Stochastic PDEs

By Boris Rozovsky

Table of contents

Table of contents 1
1 Basic Facts from Stochastic Processes 1
1.1 Lebesgue Integral 2
1.2 Conditional Expectation 3
1.3 Stochastic Processes 4
1.4 Brownian Motion (Wiener Processes) 4
2 The Itô Integral and Formula 6
2.1 The Itô Construction 7
2.2 Itô's Formula 9
2.2.1 Deriving from the Chain Rule 9
2.2.2 SODEs 11
3 Some SPDEs 12
4 PDE/Sobolev Recap 14
4.1 Sobolev Spaces H_{2}^{γ} 15
4.2 SPDEs in Sobolev Spaces 15
4.2.1 Classical Theory 15
4.2.2 Stochastic Theory 16
5 Nonlinear Filtering ("Hidden Markov Models") 16
6 Solutions of PDEs and SPDEs 17
6.1 Classical Solutions 17
6.2 Generalized Solutions 18
6.3 Mild Solutions 18
6.4 Generalization of the notion of a "solution" in SDE 18
Send corrections to kloeckner@dam.brown.edu.

Example: Heat Equation. Suppose $\omega \in \Omega$ is part of a probability space. Then chance can come in at any or all of these points:

$$
\begin{aligned}
\frac{\partial u(t, x)}{\partial t} & =a(x, \omega) \frac{\partial^{2}}{\partial x^{2}} u(t, x)+f(t, x, \omega) \quad x \in(a, b) \\
u(0, x) & =\varphi(x, \omega) \\
u(t, a) & =\psi_{1}(t, \omega) \\
u(t, b) & =\psi_{2}(t, \omega)
\end{aligned}
$$

1 Basic Facts from Stochastic Processes

Probability Theory	Measure Theory
ω - elementary random event (outcomes)	
$\Omega=\bigcup \omega$ - probability space/space of outcomes	$\Omega-$ set
Random events \leftrightarrow subsets of $\Omega \supset A$	Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ closed w.r.t. $\cap / \cup / \zeta$.
Operations on events: $\cup, \cap, \bar{A}=\Omega \backslash A$.	
$\varnothing:=\Omega \backslash \Omega$	
If A and B are random events, then $A \cup B, A \cap B, \bar{A}$ are r.e.	
Elementary properties of probability:	Measures (see below)
$P(A) \in[0,1], P(\Omega)=1$, additive for disjoint events.	

Definition 1.1. A function $\mu(A)$ on the sets of an algebra \mathcal{A} is called a measure if
a) the values of μ are non-negative and real,
b) μ is an additive function for any finite expression-explicitly, if $A=\bigcup_{i} A_{i}$ and $A_{i} \cap A_{j}=\varnothing$ iff $i \neq j$, then

$$
\mu(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right) .
$$

Definition 1.2. A system $\mathcal{F} \subset \mathcal{P}(\Omega)$ is called $a \sigma$-algebra if it is an algebra and, in addition, if $\left(A_{i}\right)_{i=1,2, \ldots}$, then also $\bigcup_{i} A_{i} \in \mathcal{F}$.

It is an easy consequence that $\bigcap_{i} A_{i} \in \mathcal{F}$.
Definition 1.3. A measure is called σ-additive if
if the A_{i} are mutually disjoint.

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

The above together form Kolmogorov's Axioms of Probability: A tuple (Ω, \mathcal{F}, P) is called a probability space (Ω a set, \mathcal{F} a σ-algebra, P a probability measure).

Lemma 1.4. Let ε be a set of events. Then there is a smallest σ-algebra \mathcal{F} such that $\varepsilon \subset \mathcal{F}$.
Definition 1.5. A function $X: \Omega \rightarrow \mathbb{R}^{n}$ is called a random variable if it is \mathcal{F}-measurable, i.e. for arbitrary A belonging to the Borel- σ-algebra $\mathcal{B}\left(\mathbb{R}^{n}\right)$, the set $X^{-1}(A) \in \mathcal{F}$.

Definition 1.6. Completion of \mathcal{F} with respect to P : For simplicity, $\Omega=(0,1)$. P is the Lebesgue measure, \mathcal{F} the Borel- σ-algebra $\mathcal{B}(0,1)$ on $\Omega=(0,1) . \mathcal{F}$ is called complete if it contains all subsets B of Ω with the property:

There are subsets B^{-}and B^{+}from $\mathcal{B}(0,1)$ such that $B^{-} \subset B \subset B^{+}$and $P\left(B^{+} \backslash B^{-}\right)=0$.
This process maps (Ω, \mathcal{F}, P) to $\left(\Omega, \overline{\mathcal{F}}^{P}, P\right)$, where $\overline{\mathcal{F}}^{P}$ is the completion of \mathcal{F} w.r.t. P.
Now suppose X is a random variable in (Ω, \mathcal{F}, P) in \mathbb{R}^{n}. $X^{-1}\left(\mathcal{B}\left(\mathbb{R}^{n}\right)\right):=\left\{X^{-1}(A): A \in \mathcal{B}\left(\mathbb{R}^{n}\right)\right\}=\{\Gamma$: $\left.X(\Gamma) \in \mathcal{B}\left(\mathbb{R}^{n}\right)\right\} . \mathcal{H}_{X}$ is called the σ-algebra generated by X.

One reason to use this definition of a random variable is this:
Lemma 1.7. (Doob-Dynkin) If \mathcal{F} is generated by a random variable Y, then there exists a Borel function g such that $X=g(Y)$.

1.1 Lebesgue Integral

Definition 1.8. X on (Ω, \mathcal{F}, P) is called simple if it is \mathcal{F}-measurable and takes a finite number of values: $x_{1}, x_{2}, \ldots, x_{n}$.
$\Omega_{i}=\left\{\omega: X(\omega)=x_{i}\right\}=X^{-1}\left(x_{i}\right)$. Then the Lebesuge integral is

$$
\int_{\Omega} X \mathrm{~d} P=\sum_{i=1}^{n} x_{i} P\left(\Omega_{i}\right)
$$

Definition 1.9. An arbitrary measurable function X on (Ω, \mathcal{F}, P) is called P-integrable if there exists a sequence of such simple functions X_{n} so that $X_{n} \rightarrow X$ a.s. and

$$
\lim _{n, m \rightarrow \infty} \int_{\Omega}\left|X_{n}-X_{m}\right| \mathrm{d} P=0
$$

Lemma 1.10. If X is P-integrable, then

1. There exists a finite limit

$$
\int_{\Omega} X \mathrm{~d} P=\lim _{n \rightarrow \infty} \int_{\Omega} X_{n} \mathrm{~d} P
$$

2. This limit does not depend on the choice of the approximating system.

If X is a random variable $X: \Omega \rightarrow \mathbb{R}^{n}$. Let \mathcal{B} be Borel's σ-algebra on \mathbb{R}^{n}. Then

$$
\mu_{X}(\underbrace{A}_{\in \mathcal{B}})=P\left(X^{-1}(A)\right)=P(\omega: X(\omega) \in A)
$$

is called the distribution function of X.

Theorem 1.11.

$$
\int_{\Omega} f(X) \mathrm{d} P=\int_{\mathbb{R}^{n}} f(x) \mu_{X}(\mathrm{~d} x) .
$$

Thus

$$
E[X]=\int_{\mathbb{R}^{n}} X \mu_{X}(\mathrm{~d} X)
$$

Example 1.12. Let X have values $x_{1}, \ldots, x_{n} . \Omega_{i}=X^{-1}\left(x_{i}\right) . \mu_{X}\left(x_{i}\right)=P\left(\Omega_{i}\right)$. Then

$$
E[X]=\sum x_{i} \mu_{X}\left(x_{i}\right)=\sum x_{i} P\left(\Omega_{i}\right)
$$

1.2 Conditional Expectation

ξ and η are are random variables with a joint density $p(x, y)$.
Motivation:

$$
\begin{aligned}
E[\xi \mid \eta=y] & =\int x p(x \mid y) \mathrm{d} x . \\
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} .
\end{aligned}
$$

Now suppose X is a P-integrable random variable $(\Omega, \mathcal{F}, P) . G$ is a σ-algebra on $\Omega, \mathcal{G} \subset \mathcal{F}$.
Definition 1.13. Let η be \mathcal{F}-measurable random variable. If there exists a P-integrable \mathcal{G}-measurable function ξ such that for any bounded \mathcal{G}-measurable function φ

$$
E(\xi \varphi)=E(\eta \varphi)
$$

the ξ will be called conditional expectation of η and denoted $E[\eta \mid \mathcal{G}]$.
Properties of conditional expectation:

1. If η is \mathcal{G}-measurable, then $E[\eta \mid \mathcal{G}]=\eta$.

Proof. (1) By assumption, η is \mathcal{G}-measurable. (2) Let φ be an arbitrary \mathcal{G}-measurable function. Then

$$
E(\eta \varphi)=E(E(\eta \mid \mathcal{G}) \varphi)=E(\eta \varphi)
$$

2. HW: Prove that the conditional expectation is unique.
3. If f is bounded, \mathcal{G}-measurable, then

$$
E[f(\omega) X \mid \mathcal{G}](\omega)=f(\omega) E[X \mid \mathcal{G}]
$$

4. Let $g(\omega, X)$ be an \mathcal{F}-measurable function. Then

$$
E[g(\omega, X) \mid \sigma(X)]=\left.E[g(\omega, c) \mid \sigma(X)]\right|_{c=X}
$$

5. Let $\mathcal{G}_{1} \subset \mathcal{G}$ be σ-algebras. Then

$$
E\left[E[X \mid \mathcal{G}] \mid \mathcal{G}_{1}\right]=E\left[X \mid \mathcal{G}_{1}\right]
$$

This property can be memorized as "Small eats big".
Example 1.14. $\Omega=\bigcup_{n} \Omega_{n}, \Omega_{i} \cap \Omega_{j}=\varnothing$. Let $\mathcal{E}=\left\{\Omega_{1}, \Omega_{2}, \ldots\right\}$. Then $\sigma(\mathcal{E})=\left\{\Omega_{i_{1}} \cup \Omega_{i_{2}} \cup \ldots\right\} . \Omega_{0}=\Omega \backslash \Omega$. Let ξ be a random variable

$$
\begin{equation*}
E[\xi \mid \sigma(\mathcal{E})]=\sum_{i} \frac{E\left[\xi \mathbf{1}_{\Omega_{i}}\right]}{P\left(\Omega_{i}\right)} \mathbf{1}_{\Omega_{i}} \tag{1.1}
\end{equation*}
$$

Proof of (1.1):
a) The right-hand side is a function of indicators of $\Omega_{i} \Rightarrow$ it is $\sigma(\mathcal{E})$-measurable.
b) $E[E[\xi \mid \sigma(\mathcal{E})] g]=E \xi g$ for all g which are $\sigma(\mathcal{E})$-measurable.

