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Example: Heat Equation. Suppose ω ∈ Ω is part of a probability space. Then chance can come in at
any or all of these points:

∂u(t, x)

∂t
= a(x, ω)

∂2

∂x2
u(t, x)+ f(t, x, ω) x∈ (a, b)

u(0, x) = ϕ(x, ω)

u(t, a) = ψ1(t, ω)

u(t, b) = ψ2(t, ω)

1 Basic Facts from Stochastic Processes
Probability Theory Measure Theory

ω – elementary random event (outcomes)
Ω =

⋃

ω – probability space/space of outcomes Ω – set
Random events ↔ subsets of Ω⊃A Algebra A⊂P(Ω) closed w.r.t. ∩ /∪ / ·̄ .
Operations on events: ∪ , ∩ , Ā =Ω \A.
∅4 Ω \Ω

If A and B are random events, then A∪B, A∩B, Ā are r.e.
Elementary properties of probability: Measures (see below)
P (A)∈ [0, 1], P (Ω)= 1, additive for disjoint events.
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Definition 1.1. A function µ(A) on the sets of an algebra A is called a measure if

a) the values of µ are non-negative and real,

b) µ is an additive function for any finite expression–explicitly, if A=
⋃

i
Ai and Ai ∩Aj = ∅ iff i� j,

then

µ(A) =
∑

i=1

n

µ(Ai).

Definition 1.2. A system F ⊂ P(Ω) is called a σ-algebra if it is an algebra and, in addition, if
(Ai)i=1,2,� , then also

⋃

i
Ai ∈F.

It is an easy consequence that
⋂

i
Ai∈F .

Definition 1.3. A measure is called σ-additive if

µ

(

⋃

i=1

∞

Ai

)

=
∑

i=1

∞

µ(Ai)

if the Ai are mutually disjoint.

The above together form Kolmogorov’s Axioms of Probability: A tuple (Ω, F , P ) is called a probability
space (Ω a set, F a σ-algebra, P a probability measure).

Lemma 1.4. Let ε be a set of events. Then there is a smallest σ-algebra F such that ε⊂F.

Definition 1.5. A function X : Ω→R
n is called a random variable if it is F-measurable, i.e. for arbitrary

A belonging to the Borel-σ-algebra B(Rn), the set X−1(A)∈F.

Definition 1.6. Completion of F with respect to P: For simplicity, Ω = (0, 1). P is the Lebesgue mea-
sure, F the Borel-σ-algebra B(0, 1) on Ω = (0, 1). F is called complete if it contains all subsets B of Ω
with the property:

There are subsets B− and B+ from B(0, 1) such that B−⊂B⊂B+ and P (B+ \B−)= 0.

This process maps (Ω,F , P ) to (Ω, F̄ P , P ), where F̄ P is the completion of F w.r.t. P.

Now suppose X is a random variable in (Ω, F , P ) in R
n. X−1(B(Rn))4 {X−1(A): A ∈ B(Rn)} = {Γ:

X(Γ)∈B(Rn)}. HX is called the σ-algebra generated by X.
One reason to use this definition of a random variable is this:

Lemma 1.7. (Doob-Dynkin) If F is generated by a random variable Y, then there exists a Borel func-
tion g such that X = g(Y ).

1.1 Lebesgue Integral

Definition 1.8. X on (Ω,F , P ) is called simple if it is F-measurable and takes a finite number of values:
x1, x2,� , xn.

Ωi = {ω:X(ω) =xi}=X−1(xi). Then the Lebesuge integral is

∫

Ω

XdP =
∑

i=1

n

xiP (Ωi).

Definition 1.9. An arbitrary measurable function X on (Ω, F , P ) is called P-integrable if there exists a
sequence of such simple functions Xn so that Xn→X a.s. and

lim
n,m→∞

∫

Ω

|Xn −Xm|dP = 0.
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Lemma 1.10. If X is P-integrable, then

1. There exists a finite limit
∫

Ω

XdP = lim
n→∞

∫

Ω

XndP .

2. This limit does not depend on the choice of the approximating system.

If X is a random variable X : Ω→Rn. Let B be Borel’s σ-algebra on Rn. Then

µX( A�
∈B

)=P (X−1(A))=P (ω:X(ω)∈A)

is called the distribution function of X .

Theorem 1.11.

∫

Ω

f(X)dP =

∫

Rn

f(x)µX(dx).

Thus

E[X] =

∫

Rn

XµX(dX).

Example 1.12. Let X have values x1,� , xn. Ωi =X−1(xi). µX(xi)=P (Ωi). Then

E[X] =
∑

xiµX(xi) =
∑

xiP (Ωi).

