempered Distributions: S’, convergence as in D'. DcScS8'cD’.
Examples: L' functions, e/I” not, e~ 1¢1%, |1+ |ac|2)_MfHL1 < 00.

A tempered distribution is no worse than a certain derivative coupled with a monomial multiplica-
tion.

LeS' =3C,NVpeS:|(L, )| < Z\O&I,IQKN ||:1c°‘85c,0||mo (continuity).

(nxL,¢)=(L,(Rn)* ) for Le D', R is reflection and 7 a mollifier
nx L is a C* function, namely v(x)= (L, ,Rn), where 7,.f(y) = (y — z).
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Proof: 1. v maps to R. 2. 7 sequentially continuous. 3. v € C* (FD). 4. v € C*° (induction). 5.
(n*L,p)=(v,¢) (Riemann sums).

e D is dense in D'
Proof: Xm:= 1y m]- Fix LED’, Ly := Xm(m* L)€ D— L in D'

e Sisdensein S’
(because D is already dense in D’.)

o Transpose K':S— S for K:§— S as by (K'L,¢):= (L, Kp).
e K:S8— 8 linear and continuous. K*|s continuous. Flunique, continuous extension of K* onto S’.
e F:S8 — &' continuous.
o F5=1/2n)"2
e 0<f<n, Cs=T((n-0)/2)
F(Cplz|F)=Cpglz|~ "=

Use this to solve Laplace’s equation.

7 Hyperbolic Equations

e General constant coefficient problem. P(D,7)=7"+7""1Py(D)+---+ P,,(D)
e Duhamel’s principle: Solve P(D, T)u= f by solving the standard problem P(D,T)us=0, us(0) =0,
97" 1uy(0) = g and finding
t
u(z,t) :/ usds.
0

e Treat remaining ICs by solving standard problems for 7™ 1Py, ..., 7°P,,, each time adding to the
right hand side, which can finally be killed with the above approach.

e Fourier-transforms to P(i§, 7)d =0, with 7= 0,.
Initial conditions 70" ~24(¢&,0), 7™~ (€, 0).

e Representation of the solution:

1 ei)\t
260 = 3 | e
ei)\t 1

P@gﬂZ::é%A}%%JM?GFEWM

where I' is a path around the roots.

_ 1 It —
=27 /. e'"'dA =0,
e C(Classical solution requires u € C™. Requires VI'ACr, N:

IT*Z(&,1)| < Or(1+[ENN.

e  Hyperbolicity: A standard problem is hyperbolic: < Ja C™ solution for all g € S(R™).

e Gdarding’s Criterion: It’s hyperbolic iff 3c € R: P(i£,i)\) £0 for all £ and ImA < —c.
Proof: Estimate around in the above representation for Z.

e Paley-Wiener Theorem: g € L' = § entire.

8 Conservation Laws

o i+ f(u),=0.
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Why are they called called conservation laws?

& Ju= [u= [r@e= 1)~ s@ -0

e Inviscid Burgers’ Equation: u; + (u?), = 0.
t

o Characteristics: Assume u = u(x(t),t),

du Ou dx  Ou

U TR
Compare shape with
0=1uzf"(u) +ut,
obtain dz/dt = f'(u).
o Weak solution: slap test function onto equation, integrate by parts.
e  Rankine-Hugoniot:

[f(w)]

shock speed = *——+

[u]
Apply weak solution formula across a jump, consider normal geometrically to obtain speed.

e Riemann problem: Jump IC. — non-uniqueness of the weak solution for jump up: rarefaction wave
or shock with correct speed?

o Hopf’s treatment of Burger’s Equation:
o Add viscosity to get u; + (u?/2); = sy
o Put U as an antiderivative of u.
o Gives Hamilton-Jacobi PDE Uy + UZ2/2 = eU,,.

o Now try to rewrite that into a linear equation, by assuming ¢ = ¢(u). Yields ODE Cyp” +
C’' =0, solution ¢ =exp(—U/2¢).

o This gives the heat equation ¥y = e, ,.