Suppose $g=1_{\Omega_{k}}$. Then

$$
E\left[\operatorname{rhs} \mathbf{1}_{\Omega_{k}}\right]=E\left[\frac{E\left[\xi \mathbf{1}_{\Omega k}\right]}{P\left(\Omega_{k}\right)} \mathbf{1}_{\Omega_{k}}\right]=\frac{E\left[\xi \mathbf{1}_{\Omega_{k}}\right]}{P\left(\not \mathbf{L}_{k}\right)} P\left(\not \boldsymbol{L}_{k}\right)=E\left(\xi \mathbf{1}_{\Omega_{k}}\right)
$$

rhs: $E\left(\xi \mathbf{1}_{\Omega_{k}}\right)$. What is a $\sigma(\mathcal{E})$-measurable function? Answer: It is a function of the form

$$
\xi=\sum_{i} y_{i} \mathbf{1}_{\Omega_{i}}
$$

What?

1.3 Stochastic Processes

Assume that for all t, we are given a random variable $X_{t}=X_{t}(\omega) \in \mathbb{R}^{n}$. t could be from $\{0,1,2,3, \ldots\}$ or from (a, b), it does not matter. In the former case, X_{t} is called a sequence of r.v. or a discrete time stochastic process. In the latter, it is called a continuous time stochastic process. If $t \in \mathbb{R}^{2}$, then X_{t} is a two-parameter random field.

Motivation: If X is a random variable, $\mu_{X}(A)=P(\omega: X(\omega) \in A$.
Definition 1.15. The (finite-dimensional) distribution of the stochastic process $\left(X_{t}\right)_{t \in T}$ are the measures defined on $\mathbb{R}^{n k}=\mathbb{R}^{n} \otimes \cdots \mathbb{R}^{n}$ given by

$$
\mu_{t_{1}, \ldots, t_{k}}\left(F_{1} \otimes F_{2} \otimes \cdots \otimes F_{k}\right)=P\left(\omega: X_{t_{1}} \in F_{1}, \ldots, X_{t_{k}} \in F_{k}\right)
$$

where the $F_{i} \in \mathcal{B}\left(\mathbb{R}^{n}\right)$.

1.4 Brownian Motion (Wiener Processes)

Definition 1.16. A real-valued process X_{t} is called Gaussian if its finite dimensional distributions are Gaussian $\Leftrightarrow\left(X_{t_{1}}, \ldots, X_{t_{k}}\right) \sim \mathcal{N}(k)$.

Remember: A random variable ξ in \mathbb{R}^{k} is called normal (multinormal) if there exists a vector $m \in \mathbb{R}^{k}$ and a symmetric non-negative $k \times k$-matrix $R=\left(R_{i j}\right)$ such that

$$
\varphi(\lambda):=E\left[e^{i(\xi, \lambda)}\right]=e^{i(m, \lambda)-(R \lambda, \lambda) / 2}
$$

for all $\lambda \in \mathbb{R}^{k}$, where (\cdot, \cdot) represents an inner product, $m=E[\xi]$ and $R=\operatorname{cov}\left(\xi_{i}, \xi_{j}\right)$.
Independence: Fact: $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ are normal vectors in \mathbb{R}^{k} with $\left(m_{i}, R_{i}\right)$. Then elements of Y are independent iff

$$
\varphi_{\lambda}(Y)=\prod_{i=1}^{n} \varphi_{\lambda_{i}}\left(Y_{i}\right)
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{i} \in \mathbb{R}^{n}$.
Fact 2: $\zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right)$ is Gaussian iff for any $\lambda \in \mathbb{R}^{m}$,

$$
(\zeta, \lambda)=\sum \lambda_{i} \zeta_{i}
$$

is Gaussian in 1D.

Definition 1.17. Brownian motion W_{t} is a one-dimensional continuous Gaussian process with

$$
E\left[W_{t}\right]=0, \quad E\left[W_{t} W_{s}\right]=t \wedge s:=\min (t, s)
$$

Alternative Definition:
Definition 1.18. Brownian motion W_{t} is a Brownian motion iff

1. $W_{0}=0$
2. $\forall t, s: W_{t}-W_{s} \sim \mathcal{N}(0, t-s)$
3. $W_{t_{1}}, W_{t_{2}}-W_{t_{1}}, \ldots$ are independent for all partitions $t_{1}<t_{2}<t_{3}<\cdots$.

Yet another:
Definition 1.19. The property (3) in Definition 1.18 may be replaced by $3^{\prime} . W_{t_{n}}-W_{t_{n-1}}$ is independent of $W_{t_{n-1}}-W_{t_{n-2}}, \ldots$

Definition 1.20.

$$
\mathcal{F}_{t}^{W}:=\sigma\left(\left\{W_{s_{1}}, W_{s_{2}}, \ldots: s_{i} \leqslant t\right\}\right)
$$

Theorem 1.21. Brownian motion is a martingale w.r.t. $\mathcal{F}_{t}^{W} \Leftrightarrow$

$$
E\left[W_{t} \mid \mathcal{F}_{s}^{W}\right]=W_{s}
$$

for $s<t$. (This is also the definition of a martingale.)
Remark 1.22. $\sigma\left(W_{t_{1}}, W_{t_{2}}, \ldots, W_{t_{n}}\right)=\sigma\left(W_{t_{1}}, W_{t_{2}}-W_{t_{1}}, \ldots, W_{t_{n}}-W_{t_{n-1}}\right)$ (knowledge of one gives the other-add or subtract). This is important because RHS is independent, but LHS is not.

Corollary 1.23.

1. $E\left[W_{t}^{2}\right]=t$. (So W_{t} grows roughly as \sqrt{t}.)
2. $W_{t}^{2} / t \rightarrow 0$ almost surely.

Proof: By Chebyshev's inequality, $P\left(\left|W_{t} / t\right|>c\right)<E\left[\left|W_{t} / t\right|^{2}\right] / c^{2}=t / t^{2} c^{2} \rightarrow 0$ as $t \rightarrow \infty$.
Law of iterated logarithm:

$$
\begin{gathered}
\varphi_{t}^{0}=\frac{W_{t}}{\sqrt{2 t \log \log (1 / t)}}, \quad \varphi_{t}^{\infty}=\frac{W_{t}}{\sqrt{2 t \log \log (t)}}, \\
\quad \limsup _{t \rightarrow 0}^{0}=1, \quad \limsup _{t \rightarrow \infty}^{\infty}=1 \\
\quad \underset{t \rightarrow 0}{\liminf } \varphi_{t}^{0}=-1, \quad \liminf _{t \rightarrow \infty} \varphi_{t}^{\infty}=-1
\end{gathered}
$$

Continuity and Differentiability:

- W_{t} is continuous.
- W_{t} is nowhere differentiable.

Spectral representation of Brownian motion:

Theorem 1.24.

$$
\begin{aligned}
W_{t} & =t \eta_{0}+\sum_{n=1}^{\infty} \eta_{n} \sin (n t) \approx t \eta_{0}+\sum_{n=1}^{N} \eta_{n} \sin (n t), \quad \text { where } \\
\eta_{n} & \sim \mathcal{N}\left(0,2 / \pi n^{2}\right) \quad(n \geqslant 1) \\
\eta_{0} & \sim \mathcal{N}(0,1 / \pi)
\end{aligned}
$$

Proof. Consider $t \in[0, \pi]$.

$$
\tilde{W}_{t}:=W_{t}-\frac{t}{\pi} W_{\pi} \quad \text { for } t \in[0, \pi]
$$

Then

$$
\tilde{W}(t)=\sum_{n=1}^{\infty} \eta_{n} \sin (n t)
$$

where

$$
\eta_{n}=\frac{2}{\pi} \int_{0}^{\pi} \tilde{W}(t) \sin (n t) \mathrm{d} t \quad(n>0)
$$

and

$$
\eta_{0}=\frac{W(\pi)}{\pi}
$$

First fact: η_{n} are Gaussian because linear combinations of normal r.v.s. are normal.

$$
E \eta_{k} \eta_{n}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi}(t \wedge s-t s / \pi) \sin (n t) \sin (k s)= \begin{cases}0 & k \neq n \\ \frac{2}{\pi n^{2}} & k=n>0\end{cases}
$$

For $n=0$,

$$
E\left[\eta_{0}^{2}\right]=E \frac{W^{2}[\pi]}{\pi^{2}}=\frac{1}{\pi}
$$

2 The Itô Integral and Formula

Suppose we have some system described by X_{t} that has some additive noise $\xi_{t}: Y_{t}=X_{t}+\xi_{t} .(t=1,2,3, \ldots)$ The ξ_{1}, ξ_{2}, \ldots are assumed to be

1. iid
2. $\xi_{i} \sim N\left(\mu, \sigma^{2}\right)$

If the ξ_{t} satisfy the first property, they are called white noise. If they satisfy both, it is Gaussian white noise.

If we now consider $W_{t} \xi_{0}=W_{0}=0, \xi_{1}=W_{t_{1}}-W_{0}, \xi_{2}=W_{t_{2}}-W_{t_{1}}, \ldots$, then

1. holds
2. holds

A popular model in dynamics is

$$
X_{t+\Delta}=A X_{t}+B+\xi_{t+1}
$$

for, say, the dynamics of an "aircraft". Another possibility is modeling the price of a risky asset

$$
X_{t+\Delta}=X_{t}+\mu X_{t} \Delta+\sigma X_{t}\left(W_{t+1}-W_{t}\right)
$$

where μ is the individual trend of the stock, while σ is market-introduced volatility. Equivalently, we might write

$$
\frac{X_{t+\Delta}-X_{t}}{\Delta}=\mu X_{t}-\sigma X_{t} \frac{W_{t+1}-W_{t}}{\Delta}
$$

and then let $\Delta t \downarrow 0$, such that we obtain

$$
\dot{X}_{t}=\mu X_{t}+\sigma X_{t} \dot{W}_{t}
$$

which is all nice and well except that the derivative of white noise does not exist. But note that there is less of a problem defining the same equation in integral terms.

Step 1: Suppose we have a function $f(s)$, which might be random. Then define

$$
I_{n}(f)=\sum_{k} f\left(s_{k}^{*}\right)\left(W_{s_{k+1}}-W_{s_{k}}\right)
$$

But what happens if $f(s)=W_{s}$. We get the term

$$
W_{s_{k}}\left(W_{s_{k+1}}-W_{s_{k}}\right)
$$

Or is it

$$
W_{s_{k+1}}\left(W_{s_{k+1}}-W_{s_{k}}\right) ?
$$

Or even

$$
W_{\frac{s_{k+1}+s_{k}}{2}}\left(W_{s_{k+1}}-W_{s_{k}}\right) ?
$$

In the Riemann integral, it does not matter where you evaluate the integrand-it all converges to the same value. But here, we run into trouble. Consider

$$
\begin{array}{cc}
E\left|W_{s_{k}}\left(W_{s_{k+1}}-W_{s_{k}}\right)\right|^{2} & \neq \\
\| & E\left|W_{s_{k+1}}\left(W_{s_{k+1}}-W_{s_{k}}\right)\right|^{2} \\
E\left|W_{s_{k}}\right|^{2} E\left|W_{s_{k+1}}-W_{s_{k}}\right|^{2} & E\left|W_{s_{k-1}}\left(W_{s_{k+1}}-W_{s_{k}}\right)\right|^{2} \\
\| & \nVdash \\
s_{k}\left(s_{k+1}-s_{k}\right) & E\left|W_{\frac{s_{k+1}+s_{k}}{}}^{2}\left(W_{s_{k+1}}-W_{s_{k}}\right)\right|^{2} .
\end{array}
$$

Problem: Compute each of the above expectations, and show they are not equal.