1.2 Conditional Expectation

ξ and η are are random variables with a joint density p(x, y).
Motivation:

E[ξ |η= y] =

∫

x p(x|y)dx.

P (A|B) =
P (A∩B)

P (B)
.

Now suppose X is a P -integrable random variable (Ω,F , P ). G is a σ-algebra on Ω, G ⊂F .

Definition 1.13. Let η be F-measurable random variable. If there exists a P-integrable G-measurable
function ξ such that for any bounded G-measurable function ϕ

E(ξϕ)=E(ηϕ),

the ξ will be called conditional expectation of η and denoted E[η |G].

Properties of conditional expectation:

1. If η is G-measurable, then E[η |G] = η.

Proof. (1) By assumption, η is G-measurable. (2) Let ϕ be an arbitrary G-measurable function.
Then

E(ηϕ)=E(E(η |G)ϕ) =E(ηϕ). �

2. HW: Prove that the conditional expectation is unique.

3. If f is bounded, G-measurable, then

E[f(ω)X |G](ω) = f (ω)E[X |G] (a.s.)

4. Let g(ω,X) be an F -measurable function. Then

E[g(ω,X)|σ(X)] =E[g(ω, c)|σ(X)]|c=X.

Basic Facts from Stochastic Processes 3



5. Let G1⊂G be σ-algebras. Then

E[E[X |G]|G1] =E[X |G1].

This property can be memorized as “Small eats big”.

Example 1.14. Ω =
⋃

n
Ωn, Ωi ∩Ωj = ∅. Let E = {Ω1,Ω2,� }. Then σ(E) = {Ωi1 ∪Ωi2∪� }. Ω0 = Ω \Ω?.

Let ξ be a random variable

E[ξ |σ(E)] =
∑

i

E[ξ1Ωi]

P (Ωi)
1Ωi

. (1.1)

Proof of (1.1):

a) The right-hand side is a function of indicators of Ωi⇒ it is σ(E)-measurable.

b) E[E[ξ |σ(E)]g] =Eξg for all g which are σ(E)-measurable.
Suppose g= 1Ωk

. Then

E[rhs1Ωk
] =E

[

E[ξ1Ωk]

P (Ωk)
1Ωk

]

=
E[ξ1Ωk]

P (Ωk)
P (Ωk)=E(ξ1Ωk

).

rhs: E(ξ1Ωk
). What is a σ(E)-measurable function? Answer: It is a function of the form

ξ=
∑

i

yi1Ωi
.

What?

1.3 Stochastic Processes

Assume that for all t, we are given a random variable Xt =Xt(ω) ∈R
n. t could be from {0, 1, 2, 3, � } or

from (a, b), it does not matter. In the former case, Xt is called a sequence of r.v. or a discrete time
stochastic process. In the latter, it is called a continuous time stochastic process. If t ∈ R

2, then Xt is a
two-parameter random field.

Motivation: If X is a random variable, µX(A)=P (ω:X(ω)∈A.

Definition 1.15. The (finite-dimensional) distribution of the stochastic process (Xt)t∈T are the measures
defined on R

nk =R
n ⊗�R

n given by

µt1,� ,tk
(F1⊗F2⊗� ⊗Fk) =P (ω:Xt1∈F1,� , Xtk

∈Fk),

where the Fi∈B(Rn).

1.4 Brownian Motion (Wiener Processes)

Definition 1.16. A real-valued process Xt is called Gaussian if its finite dimensional distributions are
Gaussian⇔ (Xt1,� , Xtk

)∼N (k).

Remember: A random variable ξ in R
k is called normal (multinormal) if there exists a vector m ∈ R

k

and a symmetric non-negative k× k-matrix R= (Rij) such that

ϕ(λ)4 E[ei(ξ,λ)] = ei(m,λ)−(Rλ,λ)/2

for all λ∈R
k, where ( · , · ) represents an inner product, m=E[ξ] and R= cov(ξi, ξj).

Independence: Fact: Y = (Y1, � , Yn) are normal vectors in R
k with (mi, Ri). Then elements of Y are

independent iff

ϕλ(Y )=
∏

i=1

n

ϕλi
(Yi),

where λ= (λ1,� , λn), where λi ∈Rn.
Fact 2: ζ = (ζ1,� , ζm) is Gaussian iff for any λ∈Rm,

(ζ , λ)=
∑

λiζi
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is Gaussian in 1D.

Definition 1.17. Brownian motion Wt is a one-dimensional continuous Gaussian process with

E[Wt] = 0, E[WtWs] = t∧ s4 min (t, s).