Y, | Trrexp(=G/2)dy  x (y)

X
:25‘—: = — — =L —_—
u —>t

P [ exp(—G/2¢e)dy t ot
with G = (2 — y)?/2t + U.

argmin G
t

e o_=infargminG, a4 =supargminG.
e Properties: well-defined, increasing, a4 ( < ) < a_( — ), a_ left-continuous, a right-continuous, go

to £ oo. Equal except for a countable set of shocks.

e  Hopf’s theorem:

T — a4 T—a_

< liminf u® <limsup u® <
e—0 e—0

e 1€ BC (bounded, continuous) = u(-,t) € BVie.. Globally BV?
Proof: x,a4,a_ are increasing = differences in BV ..

e Vanishing viscosity solutions are weak solutions.
Proof: Pass to vanishing viscosity under integral using DCT and boundedness.

e Cole-Hopf solutions produce rarefaction z /¢ for jump up, shock for jump down.
e More properties:

o lim._u® exists except for a countable set. u=1imu® € BV, with left and right limits.
Proof: u is a difference of increasing functions.

o Lax-Oleinik entropy condition: uw(x_,t) >u(x4,t) at jumps.



14 SECTION 9

“Characteristics never leave a shock.”
Proof: Travelling waves for Burgers with viscosity only exist for u_ > u.

o x a shock location:

shock speed

shock speed = %(u(:v_, t) +u(zs,t))

[
\0\5
+
e
(e}
—~
N4
S~—
o,
<

ay
(a4 —a_)shock speed = / uo(y)dy

The last equation here is a momentum conservation equality.
Proof: G(a*)=G(a™).

e Entropy/entropy-flux pair: ®, ¥: R™ — R smooth are an e/ef pair for u; + f(u), = 0: & ® convex,
O’ =0’ Then ®(u): + ¥(u), =0 for perfectly smooth solutions, otherwise ®(us) + ¥(u), <0 in
the distributional sense, which means

/ / O (u)vy + U(u)vgydadt > 0.
0 —o00

for smooth non-negative v.

e By the vanishing viscosity method, we get an entropy solution.
Proof: Multiply the viscosity-added c.law by ®’. Use chain rule on ®(uf),,. Use convexity of ® to
show one term involving " non-negative. Multiply by a non-negative smooth function, let € — 0 to
obtain entropy inequality.

e FEntropy solution: u is an entropy solution of a c.law if u is a weak solution that satisfies the
entropy condition for every e/ef pair.

[ = =2 [

Assuming a traveling wave solution of the form

e Dissipation measure:

we find
i sQi(u*_UJJr)g
dt/(u) -6

e Kruzkov’s Uniqueness Theorem: L>° Entropy solutions u, v, S; cuts of the event cone (given by
max. speed ¢* =maXrangew |f'|. Then for t; <ts

/ |u—v|§/ lu —w].
St Stl

2

Proof: Doubling trick, clever choice of test functions.
Implies uniqueness.

9 Hamilton-Jacobi Equations
o u+H(Du,z)=0.
e Example: Curve evolving with normal velocity: u; + /1 + |Dyul|? =

e Non-Example: Motion by mean curvature u; = ,./(1 + u;)? (parabolic).

e Example: Substitute U = [ u in conservation laws.
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e PDE is infinitely-many-particle limit of Hamilton ODE

& = 9,H(p,x)
p = _8IH(paI)7

which coincides with characteristic equation of PDE.

e Mechanics motivation:

o

(¢]

L(q,z)=T -V
Lagrange’s Equation
d(oLy_oL
dt\ 0q ] Ox’
Way to see this: If RHS = 0, then L symmetric in x, so LHS becomes conserved. (Noether’s
theorem.)

Equivalent to Hamilton’s ODE (Proof: H = max, (¢p — L(x, ¢,t)), where ¢ = ¢(z, p, t) is the
solution of p=9,L(v).