2.1 The Itô Construction

The idea here is to use simple functions:

$$
f(s)=\sum_{i=0}^{n} e_{i}(\omega) \mathbf{1}_{\left(t_{i}, t_{i+1}\right)}(s)
$$

where e_{i} is $\mathcal{F}_{t_{i}}^{W}$-measurable, where $\mathcal{F}_{t_{i}}^{W}=\sigma\left(W_{s_{1}}, \ldots, W_{s_{k}}: s_{i} \leqslant s\right)$

$$
\begin{gathered}
\Leftrightarrow \\
e_{i}=e_{i}\left(W_{r}, r \in\left[0, t_{i}\right]\right) \\
\Leftrightarrow \\
e_{i} \text { is "adapted" to } \mathcal{F}_{t_{i}}^{W} .
\end{gathered}
$$

$$
I(f)=\sum_{i=0}^{n} e_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

Properties:

1. $E[I(f)]=0$

Proof:

$$
\begin{aligned}
E[I(f)] & =\sum_{i=0}^{n} E e_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right) \\
& =\sum_{i=0}^{n} E\left(E\left(e_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}^{W}\right)\right) \\
& =\sum_{i=0}^{n} E\left(e_{i} E\left[\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}^{W}\right]\right) \\
& =\sum_{i=0}^{n} E\left(e_{i} E\left[W_{t_{i+1}}-W_{t_{i}}\right]\right) \\
& =\sum_{i=0}^{n} E\left(e_{i} 0\right)=0 .
\end{aligned}
$$

2.

$$
\begin{aligned}
E|I(f)|^{2} & =\sum_{i=1}^{N} E\left|e_{i}\right|^{2}\left(t_{i+1}-t_{i}\right)=\int_{0}^{T} E|f(s)|^{2} \mathrm{~d} s \\
& =E\left[\sum e_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right)\right]^{2} \\
& =\sum E\left[e_{i}^{2}\left(W_{t_{i+1}}-W_{t_{i}}\right)^{2}\right]-E\left[e_{i} e_{j}\left(W_{t_{i+1}}-W_{t_{i}}\right)\left(W_{t_{j+1}}-W_{t_{j}}\right)\right] \\
& =E\left(E\left(e_{i}^{2}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}^{W}\right)\right) \\
& =E\left[e_{i}^{2}\right]\left(t_{i+1}-t_{i}\right) .
\end{aligned}
$$

3. $I(f)$ is linear.

Next: If $f(s)$ is only \mathcal{F}_{s}^{W}-measurable (but not a step function), and if $\int_{0}^{T} E f^{2}(s) \mathrm{d} s<\infty \Rightarrow$ could be approximated by a sequence of step functions $f_{n}(s) \rightarrow f(s)$.
[Insert lecture6.pdf here, courtesy of Mario.]

2.2 Itô's Formula

Suppose we have a partition of a time interval $(0, T)$ as $t_{0}=0, t_{1}, t_{2}, \ldots, t_{n}=T . \Delta t_{i}=t_{i+1}-t_{i}$. We assume $\max \Delta t_{i} \rightarrow 0$. Also, we assume we have a function

$$
f=f(t), \quad \Delta f_{i}=f\left(t_{i+1}\right)+f\left(t_{i}\right)
$$

a) If $f=f(t)$, continuous, bounded variation. Then

$$
\lim _{\max \Delta t_{i} \rightarrow 0} \sum_{i=0}^{n-1}\left|\Delta f_{i}\right|^{2}=\lim _{\max \Delta t_{i} \rightarrow 0} \max \underbrace{\left|\Delta f_{i}\right|}_{\rightarrow 0} \underbrace{\sum_{i=0}^{n-1}\left|\Delta f_{i}\right|}_{\text {variation } \rightarrow \text { bounded }}=0
$$

b) If $W=W(t)$ is Standard Brownian Motion, then

$$
\lim _{\max \Delta t_{i}} \sum_{i=0}^{n-1}\left|\Delta W_{i}\right|^{2}=T \quad \text { (in } L^{2} \text { and in probability). }
$$

Proof. We need $\left.E\left|\sum\right| \Delta W_{i}\right|^{2}|-T|^{2} \rightarrow 0$. So

$$
\begin{aligned}
& E\left(\left(\sum_{i}\left(\Delta W_{i}\right)^{2}\right)^{2}-2 \sum_{i}\left(\Delta W_{i}\right)^{2} T+T^{2}\right) \\
= & E\left[\sum_{i, j}\left|\Delta W_{i}\right|^{2}\left|\Delta W_{j}\right|^{2}-2 T^{2}+T^{2}\right] \\
= & E\left[\sum_{i=0}^{n-1}\left|\Delta W_{i}\right|^{4}+\sum_{i \neq j}\left|\Delta W_{i}\right|^{2}\left|\Delta W_{j}\right|^{2}-T^{2}\right] \\
= & 3 \sum_{i}\left|\Delta t_{i}\right|^{2}+\sum_{i \neq j} \Delta t_{i} \Delta t_{j}-T^{2} \\
= & 2 \sum_{i}\left|\Delta t_{i}\right|^{2}+\underbrace{\left(\sum_{i}\left|\Delta t_{i}\right|\right)^{2}}_{T^{2}}-T^{2} \\
= & 2 \sum_{i}\left|\Delta t_{i}\right|^{2} \leqslant 2 \max \left\{\Delta t_{i}\right\} \cdot T \rightarrow 0 .
\end{aligned}
$$

So we essentially showed:

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left|\Delta W_{i}\right|^{2} & \rightarrow T \\
(\mathrm{~d} W)^{2} & \rightarrow \mathrm{~d} t \\
\mathrm{~d} W & \rightarrow \sqrt{\mathrm{~d} t} \quad \text { (not rigorous) }
\end{aligned}
$$

2.2.1 Deriving from the Chain Rule

if $x=x(t) \in C^{1}$ and $F=F(y) \in C^{1}$. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(x(t))=F^{\prime}(x(t)) x^{\prime}(t)
$$

Alternatively,

$$
x(t)=x(0)+\int_{0}^{t} \underbrace{f(s)}_{x^{\prime}(s)} \mathrm{d} s
$$

Then

$$
F(x(t))=F(x(0))+\int_{0}^{t} F^{\prime}(x(s)) f(s) \mathrm{d} s
$$

First of all, there is no "Stratonovich Formula". Suppose $W^{n} \rightrightarrows W$ (double arrows: uniformly), then

$$
\begin{aligned}
X^{n}(t) & =X(0)+\underbrace{\int_{0}^{t} A(s) \mathrm{d} s+\int_{0}^{t} B(s) W^{n}(s) \mathrm{d} s}_{=\int_{0}^{t}\left(X^{n}\right)^{\prime}(s) \mathrm{d} s} \\
X(t) & =X(0)+\underbrace{\int_{0}^{t} A(s) \mathrm{d} s+\underbrace{\int_{0}^{t} B(s) \circ \mathrm{d} W(s)}_{0}}_{\text {Stratonovich Int. }} \\
F\left(X^{n}(t)\right) & =F(X(0))+\int_{0}^{t} F^{\prime}\left(X^{n}(s)\right) A(s) \mathrm{d} s+\int_{0}^{t} F^{\prime}\left(X^{n}(s)\right) B(s) W^{n}(s) \mathrm{d} s \\
F(X(t)) & =F(X(0))+\int_{0}^{t} F^{\prime}(X(s)) A(s) \mathrm{d} s+\int_{0}^{t} F^{\prime}(X(s)) B(s) \circ(s) \mathrm{d} W(s) .
\end{aligned}
$$

In particular,

$$
X=W(t)=\int_{0}^{t} 1 \circ \mathrm{~d} W(s), \quad F(y)=y^{2}, \quad \int_{0}^{t} W(s) \circ \mathrm{d} W(s)=\frac{1}{2} W^{2}(t)
$$

Remark 2.2. Itô integral is a martingale, Stratonovich is not. Also: there is no connection between the two in the non-smooth case.

Now, let's see what happens for Itô, again starting from a process $X(t)$ given as

$$
X(t)=X(0)+\int_{0}^{t} A(s) \mathrm{d} s+\int_{0}^{t} B(s) \mathrm{d} W(s)
$$

Now, what is $F(X(t))$? Let's look at a Taylor expansion of

$$
F\left(X\left(t_{i+1}\right)\right)-F\left(X\left(t_{i}\right)\right)=F^{\prime}\left(X\left(t_{i}\right)\right) \Delta x_{i}+\frac{1}{2} F^{\prime \prime}\left(X\left(t_{i}\right)\right)\left(\Delta x_{i}\right)^{2}+(\cdots) \underbrace{\left(\Delta x_{i}\right)^{3}}_{\sim(\Delta t)^{3 / 2}}
$$

So, in continuous time

$$
\begin{aligned}
F(X(t)) & =\sum \Delta F \\
& =F(X(0))+\int_{0}^{t} F^{\prime}(X(s)) \mathrm{d} X(s)+\frac{1}{2} \int_{0}^{t} F^{\prime \prime}(X(s))(\mathrm{d} X(s))^{2} \\
& =F(X(0))+\int_{0}^{t} F^{\prime}(X(s)) A(s) \mathrm{d} s+\int_{0}^{t} F^{\prime}(X(s)) B(s) \mathrm{d} W(s)+\frac{1}{2} \int_{0}^{t} F^{\prime \prime}(X(s)) B^{2}(s) \mathrm{d} s
\end{aligned}
$$

Theorem 2.3. If

$$
X(t)=X(0)+\int_{0}^{t} A(s) \mathrm{d} s+\int_{0}^{t} B(s) \mathrm{d} W(s)
$$

and $F \in C^{3}$, then

$$
F(X(t))=F(X(0))+\int_{0}^{t} F^{\prime}(X(s)) A(s) \mathrm{d} s+\int_{0}^{t} F^{\prime}(X(s)) B(s) \mathrm{d} W(s)+\frac{1}{2} \int_{0}^{t} F^{\prime \prime}(X(s)) B^{2}(s) \mathrm{d} s
$$

Now if $F \in C^{3}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$,then

$$
X(t)=X(0)+\int_{0}^{t} A(s) \mathrm{d} s+\int_{0}^{t} B(s) \mathrm{d} W(s) \in \mathbb{R}^{n}
$$

where we recall that $W \in \mathbb{R}^{p}$ with all p components independent. Itô's Formula in multiple dimensions takes the form

$$
F_{k}(X(t))=F_{k}(X(0))+\int_{0}^{t} \sum_{i} \frac{\partial F_{k}}{\partial x_{i}} A_{i} \mathrm{~d} s+\sum_{i, l} \int_{0}^{t} \frac{\partial F_{k}}{\partial x_{i}} B_{i, l} \mathrm{~d} W_{l}+\frac{1}{2} \int_{0}^{t} \sum_{i, j} \frac{\partial F_{k}}{\partial x_{i} \partial x_{j}} \sum_{l} B_{i l} B_{j l} \mathrm{~d} s
$$

Example 2.4. If $F(x)=x^{2}$ and
then

$$
X=\int_{0}^{t} \mathrm{~d} W(s)
$$

$$
\int_{0}^{t} W(s) \mathrm{d} W(s)=\frac{1}{2}\left(W^{2}(t)-t\right)
$$

Example 2.5. If $\Delta F=0$ (i.e. F is harmonic), then $F(W(t))$ is a martingale.