Alternative Definition:

Definition 1.18. Brownian motion Wt is a Brownian motion iff

1. W0 = 0

2. ∀t, s:Wt −Ws∼N (0, t− s)

3. Wt1, Wt2−Wt1,� are independent for all partitions t1<t2<t3<� .

Yet another:

Definition 1.19. The property (3) in Definition 1.18 may be replaced by
3 ′. Wtn

−Wtn−1 is independent of Wtn−1−Wtn−2,�
Definition 1.20. Ft

W 4 σ({Ws1
,Ws2

,� : si 6 t}).

Theorem 1.21. Brownian motion is a martingale w.r.t. Ft
W ⇔

E[Wt|Fs
W ] =Ws

for s< t. (This is also the definition of a martingale.)

Remark 1.22. σ(Wt1, Wt2, � , Wtn
) = σ(Wt1, Wt2 − Wt1, � , Wtn

− Wtn−1) (knowledge of one gives the
other–add or subtract). This is important because RHS is independent, but LHS is not.

Corollary 1.23.

1. E[Wt
2] = t. (So Wt grows roughly as t

√
.)

2. Wt
2/t→ 0 almost surely.
Proof: By Chebyshev’s inequality, P (|Wt/t|>c)<E[|Wt/t|2]/c2 = t/t2c2→ 0 as t→∞.

Law of iterated logarithm:

ϕt
0 =

Wt

2t log log(1/t)
√ , ϕt

∞=
Wt

2t log log(t)
√ ,

limsup
t→0

ϕt
0 =1, limsup

t→∞

ϕt
∞= 1,

liminf
t→0

ϕt
0 =− 1, liminf

t→∞
ϕt
∞ =− 1.

Continuity and Differentiability:

• Wt is continuous.

• Wt is nowhere differentiable.

Spectral representation of Brownian motion:

Theorem 1.24.

Wt = tη0 +
∑

n=1

∞

ηnsin(n t)≈ t η0 +
∑

n=1

N

ηnsin(n t), where

ηn ∼ N (0, 2/πn2) (n> 1),

η0 ∼ N (0, 1/π).

Basic Facts from Stochastic Processes 5



Proof. Consider t∈ [0, π].

W̃
t
4 Wt − t

π
Wπ for t∈ [0, π].

Then

W̃ (t)=
∑

n=1

∞

ηnsin(n t),

where

ηn =
2

π

∫

0

π

W̃ (t)sin(n t)dt (n> 0)

and

η0 =
W (π)

π
.

First fact: ηn are Gaussian because linear combinations of normal r.v.s. are normal.

Eηkηn =
4

π2

∫

0

π ∫

0

π

(t∧ s− t s/π)sin(n t)sin(k s)=

{

0 k � n,
2

πn2 k=n> 0.

For n= 0,

E[η0
2] =E

W 2[π]

π2
=

1

π
.

�

2 The Itô Integral and Formula

Suppose we have some system described by Xt that has some additive noise ξt: Yt =Xt + ξt. (t= 1, 2, 3,� )
The ξ1, ξ2,� are assumed to be

1. iid

2. ξi∼N(µ, σ2)

If the ξt satisfy the first property, they are called white noise. If they satisfy both, it is Gaussian white
noise.

If we now consider Wt ξ0 =W0 =0, ξ1 =Wt1−W0, ξ2 =Wt2−Wt1, ..., then

1. holds

2. holds

A popular model in dynamics is

Xt+∆ =AXt +B+ ξt+1

for, say, the dynamics of an “aircraft”. Another possibility is modeling the price of a risky asset

Xt+∆ =Xt + µXt∆ +σXt(Wt+1−Wt),

where µ is the individual trend of the stock, while σ is market-introduced volatility. Equivalently, we
might write

Xt+∆−Xt

∆
= µXt −σXt

Wt+1−Wt

∆

and then let ∆t↓0, such that we obtain

Ẋt = µXt + σXtẆt,

which is all nice and well except that the derivative of white noise does not exist. But note that there is
less of a problem defining the same equation in integral terms.

Step 1: Suppose we have a function f(s), which might be random. Then define

In(f)=
∑

k

f(sk
∗)(Wsk+1−Wsk

).
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But what happens if f(s)=Ws. We get the term

Wsk
(Wsk+1−Wsk

).

Or is it

Wsk+1(Wsk+1−Wsk
)?

Or even

Wsk+1+sk

2

(Wsk+1−Wsk
)?