Action, given path x(t):

S(z) 2[3 L(Z,z,t)dt

Principle of least action: min S < Lagrange’s Equation.
Proof: u+ ev, derivative by ¢, the usual.

Generalized momentum: p=9,L. Assumed solvable for q.
Hamiltonian: H=T+V=p.-q—L=2T - (T -V)=T+V.

Legendre transform: More general way of obtaining H. Assume L(q) (dropping dependen-
cies!) convex, lim|4| o0 L(q)/|q| =00. Then

H(p)=L*(p)=sup{p-q—L(q)}.

Solved when p=09,L, but in a more general sense.
Duality: Edge <+ Corner. Subdifferentials.

L convex=L**=1L.
Proof: Prove convexity and superlinearity of L*. Use symmetry

H(p)+L(qg)>p-q

to prove two sides of the equality H* = L.

e Hopf-Laz formula: g is IC

u(z,t) :inf{ /L(:é)d:v—i— 9(y), z(0) =y, z(t) :x} =min {t L(%) + g(y)}.

Proof: Inf bounded above by straight-line characteristic. Lower bound works by Jensen’s inequality.

e Semigroup Property.
Proof: Always pick particular solutions, prove both sides of the inequality.

e u defined by Hopf-Lax is Lipschitz if ¢ is Lipschitz.
Proof: Lipschitzicity for given ¢ is immediate (pick good z). Transform problem to comparison with
t =0 by semigroup property. Temporal estimate is screwy, involves special choices in inf.

e u by Hopf-Lax is differentiable a.e. and satisfies the H-J PDE where it is.
Proof: Rademacher’s Theorem. Prove u; + H(Dwu) < 0 for forward in time by taking increments —
0, using inequality with Legendre transform.
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Lipschitz+Differentiable solution a.e. is not sufficient for uniqueness. (45-degree angle trough vs.
90-degree trough)

f:R™— R semiconcave if
fla+z)=2f(2)+ f(z —2)<C|=f
for some z.
& f(2) — C/2|z|* is concave.
< “can be forced into concavity by subtracting a parabola.”
< (C? and bounded second derivatives implies semiconcavity.

g semiconcave = u semiconcave.
Clever choice of test locations in Hopf-Lax.

H:R"— R uniformly conver: <
Z Hpipjfigj >J|§|2
2%
If H uniformly convex. Then w is semiconcave (indep. of initial data)
Proof: Taylor, mess about with Hopf-Lax.
Now H(p) — H(p,x) nonconvex.

Vanishing Viscosity Method: Use u; + H(Du, ) = eAu. Locally uniform convergence follows from
Arzela-Ascoli.

u is a viscosity solution: < u= g on R™ x {t =0}, for each v € C*(R" x (0, c0))
u— v has a local maximum at (zo, to) = vi(xo, to) + H(Dv(z0,t0)) <0 (and min — >).

If w is a vanishing viscosity solution, then it is a viscosity solution.

Proof: Convergence is locally uniform as €; — 0. Thus for each fixed ball around a local strict max-
imum in u — v, a local maximum in u® — v exists if ¢ is small enough. There, v, = u; and v; = uj
and — Au® > — Av. v+ H(Dv) <0 follows. Generalize to non-strict maxima by adding parabolas.

A classical solution of a H-J PDE is a viscosity solution.
Proof: Maximum of u —v=>derivatives are equal = PDE.

Touching by C' function: u continuous. u differentiable at zo. Then Jv € C': v(xg) = u(xg), u — v
has a strict local max.

u viscosity solution = u satisfies H-J wherever it is differentiable
Proof: Mollify touching function, © — v® maintains strict max., verify definition of Viscosity solu-
tion. (Mollification necessary because test functions are required to be C°.)

Uniqueness: H € Lip,(C') NLip(C1+ |p|) = uniqueness.
Proof: doubling trick again.