2.2.2 SODEs

or, equivalently

$$
X(t)=X(0)+\int_{0}^{t} b(s, X(s)) \mathrm{d} s+\int_{0}^{t} \sigma(s, X(s)) \mathrm{d} W(s)
$$

$$
\mathrm{d} X=b(t, X) \mathrm{d} t+\sigma(t, X) \mathrm{d} W(t)
$$

Example 2.6. Ornstein-Uhlenbeck Process. The equation

$$
\mathrm{d} X(t)=a X(t) \mathrm{d} t+b \mathrm{~d} W(t)
$$

has the solution

$$
X(t)=e^{a t} X(0)+b \int_{0}^{t} e^{a(t-s)} \mathrm{d} W(s)
$$

Proof. Consider

$$
\begin{aligned}
X_{t} & =e^{a t} X(0)+b \int_{0}^{t} e^{a(t-s)} \mathrm{d} W_{s} \\
& =e^{a t} X(0)+b e^{a t} \int_{0}^{t} e^{-a s} \mathrm{~d} W_{s} \\
& =e^{a t} X(0)+b e^{a t} Z_{t} \\
& =g\left(t, Z_{t}\right) \quad \text { with } \quad \mathrm{d} Z_{t}=e^{-a t} \mathrm{~d} W_{t} .
\end{aligned}
$$

Ito's Formula then gives

$$
\begin{aligned}
\mathrm{d} X_{t} & =\frac{\partial g}{\partial t} \mathrm{~d} t+\frac{\partial g}{\partial x} \mathrm{~d} Z_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(\mathrm{~d} Z_{t}\right)^{2} \\
& =X(0) a e^{a t}+b e^{a t} \mathrm{~d} Z_{t}+0 \\
& =X(0) a e^{a t}+b e^{a t} e^{-a t} \mathrm{~d} W_{t} \\
& =X(0) a e^{a t}+b \mathrm{~d} W_{t}
\end{aligned}
$$

Example 2.7. (Geometric Brownian Motion)

$$
\mathrm{d} X(t)=a X(t) \mathrm{d} t+b X(t) \mathrm{d} W(t)
$$

is solved by

$$
X(t)=X(0) e^{\left(a-b^{2} / 2\right) t+b W(t)}
$$

(Check this by Itô.)
Homework: Solve

$$
\mathrm{d} X(t)=\left(a_{1}+a_{2} X(t)\right) \mathrm{d} t+\left(b_{1}+b_{2} X\right) \mathrm{d} W(t)
$$

Theorem 2.8. If $\left|b_{i}(s, x)-b_{i}(s, y)\right|+\left|\sigma_{i, k}(s, x)-\sigma_{i, k}(s, y) \leqslant C\right| x-y \mid$ (a Lipschitz condition) and $\mid b_{i}(s$, $x)\left|+\left|\sigma_{i, k}(s, x)\right| \leqslant C\left(1+|X|\right.\right.$) (a linear growth condition) and $X(0)$ is independent of W and $E|X(0)|^{2}<$ ∞, then there exists a solution $X(t)$ that is continuous in time. $X(t)$ is measurable w.r.t $\sigma(X(0), W(s)$, $s \leqslant t$) and

$$
E\left[\sup _{t \leqslant T}|X(t)|^{2}\right]<\infty
$$

3 Some SPDEs

$$
u_{t}=a u_{x x}, \quad u(0, x)=u_{0}(x)
$$

($a>0$-ellipticity: if it holds, then the equation is called parabolic) General solution:

$$
u(t, x)=\frac{1}{\sqrt{4 \pi a t}} \int_{R} \exp \left(-\frac{2|x-y|^{2}}{4 a t}\right) u_{0}(y) \mathrm{d} y=E\left[u_{0}(x+\sqrt{2 \pi} W(t)]\right.
$$

(Feynman-Kac formula-averaging over characteristics)
Monte-Carlo simulation:

$$
\operatorname{area}(A)=\frac{\# \text { hits in a set } A}{\# \text { hits in a surrounding square }}
$$

More general parabolic equation:

$$
u_{t}(x, t)=a_{i j} D_{i} D_{j} u(x, t)+b_{i} D_{i} u(x, t)+c u+f \quad\left(t>0, x \in \mathbb{R}^{d}\right) \quad u(0, x)=u_{0}(x)
$$

This equation is parabolic iff $a_{i j} y_{i} y_{j} \geqslant a|y|^{2}$ for all $y \in \mathbb{R}^{d}$ (the ellipticity property). If the highest order partial differential operator in the equation is elliptic, then the equation is parabolic. (The elliptic equation would be

$$
\left.a_{i j} D_{i} D_{j} u(x, t)+b_{i} D_{i} u(x, t)+c u+f=0 .\right)
$$

Now, onwards to Stochastic PDEs. A model equation is

$$
\mathrm{d} u(t, x)=a u_{x x}(t, x) \mathrm{d} t+\sigma u_{x}(t, x) \mathrm{d} W_{t}
$$

Recall from geometric Brownian motion:

$$
\mathrm{d} u(t)=a u(t) \mathrm{d} t+\sigma u(t) \mathrm{d} W_{t}, \quad u(0)=0
$$

The solution is

$$
u(t)=u_{0} \exp \left(\left(a-\frac{\sigma^{2}}{2}\right)+\sigma W_{t}\right)
$$

and

$$
E\left[u^{2}(t)\right]=u_{0}^{2} \exp \{u t\} E\left[\exp \left\{2 \sigma W_{t}-\sigma^{2} t^{2}\right\}\right]
$$

Now consider

$$
E[\underbrace{\exp \left(b W_{t}-\frac{1}{2} b^{2} t\right)}_{\rho(t)}]=1
$$

which is an example of an exponential martingale, which satisfies the general property

$$
E\left[\rho(t) \mid \mathcal{F}_{s}^{W}\right]=\rho(s) \quad \text { for } \quad s<t, \quad \rho(0)=1
$$

We find

$$
E(\rho(t)]=E[\rho(s)]=E[\rho(0)]=1
$$

Proof. By Ito's formula,

$$
\mathrm{d} \rho(t)=b \rho(t) \mathrm{d} W_{t} \quad \Rightarrow \quad \rho(t)=1+b \int_{0}^{t} \rho(s) \mathrm{d} W_{s}
$$

Here's a crude analogy: In stochastic analysis, $\rho(t)$ plays the role of $\exp (t)$ in "regular" real analysis. Going back to our above computation, we find

$$
E\left[u^{2}(t)\right]=u_{0}^{2} \exp \{u t\} E\left[\exp \left\{2 \sigma W_{t}-\sigma^{2} t^{2}\right\}\right]=u_{0} \exp \{2 a t\}
$$

So we find for geometric Brownian motion that it remains square-integrable for all time. (Consider that this is also the case for the regular heat equation.) Now, let's return to our SPDE,

$$
\mathrm{d} u(t, x)=a u_{x x}(t, x) \mathrm{d} t+\sigma u_{x}(t, x) \mathrm{d} W_{t} .
$$

We begin by applying the Fourier transform to u, yielding \hat{u}.

$$
\begin{gathered}
\mathrm{d} \hat{u}=-a y^{2} \hat{u}+i \sigma y \hat{u}(t, y) \mathrm{d} W_{t} \\
\left.\hat{u}=\hat{u}(0, y) \exp \left(-\left(a-\sigma^{2} / 2\right) y^{2} t\right)+i y \sigma W_{t}\right) .
\end{gathered}
$$

Parseval's equality tells us

$$
\int|u(t, x)|^{2}=\int|\hat{u}(t, y)|^{2} \mathrm{~d} y<\infty
$$

iff $a-\sigma^{2} / 2>0$. In SPDEs, first order derivatives in stochastic terms has the same strength as the second derivative in deterministic terms. The above condition is also called super-ellipticity, and the whole evolution equation is then called super-parabolic.

There's another example of SPDE in the lecture notes:

$$
\mathrm{d} u(t, x)=a u_{x x}(t, x) \mathrm{d} t+\sigma u(t, x) \mathrm{d} W_{t} .
$$

Here, the superellipticity equation is

$$
a-\frac{0^{2}}{2}>0 \quad \Leftrightarrow \quad a>0 .
$$

For the homework, see the notes as well. One of these problems is to consider the more general equation

$$
\mathrm{d} u=a_{i j} D_{i} D_{j} u+b_{i} D_{i} u+c u \mathrm{~d} t+\left(\sigma_{i k} D_{i} u+\nu_{k}\right) \mathrm{d} W_{k}(t) \quad i, j=1, \ldots, d, \quad k=1,2,3, \ldots
$$

where we have

$$
\sigma=\left(\begin{array}{ccc}
\sigma_{11} & \sigma_{12} & \cdots \\
\vdots & & \\
\sigma_{d 1} & \sigma_{d 2} & \cdots
\end{array}\right) .
$$

We have to assume

$$
\sigma \sigma^{*}=\sum_{k=1}^{\infty} \sigma_{i k} \sigma_{j k}<\infty, \quad \sum_{k} \nu_{k}^{2}<\infty .
$$

A substitution that sometimes helps in the deterministic case is illustrated below:

$$
\frac{\partial u}{\partial t}=a(t, x) u_{x x}+c u
$$

Then we set $v(t, x)=e^{-c t} u(t, x)$ and obtain

$$
\mathrm{d} v(t, x)=-c e^{-c t} u(t, x)+a(t, x) e^{-c t} u_{x x}+c e^{-c t} u=a(t, x) u v_{x x} .
$$

For the stochastic case, note:

$$
\mathrm{d} \rho(t)=\rho(t) \sigma \mathrm{d} W_{t} .
$$

Then, let

$$
\begin{aligned}
\eta(t) & :=e^{-\sigma W(t)-\left(\sigma^{2} / 2\right) t} \\
\mathrm{~d} \eta(t) & =-\eta(t) \sigma \mathrm{d} \Omega_{t} \\
\rho^{-1}(t) & =\eta(t) \exp \left(\sigma^{2} t\right) \\
\mathrm{d} \rho^{-1}(t) & =-\eta(t) \sigma \mathrm{d} W_{t} \exp \left(\sigma^{2} t\right)+\eta(t) \exp \left(\sigma^{2} t\right) \sigma^{2} \mathrm{~d} t=-\rho^{-1} \sigma \mathrm{~d} W_{t}+\sigma^{2} \rho^{-1}(t) \mathrm{d} t
\end{aligned}
$$

Applied to an SPDE, we get

$$
\begin{aligned}
\mathrm{d} u(t, x) & =a u(t, x) \mathrm{d} t+\sigma u(t, x) \mathrm{d} W_{t} \\
u(0, x) & =u_{0} \\
v(t, x) & =\underbrace{e^{-\sigma W(t)+\left(\sigma^{2} / 2\right) t}}_{\rho^{-1}(t)} u(t, x) \\
\mathrm{d}\left(u(t, x) \rho^{-1}(t)\right) & =a v_{x x}^{\mathrm{d} t+\sigma v \mathrm{~d} W_{t}-v \sigma \mathrm{~d} W_{t}+\sigma^{2} v \mathrm{~d} t-\sigma^{2} v \mathrm{~d} t} \\
& =a v_{x x} \mathrm{~d} t .
\end{aligned}
$$

Let $\tilde{W}(t)$ be a Wiener process independent of W.

$$
v(t, x)=E\left[u_{0}\left(t+\sqrt{2 a} \tilde{W}_{t}\right)\right]
$$

Then

$$
\begin{aligned}
u(t, x) & =E\left[u_{0}\left(x+\sqrt{2 a} \tilde{W}_{t}\right)\right] \exp \left(\sigma^{2} W_{t}-\left(\sigma^{2} / 2\right) t\right. \\
& =E\left[u_{0}\left(x+\sqrt{2 a} \tilde{W}_{t}\right) \exp \left(\sigma^{2} W_{t}-\left(\sigma^{2} / 2\right) t \mid \mathcal{F}_{t}^{W}\right]\right.
\end{aligned}
$$

Example 3.1. Now consider

$$
\mathrm{d} u(t, x)=a u_{x x}(t, x)+\sigma u_{x}(t, x) \mathrm{d} W_{t} \quad \Leftrightarrow \quad 2 a-\sigma^{2}>0
$$

(Remark: There is not a chance to reduce to $\partial_{t} \tilde{u}=a \tilde{u}_{x x}$.)

$$
\begin{aligned}
\frac{\partial v}{\partial t}= & \left(a-\sigma^{2} / 2\right) v_{x x}(t) \\
u(t, x)= & v(t, x+\sigma W(t)) \text { then } u \text { verifies equation. } \\
v(t, x) & =E\left[u_{0}\left(x+\sqrt{2 a-\sigma^{2}} \tilde{W}(t)\right)\right] \\
& \Downarrow \\
u(t, x) & =E\left[u_{0}\left(x+W_{t}+\sqrt{2 a-\sigma^{2}} \tilde{W}_{t}\right) \mid \mathcal{F}_{t}^{W}\right]
\end{aligned}
$$

(Note that, as above, the point of the conditional expectation is not measurability w.r.t. time (...), but with respect to W and not w.r.t. \tilde{W}.) By a naive application of Ito's formula, we would get

$$
\begin{aligned}
u(t, x) & =v\left(t, x+\sigma W_{t}\right) \\
v(t, x) & =u\left(t, x-\sigma W_{t}\right) \\
\mathrm{d} u\left(t, x-\sigma W_{t}\right) & =\sigma^{2} / 2 u_{x x}\left(t, x-\sigma W_{t}\right) \\
-\sigma u_{x}\left(t, x-\sigma W_{t}\right) \mathrm{d} W_{t} & =\frac{\sigma^{2}}{2} v_{x x} \mathrm{~d} t-\sigma v_{x} \mathrm{~d} W_{t}
\end{aligned}
$$

But this is wrong because Ito's formula only applies to deterministic functions of brownian motion. The function u itself is random, though, so it does not work. To the rescue, the Ito-Wentzell formula.

Theorem 3.2. (Ito-Wentzell) Suppose

$$
\mathrm{d} F(t, x)=J(t, x) \mathrm{d} t+H(t, x) \mathrm{d} W_{t}
$$

and

$$
\mathrm{d} Y(t)=b(t) \mathrm{d} t+\sigma(\tau) \mathrm{d} W_{t} .
$$

Then
$\mathrm{d} F(t, Y(t))=\underbrace{J(Y(t)) \mathrm{d} t+H(Y(t)) \mathrm{d} W_{t}}_{\mathrm{d}_{t} F}+F_{x}(Y(t)) b \mathrm{~d} t+\frac{\sigma^{2}}{2} F_{x x}(Y(t)) \mathrm{d} t+\sigma F_{x}(Y(t)) \mathrm{d} W_{t}+H_{x}(t, Y(t)) \sigma(t) \mathrm{d} t$
For comparison, if we suppose $\mathrm{d} G(t, x)=J(t, x) \mathrm{d} t$ and work out the regular Ito formula, we would find

$$
\mathrm{d} G(t, Y(t))=\underbrace{J(t, Y(t)) \mathrm{d}}_{\mathrm{d}_{t} G} t+G_{x}(Y(t)) b(t) \mathrm{d} t+\frac{1}{2} G_{x x} \sigma^{2} \mathrm{~d} t+G_{x}(Y) \mathrm{d} W_{t} .
$$

4 PDE/Sobolev Recap

- Spaces: $H_{2}^{\gamma}=H_{2}^{\gamma}\left(\mathbb{R}^{d}\right)$
- Heat equation: $H_{2}^{\gamma}, L_{2}\left(\mathbb{R}^{d}\right), H_{2}^{-1}$.
- an SPDE: $H_{2}^{\gamma}, L_{2}\left(\mathbb{R}^{d}\right), H_{2}^{-1}$.

We will need:

- Gronwall Inequality: ...
- BDG Inequality $(p=1)$

$$
E\left|\sup _{t \leqslant T} \int_{0}^{t} g(s) \mathrm{d} W_{s}\right| \leqslant C E\left|\int_{0}^{T} g^{2}(t) \mathrm{d} t\right|^{1 / 2}
$$

- ε-inequality

$$
|a b| \leqslant \varepsilon a^{2}+\frac{1}{\varepsilon} b^{2} .
$$

- Itô-Wentzell formula.

4.1 Sobolev Spaces $\boldsymbol{H}_{2}^{\gamma}$

Definition 4.1. Suppose $f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$. Then

$$
\hat{f}(y)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x y} f(x) \mathrm{d} x
$$

Then we have Parseval's Inequality
and define

$$
\int_{\mathbb{R}^{d}}|f|^{2} \mathrm{~d} x=\int_{\mathbb{R}^{d}}|\hat{f}|^{2} \mathrm{~d} y
$$

$$
\|f\|_{\gamma}:=\sqrt{\int_{\mathbb{R}^{d}}\left(1+|y|^{2}\right)^{\gamma}|\hat{f}(y)|^{2} \mathrm{~d} y}
$$

a norm. Then H_{γ}^{2} is the closure of C_{0}^{∞} in the norm $\|\cdot\|_{y}$.
$\delta(x), \hat{\delta}(x)=$ const, $\delta \in H_{\gamma}^{2}$ for what $\gamma ?(\gamma<-d / 2 ?)$
$H_{2}^{0}=L_{2}, H_{2}^{\gamma_{1}} \subset H_{2}^{\gamma_{2}}$ if $\gamma_{1}>\gamma_{2}$.
Sobolev embeddings: $H_{2}^{\gamma+d / 2} \subset C^{0, \gamma}$ if $0<\gamma<1$. Alternative (but equivalent) definition:

$$
H_{2}^{n}=\left\{f: f, D f, \ldots, D^{n} f \in L^{2}\right\}
$$

with
H_{2}^{γ} is a Hilbert space with

$$
\|f\|_{n} \sim\|f\|_{L^{2}}+\sum_{k=1}^{n}\left\|D^{k} f\right\|_{L^{2}}
$$

$$
(f, g)_{\gamma}=\int_{\mathbb{R}^{d}}\left(1+|y|^{2}\right)^{\gamma} \hat{f}(y) \overline{\hat{g}(y)} \mathrm{d} y
$$

H_{2}^{γ} is dual to $H_{2}^{-\gamma}$ relative to $L^{2} .(\gamma>0)$ Because if $f \in H_{2}^{\gamma}$ and $g \in H_{2}^{-\gamma}$. Then

$$
(f, g)_{0}=\int_{\mathbb{R}^{d}}\left(1+|y|^{2}\right)^{\gamma / 2} \hat{f}(y) \frac{\overline{\hat{g}(y)}}{\left(1+|\gamma|^{2}\right)^{\gamma / 2}} \mathrm{~d} y \leqslant\|f\|_{\gamma}\|g\|_{-\gamma} .
$$

All this by S.L. Sobolev (1908-1989). Derived Sobolev spaces \& generalized derivatives in the 1930s.

4.2 SPDEs in Sobolev Spaces

4.2.1 Classical Theory

Let's consider the heat equation in $\left(H_{2}^{1}, L_{2}, H_{2}^{-1}\right)$, namely

$$
u_{t}=u_{x x}+f,\left.\quad u\right|_{t=0}=u_{0}
$$

Theorem 4.2. If u is a classical solution and $u(t, \cdot)$ and u_{0} are in $C_{0}^{\infty}(\mathbb{R})$, then

$$
\sup _{t \leqslant T}\|u(t)\|_{0}^{2}+\int_{0}^{T}\|u(t)\|_{1}^{2} \mathrm{~d} t \leqslant C(T)\left(\left\|u_{0}\right\|_{0}^{2}+\int_{0}^{T}\|f(t)\|_{-1}^{2} \mathrm{~d} t\right)
$$

(Note the slight abuse of notation with $\|u(t)\|_{\gamma}$.)
Proof.

$$
\begin{aligned}
\int u \frac{\partial u}{\partial t} \mathrm{~d} x & =\int u u_{x x} \mathrm{~d} x+\int u f \mathrm{~d} x \quad \mid \int \cdot u \mathrm{~d} x \\
\| & =\left\|u_{x}\right\|_{0}^{2}+\left(u, f_{0}\right) \pm 2 v(t) \\
\frac{\mathrm{d} v}{\mathrm{~d} t} & =v(0)-\int_{0}^{t}\left(\|u(s)\|_{0}^{2}+\left\|u_{x}(s)\right\|_{0}^{2}\right) \mathrm{d} s+\int_{0}^{t}(u, f)_{0} \mathrm{~d} s+2 \int_{0}^{t} v(s) \mathrm{d} s \\
v(t) & =v(0)+\int_{0}^{t}\|u\|_{1}\|f\|_{-1} \mathrm{~d} s+2 \int v(s) \mathrm{d} s+\frac{C}{2} \int_{0}^{t}\|u\|_{1}^{2} \mathrm{~d} s+C_{1} \int_{0}^{t}\|f\|_{-1}^{2} \mathrm{~d} s \\
v(t)+C \int_{0}^{t}\|u(s)\|_{1}^{2} \mathrm{~d} s & \leqslant v\left(2 \int_{0}^{t} v(s) \mathrm{d} s\right. \\
v(t)+\frac{C}{2} \int_{0}^{t}\|u(s)\|_{1}^{2} \mathrm{~d} s & \leqslant F+2 \int_{0}^{t} v(s) \mathrm{d} s \\
v(t) & \leqslant F+2 \\
\sup v(t) & \leqslant F .
\end{aligned}
$$

where $v(t)=\frac{1}{2}\|u(t)\|_{0}^{2}$ and all the constant-tweaking is done with the ε-inequality.