10 Sobolev Spaces

1< p<oo.

||qu;)p;Q:E‘a‘gk ||Daqu~
WFP(Q):={ueD'(Q): D* € LP(Q), |a| <k} Banach space.
WEP(Q) = (D), | )

ue Whr(Q). Q' CQ open=Juy € CZ(Q): [lur — ul], i — 0
Proof: Mollification, throw derivatives onto u by integration by parts.

ue Whr(Q), Q bounded = Juy, € C°(Q) NWHP(Q): |Jur — ul, pia— 0
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10.1

10.2

Proof: Exhaust Q by Uy := {dist(z,9U) > 1/k}. Consider smooth partition of unity ¢; subordinate
to Vii=Qits\ Qig1. ui=ne, * (Gu) s.b. flui — Gul], » < 42~"=1. Give one more set of wiggle room
on each side for mollification. v := ) Gu; € C™ because there’s only a finite number of terms for
fixed point/set. Then estimate [lu —v][, .
Typical idea: Consider

f*(z) = lim f(y)dy.

r—=0/) B(z,r)

ueWhr(Q), Q'c Q. Then

o There exists a representative on €’ that is absolutely continuous on a line and whose clas-
sical derivative agrees a.e. with the weak one.

o If the above is true of a function, then u € W1P((Q).

Proof: WLOG p=1 (Jensen). WTF?
Consequences: WP closed wrt. max, min, abs. value, -*. € connected, Du =0=>u constant.

Campanato
Oscillation:

oscy= sup |u(x)—u(y)l|.
T,yelU

CO = {Ju(x) —u(y)| <Clz —y[*}. [[ullgo.o = lullg gy +5uPrsy [u(z) —uly)|/lz = y|*.
Ck@.= D e %, Norm: sum over multi-indices.

Campanato’s Inequality: v € Li,o(R), 0 < a <1, IM > 0:
][ |u(x) —ap(z)|de < Mre.
B

Then u € C%%(Q) and 0SCB(¢,r/2)u < C M1, up is the mean over B.
Proof: = a Lebesgue point of u, B(xz,r/2) C B(z,r). Then |ip,r/2) — Up(z,r)| < 2"M r®. Tteration
via geometric series and Lebesgue-pointy-ness yields
|U(I) - aB(z,T)| < O(nv Q)MTQ'
For two Lebesgue points,

o

|U(CE) - u(y)l < |U(CE) - aB(z,T)' + |aB(z,7‘) - u(y)| < C(”v a)M’I" .

Sobolev
Gagliardo-Nirenberg-Sobolev: u € CLR"), 1<p<n=
||u ||p* < C ||Du ||p7
where

1
+—== = p*>p

Considering what happens when you scale functions v — wux(z) := u(Az), these exponents are the
only ones possible.

If we choose p=1, then the best constant comes to light by choosing u =1p(q,1), giving the isoperi-
metric inequality.

Proof: Suppose p=1 at first. Compact support =

u(x) g/ |Du(x...x, yi, x,...,x)|[dy; (i=1,...,n).

— o0
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Then

1/(n—1)
fu(z)|"/ =D ( 11 / dy> |
Integrating this gives '

1/(n—1)
/luln/(nl)dx1<</ |Du|d:v1) <H// |Du|dw1dyi>
1=2

by pulling out an independent part and using generalized Holder. Then iterate the same trick. To
obtain for general p, use on v=|u|7 with suitable ~.

1/(n—1)

10.3 Poincaré and Morrey
e Riesz potential: 0 < a<n
In(w) =|2]*7" € Lioo(R™).
o (i flls <CI s
e Poincaré’s Inequality: Q convex, |Q] < oo, d=diam(Q), u € WHP(Q2). Then

1/p 1/p
( |u(:17)—1IQ|p> §Cd< |Du|p) .
Q Q

Proof: Use calculus to derive
" [ |Du(y)]

lu(z) —a|<— L_dy.
i i Son fole—yln!
Then use potential estimate.

o Morrey’s Inequality: w € Wib!(Q), 0 <a < 1. If IM >0 with
/ |Du| < Mrn—1te,
B(z,r)

for all B(z,r) C Q. Then ue C**(Q) and oscp(y,yu<C Mre.
e Morrey—Poincaré+Campanato in W1,

e More general Morrey: u€ WHP(R™), n < p<oo. Then u € Co’l_n/p(]R") and

loc
0SCB(z,mu <" P||Du .
If p=o0, u is locally Lipschitz.
1
Proof: Use Jensen (-)p'; on Poincaré’s RHS. Then apply Campanato.

10.4 BMO
e BMO seminorm:
[u]lBmo := sup][ |lu —apldx
B J B
° BMO:Z{[U]BM0<OO}.

e John-Nirenberg: WHm(R™)(N LY(R™)) C BMO(RR™).
Proof: Poincaré-then-Jensen.

e For a compact domain, LP? C L*° C BMO.

10.5 Imbeddings

e Imbedding By, — Bsy: dcontinuous, linear, injective map.
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e WULP(R™) — LP" for 1< p<n (Sobolev inequality)
e WUHP(R") —BMO for p=n
° WLP(R”) — 10(;':1771/11 (MOI‘I‘ey)

) bounded now.

o WLP(Q)—LIYQ) for 1<p<n and 1< ¢< p*. Proof: Hélder-then-Sobolev:
luall o < Ml 12T 42" < Dl 1,

o WT(Q)— COIH(Q) for n < p< oo,

e  Compact imbedding B; — Bs: The image of every bounded set in B; is precompact in Bs.
(precompact: has compact closure)

e Rellich-Kondrachev:

o WLP(Q)— LIQ) for 1<p<nand 1< g<p*
In Evans, we need OU € C*. Our notes do not.
Proof:

—  Grab a WhP-bounded sequence .
—  Mollify it to u;,
— Use an e-derivative trick to show ||ug, —uml| ;1 <e|[Dum||,,—0

— Interpolation inequality for LP: ||up, — um| ;¢ < ||um, — umHeLlHufn — Uml|, - — 0, also

using GNS.
— For fixed ¢, us, is bounded and equicontinuous (directly mess with convolution).

— Use Arzela-Ascoli and a diagonal argument to finish off.

o WyP() = C%Q) C LP(Q) for n < p< co.
Proof: Morrey’s Inequality, then Arzela-Ascoli.

11 Scalar Elliptic Equations

o Lu=div(ADu+bu)+c-Du+du.
e Motivation: Calculus of Variations.

e Weak Formulation: u€ W2(Q), ve CHQ)
Blu,v] ::/ (DvTADu+b-Dvu) — (c- Du+du)vdz.
Q
o  Generalized Dirichlet Problem: Lu= g+ div f on , u= ¢ on 99, i.e. Blu,v]=F(v) with

F(v):= | Dv-f—gvddax.
e Assumptions: .
(E41). Strict ellipticity: I\ >0: ETAE > \[€]?
(E3). Boundedness: A,b,c,d € L™, i.e. HTr(ATA)HLoo < A2 %(Hb”oo +lell ) + %(Hd”oo) <.
(E3). divb+d <0 weakly, i.e.
/ dv—>b-Dvdx <0
for ve CH(), v=0. .
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o “<7on the boundary: u<ve (u—v) <0: e (u—v)T e W, Q).

o “sup” on the boundary: supgou=inf{k € R:u < kondQ}.

e u is a subsolution: < Blu,v] < F(v) < Lu> g+div f.

e  Non-divergence form:

0=AD?>U+b-Du+du

(Not equivalent!)

o C(lassical Mazimum Principle: Holds if d<0.

o  Weak Mazimum Principle: Lu > 0 < Blu, v] < 0 for v > 0 and (E}), (E2), (E3). Then supg u <
+
Supp U .

Proof:

(¢]

Use Blu,v] <0 for v >0 and (F3) to establish
/D’UTAD’U —(b+c)Du-v </d(uu) —b-D(uwv) <0.
Note that wv is the new test function in (FEs3). Consequently

/D’UTAD’U </ (b+c¢)Du-v.