4.2.2 Stochastic Theory

$$
\mathrm{d} u=\left(a(t) u_{x x}+f\right) \mathrm{d} t+\left(\sigma(t) u_{x}+g\right) \mathrm{d} W_{t},
$$

where $0<\delta<a(t)-\sigma^{2}(t) / 2<C^{*} . f, g$ adapted to $\mathcal{F}_{t}^{W}, u, f, g \in C_{0}^{\infty},\left.u\right|_{t=0}=u_{0}$ independent of W. Then

$$
E\left[\sup \|u(t)\|_{0}\right]^{2}+E \int_{0}^{T}\|u(t)\|_{1}^{2} \mathrm{~d} t \leqslant E\left(\left\|u_{0}\right\|_{0}^{2}+\int_{0}^{T}\|f\|_{-1}^{2} \mathrm{~d} t+\int_{0}^{T}\|g\|_{0}^{2} \mathrm{~d} t\right)
$$

Step 1: WLOG, $\sigma=0$ (check at home!). Use the substitution

Step 2: Ito formula for $|u(t, x)|^{2}$.

$$
v(t, x)=u\left(t, x-\int_{0}^{t} \sigma(s) \mathrm{d} W_{s}\right)
$$

$$
u^{2}=u_{0}^{2}+\underbrace{2 \int_{0}^{t} a u_{x x} u \mathrm{~d} s}_{-\|u\|_{1}^{2}}+\underbrace{\int_{0}^{t} f u \mathrm{~d} s}_{\varepsilon\|u\|_{1}^{2}+C\|f\|_{-1}^{2}}+\int_{0}^{t} g u \mathrm{~d} W_{s}+\int_{0}^{t} g^{2} \mathrm{~d} s
$$

Step 3: Take expectation, which kills the $\mathrm{d} W_{s}$ term, giving a bound on

$$
E \int_{0}^{T}\|u\|_{1}^{2} \mathrm{~d} s \quad \text { and } \quad E\|u(t)\|_{0}^{2}
$$

Step 4: Take care of the sup, which is outside of the expectation, but needs to be inside.

$$
E\left|\sup _{t} \int_{0}^{t_{1}} g u \mathrm{~d} W\right| \leqslant C E\left(\int_{0}^{T}(g, u)_{0}^{2} \mathrm{~d} t\right)^{1 / 2} \leqslant C E\left[\sup _{t} \int_{0}^{T}\|g\|_{0}^{2} \mathrm{~d} t\right] \leqslant \varepsilon \operatorname{Esup}_{t}\|u\|^{2}+C(\varepsilon) \int_{0}^{t}\|g\|_{0}^{2} \mathrm{~d} s
$$

5 Nonlinear Filtering ("Hidden Markov Models")

State/signal X_{t} : Markov process/chain. Observation $Y_{t}=h\left(X_{t}\right)+g \dot{V}(t)$. State is not observed directly. The inf about X_{t} comes "only" from $Y_{s}, s \leqslant t$. Find the best mean-squares estimate of $f\left(X_{t}\right)$ given $Y_{s}, s \leqslant$ t, where f is a known function. Claim: This estimator is given by

$$
\hat{f}_{t}:=E\left[f\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right] .
$$

Proof. Let g_{t} be an \mathcal{F}_{t}^{Y}-measurable square-integable function $\Leftrightarrow E\left[g_{t}^{2}\right]<\infty, g_{t}=g\left(Y_{0}^{t}\right)$.

$$
\begin{aligned}
E\left[f_{t}-g_{t}\right]^{2} & =E\left[f\left(X_{t}\right)-\hat{f}_{t}+\hat{f}_{t}-g_{t}\right]^{2} \\
& =E\left[f\left(Y_{t}\right)-\hat{f}\left(X_{t}\right)\right]^{2}+E\left[\hat{f}_{t}-g_{t}\right]^{2} \\
& \geqslant E\left[f\left(X_{t}\right)-\hat{f}\left(X_{t}\right)\right]^{2}+2 E\left[\left(f\left(Y_{t}\right)-\hat{f}_{t}\right)\left(\hat{f}_{t}-g_{t}\right)\right] \\
& =E\left[E\left[\left(f\left(X_{t}\right)-\hat{f}_{t}\right)\left(\hat{f}_{t}-g_{t}\right) \mid \mathcal{F}_{t}^{Y}\right]\right]=0 .
\end{aligned}
$$

Geometric interpretation: conditional expectation, with respect ot the σ-algebra \mathcal{G} is an orthogonal projection on a space of \mathcal{G}-measurable functions.

$$
\begin{aligned}
\hat{f}_{t} & :=E\left[f\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right] \\
& =\int f(x) P\left(X_{t} \in \mathrm{~d} x \mid \mathcal{F}_{t}^{Y}\right)
\end{aligned}
$$

State:

$$
\begin{aligned}
\mathrm{d} X_{t} & =b\left(X_{t}\right) \mathrm{d} t+\sigma(X(t)) \mathrm{d} W_{t} \\
\mathrm{~d} Y_{t} & =A(X(t)) \mathrm{d} t+g\left(Y_{t}\right) \mathrm{d} V_{t},
\end{aligned}
$$

We assume W_{t} and V_{t} are independent Wiener processes. $X(0)=x_{0}, Y(0)=0$. Further $f=f(x)$, with $\sup _{t} E\left[f\left(X_{t}\right)^{2}\right]<\infty$.

$$
\hat{f}_{t}=E\left[f\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right]
$$

Zakai Equation of nonlinear filtering:
where $u(t, x)$ is a solution of the SPDE

$$
\hat{f}_{t}=\frac{\int f(x) u(t, x) \mathrm{d} x}{\int u(t, x) \mathrm{d} x},
$$

(,x) is a solution of SPDE

$$
\mathrm{d} u(t, x)=\left[\frac{1}{2} \sigma^{2}(x) u(t, x)_{x x}-(b(x) u(t, x))_{x}\right] \mathrm{d} t+h(x) u(t, x) \mathrm{d} Y_{t}
$$

where $h=g^{-1} A$.

$$
\begin{aligned}
\tilde{P}(A) & =\int_{A} \exp \left\{-\int_{0}^{T} h \mathrm{~d} s-\frac{1}{2} \int_{0}^{T} h^{2} \mathrm{~d} V\right\} \mathrm{d} P \\
\mathrm{~d} Y_{t} & =\mathrm{d} V_{t}
\end{aligned}
$$

If we add another term to the state process,

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma(X(t)) \mathrm{d} W_{t}+f(X(t)) \mathrm{d} V_{t},
$$

then we get

$$
\mathrm{d} u(t, x)=\left[\left[\frac{1}{2} \sigma^{2}(x)+\rho^{2}\right] u(t, x)_{x x}-(b(x) u(t, x))_{x}\right] \mathrm{d} t-(\rho u(t, x))_{x} \mathrm{~d} Y_{t}+h(x) u(t, x) \mathrm{d} Y_{t}
$$

as the corresponding Zakai equation. (not sure about this last equation)

6 Solutions of PDEs and SPDEs

6.1 Classical Solutions

Here, we assume that u is twice continuously differentiable in x and once in t.

$$
\begin{equation*}
\dot{u}(t, x)=a(x) u_{x x}, \quad u(0, x)=u_{0}(x) \tag{6.1}
\end{equation*}
$$

6.2 Generalized Solutions

First, let us talk about generalized functions. Suppose we wanted to find a derivative of $f(x)=\operatorname{sign}(x)$. Classically, $f^{\prime}(0)$ does not exist. Let g be a differentiable function and φ very smooth with compact support. Then

$$
\int f \varphi^{\prime}(x) \mathrm{d} x=-\int f(x) \varphi(x) \mathrm{d} x
$$

If f is not differentiable,

$$
\int f^{\prime}(x) \varphi(x) \mathrm{d} x=-\int \varphi(x) \varphi^{\prime}(x) \mathrm{d} x
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Now reconsider the heat equation in a different form, namely

$$
\begin{equation*}
\dot{u}(t, x)=\left(a(x) u_{x}\right)_{x}, \quad u(0, x)=u_{0}(x) . \tag{6.2}
\end{equation*}
$$

A weak general solution of (6.2) is a function $u \in H_{2}^{1}(\mathbb{R})$ such that for all $t>0$

$$
(u(t), \varphi)=\left(u_{0}, \varphi\right)-\int_{0}^{t}\left(u_{x}, \varphi_{x}\right) \mathrm{d} s
$$

for every function $\varphi \in C_{0}^{\infty}(\mathbb{R})$.
Going back to (6.1), we find that a generalized solution is also a function from H_{2}^{1} so that

$$
(u(t), \varphi)=\left(u_{0}, \varphi\right)-\int_{0}^{t}\left(u_{x},(a \varphi)_{x}\right) \mathrm{d} s
$$

for all $\varphi \in C_{0}^{\infty}(\mathbb{R})$.
This definition is equivalent to saying that

$$
u(t)=u_{0}+\int a u_{x x} \mathrm{~d} s
$$

as an equality in H^{-1}.

6.3 Mild Solutions

Let us now consider yet another different equation, namely

$$
\begin{equation*}
\dot{u}(t, x)=u_{x x}(t, x)+\sin (u(t, x)), \quad u(t, x)=u_{0}(x) . \tag{6.3}
\end{equation*}
$$

Direct differentiation shows

$$
u(t, x)=\int_{\mathbb{R}} k(t, x-y) u_{0}(y) \mathrm{d} y+\int_{0}^{t} \int_{\mathbb{R}} k(t-s, x-y) \sin (u(s, y)) \mathrm{d} y \mathrm{~d} s
$$

where k is the heat kernel

Write this now in SPDE form

$$
k(t, x-y)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{|x-y|^{2}}{4 t}}
$$

$$
\mathrm{d} u(t, x)=a u_{x x}+f(u(t, x)) .
$$

A mild solution is a solution u that satisfies

$$
u(t, x)=\int_{\mathbb{R}} k(t, x-y) u_{0}(y) \mathrm{d} y+\int_{0}^{t} \int_{\mathbb{R}} k(t-s, x-y) f(u(s, y)) \mathrm{d} y \mathrm{~d} s
$$

6.4 Generalization of the notion of a "solution" in SDE

OSDE

$$
\mathrm{d} X_{t}=b(X(t)) \mathrm{d} t+\sigma(X(t)) \mathrm{d} W_{t}, \quad X_{0}=x_{0}
$$

Given $b, \sigma, x_{0},(\Omega, P), W$. If b and σ are Lipschitz-continuous and

$$
|b(x)| \leqslant K(1+|x|), \quad|\sigma(x)| \leqslant K(1+|x|) \quad \Rightarrow \quad \exists!u .
$$

Tanaka's Example shows an OSDE that can't be solved in this way:

$$
\mathrm{d} X_{t}=\operatorname{sign}\left(X_{t}\right) \mathrm{d} W_{t}
$$

This equation has no solution for fixed $(\Omega, P), W$. One could find $(\tilde{\Omega}, \tilde{P}), \tilde{W}$ such that $\mathrm{d} X_{t}=$ $\operatorname{sign}\left(X_{t}\right) \mathrm{d} \tilde{W}_{t}$. The mechanism for this is Girsanov's theorem, by which you can kill the drift and obtain a different equation.

If you specify the measure space and the Wiener process, you are looking for a probabilistically strong soltuion. If you allow yourself the freedom of choosing these as part of your solution, your solution is probabilistically weak.