Suppose | =supgqu < k <supgu. Set I':={u >k} and achieve a ||Dv||,, < C|v]|,, estimate
by using ellipticity, the above and boundedness. Use the Sobolev inequality to get
vl o <o < |F|1/"Hv||L2*7 and so |I'| > 0 independently of k. Let k— supg to obtain a con-
tradiction. (Note supg < oo because u € W12(Q).)

Remarks:

o

(¢]

Implies uniqueness.

No assumptions on boundedness, smoothness or connectedness of 2.

e Implies uniqueness.

11.1 Existence Theory
e Existence: Q bounded, (E1), (F2), (F3). Then 3! solution of the generalized Dirichlet problem.

(e]

o

Reduce BC to H& 2 by subtracting arbitrary function and handling RHS.

Prove coercivity estimate
B[u,u]}A |Du|2dx—/\y2/ |u|?dz.
2 Jo Q

(Uses: (E1), (E2), 2ab< \a®+b%/\.
(In Evans, Poincaré enters here. How?)
(For A, Poincaré suffices to show coercivity.)
Id: Wy 2 — (Wy2)* is compact.
Id= (L?—H*)o (H— L?).
continous compact
Lo:= L — old. (L = A has negative eigenvalues already. But they might be pushed upward

by the first- and zeroth-order junk. So we might have to make them even more negative to
succeed.)

— Bg[u,v] = Blu,v] +0(u,v) ., coercivity is maintained.
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o Lax-Milgram shows existence of inverse L * for the not-so-bad operator L.
o Start with Lu= g+ div f, introduce L., multiply by L;l and see what happens.

o Weak maximum principle provides uniqueness for L, so that the Fredholm alternative pro-
vides existence when combined with Rellich.

11.2 Regularity
e Assumptions:
o (Ry): (Ev), (En).
o (Ry): fELUQ), ge L2 g>n.
e (Ry), Lu=g. A, b Lipschitz. Then for Q' C CQ we have
2z < C (Il zgy + 191l 2y )-
Proof:

o Finite Differences.

11.3 Harnack Inequality Stuff
e  (Ladyzhenskaya/Uraltseva): (R1), (R2). u€ W12 a subsolution, u <0 on 99Q. Then:

D u < O[] g+ £ ).
where

1
k=< (1 10+ 190,00 ):
Proof:

o

e Local Boundedness: (R1), (R2). u€ W2 a subsolution. Then:

5 —n/p||F
s S C(R= i gy + K(R))
where
R1-n/4

B(R) == (I ot B2l )

o  Weak Harnack Inequality: (R1), (Ra), u € WH2(Q) a supersolution and u >0 in B(y,4R) C Q. Then

R_n/p”u”LP(B(QR)) < C(yeér(lg R) u—+ k(R))

e Strong Harnack Inequality: (R1), (Rz2), u € WH2(Q) a solution with u>0. Then

sup u§C< inf u—|—k(R)).
B(y,R) B(y,R)

e Strong Mazimum Principle: (R1), (R2), (E3), Q connected, u € W12 a subsolution Lu>0. If

sup u =sup u,
B Q
then u = const.

Proof: Weak Harnack shows {u =supgqu} is open. {u=supqu} is relatively closed in . Therefore
{u=supqu}=9Q.

Why is Lconst =07

How dow we know the “relatively closed” part?
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e DeGiorgi/Nash: (R1), (R2), u€ WhH2 solution of Lu=g+div f. Then f is locally Holder and

0SCR(y, RYU < CRO‘(RO_O‘ sup |u| —i—k)
. B(y,Ro)
if 0< R < Ry.
Proof:

(e]

12 Calculus of Variations

Q open, bounded.

e Idea: solution u, smooth variation ¢, functional I. O.I( u + ep)|c—o = 0. Integrate by parts, ¢ was
arbitrary — PDE.

o u:Q— R™ deformation, Du: Q —R™*" F:R™*"[x R" —R.