7 Existence and Uniqueness

7.1 Scales of Sobolev Spaces

Simple Example: $x \in(0, b), \Delta:=\partial_{x}^{2}, \Lambda:=1-\Delta$. $H:=L^{2}(0, b)$. For smooth functions f, clearly

$$
(\Lambda f, f)_{H}=((1-\Delta) f, f)_{H}=\int_{0}^{b} f^{2}(X) \mathrm{d} x+\int_{0}^{b} f_{x}^{2} \mathrm{~d} x=:\|f\|_{H_{2}^{1}}^{2}
$$

Let us consider the basis
which is an ONS in H. Observe

$$
\left\{m_{k}(x)=\sqrt{\frac{2}{b} \sin \frac{\pi(k-1) x}{b}}\right\}
$$

$$
\Lambda m_{k}=(1-\Delta) m_{k}=m_{k}+\left[\frac{\pi(k-1)}{b}\right]^{2} m_{k}=\left(1+\left[\frac{\pi(k-1)}{b}\right]^{2}\right) m_{k}
$$

Define

$$
\lambda_{k}:=1+\left[\frac{\pi(k-1)}{b}\right]^{2}
$$

as the eigenvalues of Λ w.r.t. the eigenbasis m_{k}. For $s \in(-\infty, \infty)$, we can construct an arbitrary power of the operator by defining its effect on the eigenbasis m_{k} by $\Lambda^{s} m_{k}:=\lambda_{k}^{s} m_{k}$. Further, we may observe

$$
\left(\Lambda^{s} f, f\right)_{H}=\sum_{k} \lambda_{s}^{k} f_{k}=\left(\Lambda^{s / 2} f, \Lambda^{s / 2} f\right)=\left\|\Lambda^{s / 2}\right\|_{H}
$$

where

$$
f_{k}=\left(f, m_{k}\right)_{H}
$$

are the Fourier coefficients. Then the Sobolev Space

$$
H_{2}^{s}(0, b):=\left\{f \in H:\|f\|_{s}^{2}:=\left\|\Lambda^{s / 2} f\right\|_{H}^{2}<\infty\right\}
$$

For $s<0$, define

$$
H_{2}^{s}(0, b):=\Lambda^{-s} H
$$

We may also define

$$
\|f\|_{s}:=\sqrt{\sum_{k \geqslant 1}\left(\lambda_{k}^{s / 2} f_{k}, \lambda_{k}^{s / 2} f_{k}\right)} . \quad \text { It was } \sum_{k \geqslant 1}\left(\lambda_{k}^{s / 2} f_{k}, \lambda_{k}^{s} f_{k}\right) \text { on the board, but that seemed wrong. }
$$

The spaces $\left\{H_{2}^{s}(0, b), s \in \mathbb{R}\right\}$ form the scale of spaces $H_{2}^{s_{1}} \subset H_{2}^{s_{2}}$ if $s_{1}>s_{2}$.
Properties: Let $s_{1}>s_{2}$. Then

1. $H^{s_{1}}$ is dense in $H^{s_{2}}$ in the norm $\|\cdot\|_{s_{2}}$.
2. H^{s} is a Hilbert space $(f, g)_{s}=\left(\Lambda^{s / 2} f, \Lambda^{s / 2} g\right)_{0}$.
3. For $s \geqslant 0, v \in H^{-s}(0, b), u \in H^{s}(0, b)$, denote

$$
[u, v]:=(\underbrace{\Lambda^{s} v}_{\in H}, \underbrace{\Lambda^{-s} u}_{\in H})
$$

a. If v also belongs to H, then $[u, v]=(v, u)_{H}$. Proof: Λ^{s} is self-adjoint in H.

Remark 7.1. We will typically work with three elements of the Sobolev scale-the middle, e.g. L^{2}, then the space where the solution lives and finally the space that the solution gets mapped to by the operator.

Important mnemonic rule:

$$
\underbrace{\frac{\partial^{n}}{\partial x^{n}}}_{\Lambda^{n / 2}}: H^{s} \rightarrow H^{s-n} .
$$

7.2 Normal triples/Rigged Hilbert space/Gelfand's triple

Definition 7.2. The triple of Hilbert spaces $\left(V, H, V^{\prime}\right)$ is called a normal triple if the following conditions hold:

1. $V \subset H \subset V^{\prime}$.
2. The imbeddings $V \rightarrow H \rightarrow V^{\prime}$ are dense and continuous.
3. V^{\prime} is the space dual to V with respect to the scalar product in H.

Note that we always assume that H is identified with its dual.
Example 7.3. Any triple $H_{2}^{s+\gamma}, H^{s}, H^{s-\gamma}$ for $\gamma \geqslant 0$ is a normal triple.

7.3 Actual SPDEs

$$
\mathrm{d} u(t)=(A u(t)=f(t)) \mathrm{d} t+\sum_{k=1}^{\infty}\left(M_{k} u(t)+g_{k}(t)\right) \mathrm{d} W_{k}^{t}, \quad u(0)=u_{0} \in H
$$

We will assume that $A: V \rightarrow V^{\prime}$ and $M_{k}: V \rightarrow H$, and further $f \in L^{2}\left(0, T ; V^{\prime}\right)$ and $g_{k} \in L^{2}(0, T ; H)$. We further assume $f(t)$ and $g_{k}(t)$ are \mathcal{F}_{t}^{W}-measurable, and $V=H_{2}^{1}\left(\mathbb{R}^{d}\right), H=L_{2}\left(\mathbb{R}^{d}\right), V^{\prime}=H^{-1}\left(\mathbb{R}^{d}\right)$.

We might also want to consider

$$
\begin{gathered}
A u=\sum_{i, j}\left(a^{i, j}(t, x) u_{x_{i}}\right)_{x_{j}}+\sum_{i} b^{i}(t, x) u_{x_{i}}+c . \\
M_{k} u=\sum_{i} \sigma^{i, k}(t, x) u_{x_{i}}+h^{k}(t, x) u .
\end{gathered}
$$

$$
A u=\sum_{|\alpha| \leqslant 2 n} a_{\alpha} \partial^{\alpha} u, \quad M_{k} u=\sum_{|\alpha| \leqslant n} \sigma_{\alpha} \partial^{\alpha} u .
$$

8 Existence and Uniqueness

We assume we have a normal triple $V \subset H \subset V^{\prime}$. Consider

$$
\begin{equation*}
\mathrm{d} u(t)=(A u(t)+f(t)) \mathrm{d} t+\left(\mu_{k} u(t)+g_{k}(t)\right) \mathrm{d} W_{k}(t) \tag{8.1}
\end{equation*}
$$

where we assume that W_{k} are infinitely many independent Brownian motions, $u(0)=u_{0}, A: A(t): V \rightarrow V^{\prime}$, $\mu_{k}: \mu_{k}(t): V \rightarrow H$,

$$
\sum_{k} E \int_{0}^{T}\left\|\mu_{k} \varphi\right\|_{H}^{2} \mathrm{~d} t<\infty
$$

$\left.f \in L^{2}(\Omega \times(0, T)) ; V^{\prime}\right)$, i.e.
$g_{k} \in L^{2}(\Omega \times(0, T) ; H)$ and

$$
E \int_{0}^{T}\|f(t)\|_{V^{\prime}}^{2} \mathrm{~d} t<\infty
$$

$$
\sum_{k=1}^{\infty} E \int_{0}^{T}\left\|g_{k}(t)\right\|_{H}^{2} \mathrm{~d} t<\infty
$$

If A is $A(t, \omega)$, then $A(t) \varphi$ is \mathcal{F}_{t}^{W}-adapted, and likewise for μ_{k}.

$$
\begin{aligned}
A u & =a(t, x) u(t, x)_{x x} \\
\mu_{k} u & =\sigma_{k}(t, x) u(t, x)_{x} \\
V & =H^{1}\left(\mathbb{R}^{d}\right) \\
H & =L^{2}\left(\mathbb{R}^{d}\right) \\
V^{\prime} & =H^{-1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Saying that $A(t) \varphi \in V^{\prime}$ is \mathcal{F}_{t}^{W}-adapted means that $\forall \psi \in V,[A(t) \varphi, \psi]$ is an \mathcal{F}_{t}^{W}-adapted random variable. Consider Pettis' Theorem, which states that

Suppose we have a measure space (Ω, \mathcal{F}, P). Suppose X and Y are Hilbert spaces. Then

- $\quad f(\omega): \Omega \rightarrow X$ is \mathcal{F}-measurable iff $\{\omega: f(\omega) \in A \subset X\} \in \mathcal{F}$
is equivalent to
- $\quad(g, f(\omega))_{X}$ is \mathcal{F}-measurable for all $g \in \tilde{X}$ where \tilde{X} is a dense subset of X.
u is a solution of (8.1) iff for all t

$$
u(t)=u_{0}+\int_{0}^{t}(A u(s)+f(s)) \mathrm{d} s+\sum_{k} \int_{0}^{t}\left(\mu_{k} u(s)+g_{k}(s)\right) \mathrm{d} W_{k}(s)
$$

with probability 1 in V^{\prime}, that is

$$
[u(t), \varphi]=\left[u_{0}, \varphi\right]+\int_{0}^{t}[A u(s)+f(s), \varphi] \mathrm{d} s+\sum_{k} \int_{0}^{t}\left[\mu_{k} u+g_{k}, \varphi\right] \mathrm{d} W_{k}(s)
$$

If $u \in V$, we would have

$$
(u(t), \varphi)_{H}=\left(u_{0}, \varphi\right)_{H}+\int_{0}^{t}[A u(s)+f(s), \varphi] \mathrm{d} s+\sum_{k} \int_{0}^{t}\left(\mu_{k} u+g_{k}, \varphi\right) \mathrm{d} W_{k}(s) .
$$

Theorem 8.1. In addition to the assumptions we already made, assume
(A1). $\exists \delta>0$ and $C_{0} \geqslant 0$, so that

$$
\exists \delta>0, C_{0} \geqslant 0: 2[A \varphi(t), \varphi]+\sum_{k}\left\|\mu_{k} \varphi\right\|_{H}^{2} \leqslant-\delta\|\varphi\|_{V}^{2}+C_{0}\|\varphi\|_{H}^{2}
$$

("coercivity condition" \Leftrightarrow superellipticity)
(A2). $\|A \varphi\|_{V^{\prime}} \leqslant C_{A}\|\varphi\|_{V}$.
Then there is existence and uniqueness for the above equations.
That means there is a $u \in L^{2}(\Omega: C([0, T]) ; H) \cap L^{2}(\Omega: C([0, T]) ; V)$, moreover

$$
E \sup _{t \leqslant T}\|u(t)\|_{H}^{2}+E \int_{0}^{T}\|u(t)\|_{V}^{2} \mathrm{~d} t \leqslant C E\left(\left\|u_{0}\right\|_{H}^{2}+\int_{0}^{T}\|f\|_{V^{\prime}}^{2} \mathrm{~d} t+\sum_{k} \int_{0}^{T}\left\|g_{k}\right\|_{H}^{2} \mathrm{~d} t\right)
$$

Interpretation: If $H=L^{2}, V=H^{1}, u(t)$ is cont. in L^{2} and has one derivative in x which is square-integrable. (We might have also used $H=H^{1}$ and $V=H^{2}$, in which case u is cont. in H^{1} and has two derivatives which are square-integrable.)

Now consider the following fact leading up to the energy equality: Suppose we have a function $u(t) \in$ $L^{2}(0, T)$ and a generalized derivative $u^{\prime}(t) \in L^{2}(0, T) \Rightarrow u(t)$ is continuous on $[0, T]$ and

$$
\begin{aligned}
u(t) & =\int_{0}^{T} u^{\prime}(s) \mathrm{d} s \\
|u(t)|^{2} & =2 \int_{0}^{t} u(s) u^{\prime}(s) \mathrm{d} s
\end{aligned}
$$

Proof: Homework.
In the infinite-dimensional setting, we have a very analogous statement:
Suppose $u(t) \in L^{2}([0, T] ; V)$ and $u^{\prime}(t) \in L_{2}\left([0, T] ; V^{\prime}\right)$. Then $u(t) \in C([0, T] ; H)$ and

$$
\|u(t)\|_{H}^{2}=2 \int_{0}^{t}\left[u^{\prime}(s), u(s)\right] \mathrm{d} s
$$

[Lectures 14-15 not typed, notes available from Prof. Rozovsky]
[April 10, 2007, Lototsky, Lecture 16]

9 SPDE with space-time white noise

$$
\mathrm{d} u=u_{x x} \mathrm{~d} t+g(u) \mathrm{d} W(t, x)
$$

on $0<x<\pi$ with

$$
\begin{aligned}
\left.u\right|_{t=0} & =u_{0}, \\
\left.u\right|_{x=0}=\left.u\right|_{x=\pi} & =0, \\
\left.u_{t}\right|_{x=0}=\left.u_{t}\right|_{x=\pi} & =0 .
\end{aligned}
$$

Two different ways of writing this equation are

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+g(u) \frac{\partial^{2} W}{\partial t \partial x}
$$

or

$$
\mathrm{d} u=u_{x x} \mathrm{~d} t+\sum_{k=1}^{\infty} g(u) h_{k} \mathrm{~d} W_{k}(t)
$$

Theorem 9.1. (Walsh, Lecture Notes in Mathematics 1180, 1984)
If $u_{0} \in C^{\infty}$, then $u \in C_{t}^{0,1 / 4-\varepsilon} \cap C_{x}^{0,1 / 2-\varepsilon}$.
Three kinds of space-time white noise:

- Brownian sheet - $W(t, x)=\mu([0, t] \times[0, x])$
- Cylindrical/Brownian motion - family of Gaussian random variables $B_{t}=B_{t}(h), h \in H$ a Hilbert space, $E\left[B_{t}(h)\right]=0, E\left[B_{t}(h) B_{s}(g)\right]=(h, g)_{H}(t \wedge s)$
- Space-time white noise $\mathrm{d} W(t, x)=\frac{\partial^{2} W}{\partial t \partial x}=\sum_{k=1}^{\infty} h_{k}(x) \mathrm{d} W_{k}(t)$, where $\left\{h_{k}\right\}$ is assumed a Basis of the Hilbert space we're in - if $\left\{h_{k}, k \geqslant 1\right\}$ is a complete orthonormal system, then $\left\{B_{t}\left(h_{k}\right), k \geqslant 1\right\}$-independet standard Brownian motion.
Connection between the three: If $H=L^{2}(\mathbb{R})$ or $H=L^{2}(0, \pi)$, then
and

$$
B_{t}(h)=\int \frac{\partial W}{\partial x} h(x) \mathrm{d} x
$$

$$
B_{t}(x)=B_{t}\left(\chi_{[0, X]}\right)=\sum_{k=1}^{\infty} \int_{0}^{x}\left(h_{k}(y) \mathrm{dyW}_{k}(t)\right)=W(t, x)
$$

9.1 A closer look

Consider $g(u) \equiv 1$.
where we assume that

$$
\mathrm{d} u=u_{x x} \mathrm{~d} t+\sum_{k=1}^{\infty} h_{k}(x) \mathrm{d} W_{k}(t)
$$

$$
h_{k}(x)=\sqrt{\frac{2}{\pi}} \sin (k x)
$$

Observe that, strictly, the series on the RHS diverges in L^{2}. Now consider the setting of a Sobolev space

$$
H^{\gamma}=H^{\gamma}((0, \pi)),
$$

with
for $\gamma \in \mathbb{R}$. Now consider

$$
\|f\|_{\gamma}^{2}=\sum_{k=1}^{\infty} k^{2 \gamma} f_{k}^{2}, \quad f_{k}=\int_{0}^{\pi} f(x) h_{k}(x) \mathrm{d} x
$$

i.e.

$$
M(t, x)=\sum_{k=1}^{\infty} h_{k}(x) W_{k}(t) \in H^{\gamma}
$$

$$
E\|M\|_{\gamma}^{2}=t \sum_{\gamma=1}^{\infty} k^{2 \gamma}<\infty
$$

if $\gamma<-1 / 2$.

$$
u(t)=u_{0}+\int_{0}^{t} A u \mathrm{~d} s+M(t)
$$

where

$$
A=\frac{\partial^{2}}{\partial x^{2}}: H^{\gamma+1} \rightarrow H^{\gamma-1}
$$

Then

$$
\exists!u \in L^{2}\left(\Omega ; L^{2}(0, T) ; H^{\gamma+1}\right) \cap L^{2}\left(\Omega ; C(0, T) ; H^{\gamma}\right)
$$

for all $\gamma<-1 / 2$, so u is almost in $H^{1 / 2}$ for almost all t.
We assume a Fourier point of view, so that
and

$$
u(t, x)=\sum_{k=1}^{\infty} u_{k}(t) h_{k}(x)
$$

$$
\mathrm{d} u_{k}=-k^{2} u_{k}+\mathrm{d} W_{k}(t)
$$

Then

$$
u_{k}(t)=\int_{0}^{t} e^{-k^{2}(t-s)} \mathrm{d} W_{k}(s)
$$

Next, note
Kolmogorov's criterion: If

$$
E|X(x)-X(y)|^{p}<C|x-y|^{d+q}
$$

for $x \in \mathbb{R}^{d}$, then $X \in C^{0, q / p-\varepsilon}$ for all $\varepsilon>0$.
Now, consider try to prove its assumption:

$$
\begin{aligned}
E|u(t, x)-u(t, y)|^{p} & =E\left|\sum_{k=1}^{\infty} u_{k}(t)\left(h_{k}(x)-h_{k}(y)\right)\right|^{p} \\
& \stackrel{\text { BDG }}{\leqslant} C\left(\sum_{k=1}^{\infty} \frac{1}{2 k^{2}}\left(1-e^{-2 k^{2} t}\right)\left|h_{k}(x)-h_{k}(y)\right|^{2}\right)^{p / 2} \\
& \stackrel{(*)}{\leqslant} C|x-y|^{(1 / 2-\varepsilon) p}
\end{aligned}
$$

where we've used the BDG (Burkholder/Davis/Gundy) Inequality, i.e.

$$
E\left[M_{T}^{p}\right] \leqslant C E\langle M\rangle_{T}^{p / 2}
$$

where M is assumed a martingale, which we can achieve by fixing time t to T in the expression for u_{k} above. Next, note

$$
E\left[u_{k}^{2}(t)\right]=\int_{0}^{t} e^{-2 k^{2}(t-s)} \mathrm{d} s=\frac{1}{2 k^{2}}\left(1-e^{-2 k^{2} t}\right)
$$

also quadration variation if we fix time as hinted above.
Once we get to $(*)$ above, realize that we want

$$
\sum k^{2 \delta-2}<\infty
$$

and usethe fact that

$$
\left|h_{k}(x)-h_{k}(y)\right| \sim|\sin (k x)-\sin (k y)| \leqslant C(K|x-y|)^{\delta}
$$

for $2 \delta-2<-1$, i.e. $\delta<1 / 2$, i.e. $\delta=1 / 2-\varepsilon$.
So altogether, we obtain $E|u(t, x)-u(t, y)|^{p} \leqslant C|x-y|^{(1 / 2-\varepsilon) p}$. Thus

$$
u \in C_{x}^{1 / 2-\varepsilon-\frac{1}{p}-\varepsilon}=C_{x}^{1 / 2-\varepsilon} .
$$

9.2 Mild solutions

Our u above is "a solution" to our SPDE, but not in the variational sense defined so far. So we need a more general idea of what a solution is, to subsume both concepts. If you have a general PDE

$$
\dot{u}=A(t) U,
$$

then $u(t)=\Phi_{t, 0} u_{0}$. Then

$$
\dot{u}=A(t) u+f(t)
$$

gives us

For example, if we have

$$
u(t)=\Phi_{t, 0} u_{0}+\int_{0}^{t} \Phi_{t, s} f(s) \mathrm{d} s
$$

$$
\frac{\partial u}{\partial t}=u_{x x}
$$

then
where Greeen's function is given by

$$
\Phi_{t, 0}: f \mapsto \int_{0}^{t} G(t, x, y) f(y) \mathrm{d} y
$$

if

$$
G(t, x, y)=\sum_{k=1}^{\infty} e^{-k^{2} t} h_{k}(x) h_{k}(y)
$$

$$
\mathrm{d} u=u_{x x} \mathrm{~d} t+\sum_{k} h_{k}(x) \mathrm{d} W_{k}, \quad u_{0}=0
$$

Then

$$
u(t, x)=\sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{\pi} G(t-s, x, y) h_{k}(y) \mathrm{d} y \mathrm{~d} W_{k}(s)
$$

Now for

$$
\mathrm{d} u=u_{x x} \mathrm{~d} t+\sum g(u) h_{k} \mathrm{~d} W_{k}
$$

we write

$$
u(t, x)=\int_{0}^{\pi} G(t, x, y) u_{0}(y) \mathrm{d} y+\sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{\pi} G(t-s, x, y) g(u(y)) h_{k}(y) \mathrm{d} y \mathrm{~d} W_{k}(s)
$$

Then you define a mild solution to be a solution to the above integral equation.

Now try

$$
\begin{aligned}
E\left|u\left(t, x_{1}\right)-u\left(t, x_{2}\right)\right|^{p} & \sim E\left|\sum_{k} \iint G\left(t-s, x_{1}, y\right)-G\left(t-s, x_{2}, y\right) h_{k}(y) g(u(s, y)) \mathrm{d} y \mathrm{~d} W_{k}(s)\right|^{p} \\
& \leqslant E\left(\sum_{k} \int_{0}^{t}\left|\int_{0}^{\pi}\left(G\left(t-s, x_{1}, y\right)-G\left(t-s, x_{2}, y\right)\right) h_{k}(y) g \mathrm{~d} y\right|^{2} \mathrm{~d} s\right)^{p / 2} \\
& =E\left(\int_{0}^{t} \int_{0}^{\pi}\left|G\left(t-s, x_{1}, y\right)-G\left(t-s, x_{2}, y\right)\right|^{2} g^{2}(u(x, y)) \mathrm{d} y \mathrm{~d} s\right)^{p / 2} .
\end{aligned}
$$

Then came Krylov (1996) and turned this "hard analysis" into clever "soft analysis" or so.