I[u] —A F(Du(x),u)dx.

Looking for inf, ¢ 4 I[u], where A=W, ().
e  FExample: Dirichlet’s Principle: Q open, bounded

I[U]:/Q <%|Du|2—gu)dx.

o Bounded below: ea® 4 b?/e, Sobolev (2* > 2), Holder as |jul| . < [|ul| QY gives

2"

2 1, 2
Wom‘%”gHLz-

Iu] = cllull
2
o Bounded above by HuHWOLQ—i— gl
o I wlsc because F' convex.
o strictly convex (unproven)=- uniqueness.

o Weak lower semicontinuity: up— u=>I[u] <liminfy_, o Ifug].

e F convex= I wlsc in Wy*(9Q).
Proof: Use representation of convex F as limit of increasing sequence {Fy } of piecewise affine func-

tions. Implies [ FN(Duk)if Fn(Du) (weak convergence © linear/affine functions). Then

Fn incr.
/ Fy(Du) < liminf / F(Duy) = limin I[uy]

and MCT.
o Jensen: F(w-xlim g;) < w-xlim F(gg).

e FEuler-Lagrange Equation: Weak form obtained from i(7) = I[u 4+ 7v], where v = argmin I[u] and
looking at ¢'(0) =0.
—div(Fp(Du)) + Fu(Du,u)=0.
Also i”(0) > 0.
o Motivation for Convezity: p(s)=0-1 sawtooth. p’'=1 a.e.. v.(z) =¢e((x)p(x-E/¢).
2 (o)~ Gla)p (- /) = G()¢.

Consider i”(0) > 0= ¢TD?F¢ > 0 pops out.

e m=1= (wlsc & convexity).



CALCULUS OF VARIATIONS 23

Proof: “<=": shown above. “=": 2"% cube grid on [0, 1]", v € C°.

ug(z) = %v@k(x — cell center)) + z - z.
Duy(x) = Duv(2F(z — cell center)) + z.

ug— 2+, Dup— Du. Then

wlsc

) < liminf / (Dug) / F(z+ Dv)
Z 1 [0,1]"

k— o0

Thus I[u] has a minimum at the straight line, and for i(7) = I[u 4 7v], i'(0) =0, i”(0) > 0, convexity
follows as above.

12.1 Quasiconvexity
m>2, A=W'PN{u=g}lon. 1<p<oo. FEC®, F(A)=c|A|P —ca.

- /Q F(Du(z))dz

e Sawtooth calculation yields rank-one convezity
(n@ &) 'D*F(P)(n®¢)
S F(P+t(n®§)) convex in t.
e Quasiconverity: F quasiconvexr: & VAeR™*", ve CP([0,1]",R™):

F(A) < /[O N F(A+ Dv)

o If [F(A)|<C(1+]A[P), then F QC& I wlsc.
o “=7": Subdivide domain into cubes,
QcC
/ F(Du) z/ F(affine approx to Du) < / F (Duy) + errors.
Q Q Q

Use measure theory to keep concentrations (Dirac bumps?) of Du or Duy away from cube
boundaries. Mop up the error terms.

o ‘“<«=": cubes calculation above.
e Polyconvex: F is a convex function of minors of A.

e Convex=PC= QC=R1C (converse false).
Proof of PC=-QC: PC = wlsc (use convex = wlsc argument for each minor). wlsc = QC.

o |[DF(A)<CA+|APTY.
Proof: Exploit growth estimate above, and QC = RIC. Use f(t) = F(A + t(n ® &)), which is
convex = locally Lip = locally | f/(0)] <max|f].

12.2 Null Lagrangians, Determinants
e F(Du) is a null Lagrangian if E-L
div(DF(Du))=0x;(0a, ;F(Du))=
holds for every u € C2.
e F null Langrangian. Then
u=aondQ = Iu]=Ia].
Proof: i(7):=I[tu+ (1 —7)u]. ¢’(7)=0 by E-L.
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e (Cofactor matrix:
o cof(A; ;) =det(Ay; )\ ;)
_ 1
o A7'=——(cof A)T.
o = ATcof A=det A-1d

o = 0a, det(A)=(cof A); ;

e det(Du) is a null Lagrangian, i.e.
o div(Ddet(Du))=div(cof(Du)) =0
o Plug and chug if det(Dwu) # 0, otherwise add eld.
o up—uin WP n<p<oo. = det(Duy)— det(Du) in LP/". (Morrey/Reshetnyak)
o Reduce dimension of problem by one by reducing to “does the cofactor matrix converge?

o Use det(Du) = div(%cof(Du)Tu).

o Morrey (n < p!) implies uniform boundedness in C%'~"/P  then use A-A to extract uni-
formly converging subsequence, settling the deal for the leftover u besides the cofactor
matrix.

o (also holds for p=n if det(Dwuy) > 0-no proof.)

e No Retract Theorem: B= B(0,1). There is no continuous map u: B — 9B with u(z) =2z on dB.
Proof: Suppose there is a retract w. By comparison with Id and identity on the boundary,

/det(Dw):|B|.
OTOH, |w|?> =1 = (Dw)™w = 0 = det(Dw) = 0. Lose smoothness requirement by continuously

extending by Id, mollifying and using B(0, 2) then.

e DBrouwer’s Fired Point Theorem: u: B — B continuous. 3z € B:u(x) =z.
Proof: Assume no fixed point. w: B— 9B is the point on 9B hit by the ray from u(z) to x.
w is a retract because w hits B in x if x € dB. w is continuous.

e Degree of a map: u€ Wht
deg(u):][ det(Du).
B

Definable for continuous functions by approximation. Is an integer.

13 Navier-Stokes Equations

G open, G :=G x (0,00) space-time.
e Navier-Stokes Equations:
Du/Dt= (vAu—Vp)+ f,
(%) is the material derivative D* /Dt =0y +u-V *.
e v =0= Euler equation. v # 0=-may as well assume v =1.
e Conservation of mass: Oyp + div(pu) =0. Assume Dp/Dt=0=V -u=0.
e Pressures in a smooth incompressible flow are superharmonic: Take div of NSE.
e Steady flows: u-Vu+ Vp=vAu.
e Bernoulli’s Theorem: ideal (v =0), steady flow - Vu+ Vp=0=V(u?/2+p)=0
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= u?/2+ p=const (still need conservation of mass V -u=0)

o Vorticity: w=curlu

Ow+Vx(u-Vu) = Aw,
V-u = 0,
Vxu = w.

In 2D, V x (u- Vu) becomes u - Vu.

e Helmholtz Projection: P = L?-closure {V: p € C°(R")}. PL (note P closed!) is divergence-free.
L’=Po P+
Example: Divergence-free field from sem. 1 final: (continuous) boundary-normal field matters, (dis-
continuous) tangential field does not.

o Weak formulation:
o Takeac€ Cg"(é',]R") div-free, dot NSE with it,

o 1. by parts second term, popping the derivative onto a wu-product, pull apart, one term is
Zero,

o [a-Vp=—[ (diva)p=0

gives

(W1) —/A da-u+Va- (u®u)+Aa-udzdt = 0
G
W2 [ Ve =0 (peCEm)
G

(where A- B=tr(ATB))
e V:=|-|-closure{a € CSO(G',]R"), V-a=0}

wm:/ﬂw+wwma
G

e Space for ICs: Py:= P N L?-closure {C2°} to replicate u =0 on dG.
e Euistence, Energy Inequality: ug € Pg-. JucV:
o (W1), (W2)
o continuous docking to IC: |ju(t,-) — u0||L2(G) —0ast—0,
o energy equality:
Ll o= 20 Vul] .
Equivalently for ¢ > 0,

t
/|u(x,t)|2—|—/ / |Vu(x,s)|2d:vds<l/ lug(z)[2dx.
G 0o Ja 2 Ja