In the Riemann integral, it does not matter where you evaluate the integrand–it all converges to the same
value. But here, we run into trouble. Consider

E |Wsk
(Wsk+1−Wsk

)|2 � E |Wsk+1(Wsk+1−Wsk
)|2

‖ ‖
E |Wsk

|2E |Wsk+1−Wsk
|2 E |Wsk−1(Wsk+1−Wsk

)|2
‖ ‖

sk(sk+1− sk) E |Wsk+1+sk

2

(Wsk+1−Wsk
)|2.

Problem: Compute each of the above expectations, and show they are not equal.

2.1 The Itô Construction

The idea here is to use simple functions:

f(s)=
∑

i=0

n

ei(ω)1(ti,ti+1)(s),

where ei is Fti

W -measurable, where Fti

W = σ(Ws1,� ,Wsk
: si 6 s)

⇔
ei = ei(Wr, r ∈ [0, ti])

⇔
ei is “adapted” to Fti

W .

Definition 2.1. I(f)=
∑

i=0

n

ei(Wti+1−Wti
).

Properties:

1. E[I(f)] = 0

Proof:

E[I(f)] =
∑

i=0

n

Eei(Wti+1
−Wti

)

=
∑

i=0

n

E
(

E
(

ei(Wti+1−Wti
)
∣

∣Fti

W
))

=
∑

i=0

n

E(eiE[(Wti+1−Wti
)|Fti

W ])

=
∑

i=0

n

E(eiE[Wti+1
−Wti

])

=
∑

i=0

n

E(ei 0) =0.

The Itô Integral and Formula 7



2.

E |I(f)|2 =
∑

i=1

N

E |ei|2(ti+1− ti) =

∫

0

T

E |f(s)|2ds

= E
[

∑

ei(Wti+1−Wti
)
]2

=
∑

E
[

ei
2(Wti+1−Wti

)2
]

−E
[

eiej(Wti+1−Wti
)(Wtj+1−Wtj

)
]

= E
(

E(ei
2(Wti+1−Wti

)|Fti

W))

= E[ei
2](ti+1− ti).

3. I(f) is linear.

Next: If f(s) is only Fs
W -measurable (but not a step function), and if

∫

0

T
E f2(s)ds < ∞ ⇒ could be

approximated by a sequence of step functions fn(s)→ f(s).
[Insert lecture6.pdf here, courtesy of Mario.]
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2.2 Itô’s Formula

Suppose we have a partition of a time interval (0, T ) as t0 = 0, t1, t2,� , tn = T . ∆ti = ti+1 − ti. We assume
max∆ti→ 0. Also, we assume we have a function

f = f(t), ∆fi = f(ti+1)+ f(ti).

a) If f = f(t), continuous, bounded variation. Then

lim
max∆ti→0

∑

i=0

n−1

|∆fi|2 = lim
max∆ti→0

max |∆fi|�
→0

∑

i=0

n−1

|∆fi|�
variation→bounded

=0.

b) If W =W (t) is Standard Brownian Motion, then

lim
max∆ti

∑

i=0

n−1

|∆Wi|2 =T (in L2 and in probability).

Proof. We need E |∑ |∆Wi|2| −T |2→ 0. So

E

(

(

∑

i

(∆Wi)2
)2

− 2
∑

i

(∆Wi)2T +T 2

)

= E

[

∑

i,j

|∆Wi|2|∆Wj |2− 2T 2 +T 2

]

= E





∑

i=0

n−1

|∆Wi|4 +
∑

i� j

|∆Wi|2|∆Wj |2−T 2





= 3
∑

i

|∆ti|2 +
∑

i� j

∆ti∆tj −T 2

= 2
∑

i

|∆ti|2 +
(

∑

i

|∆ti|
)2�

T 2

−T 2

= 2
∑

i

|∆ti|2 6 2max {∆ti} ·T→ 0.

�

So we essentially showed:

∑

i=0

n−1

|∆Wi|2 → T ,

(dW )2 → dt,

dW → dt
√

. (not rigorous)

2.2.1 Deriving from the Chain Rule

if x= x(t)∈C1 and F =F (y)∈C1. Then

d

dt
F (x(t))=F ′(x(t))x′(t).

Alternatively,

x(t)=x(0)+

∫

0

t

f(s)�
x′(s)

ds.

Then

F (x(t))=F (x(0))+

∫

0

t

F ′(x(s))f(s)ds.

The Itô Integral and Formula 9



First of all, there is no “Stratonovich Formula”. Suppose Wn ⇉W (double arrows: uniformly), then

Xn(t) = X(0) +

∫

0

t

A(s)ds+

∫

0

t

B(s)W n˙ (s)ds�
=
∫

0
t(Xn)′(s)ds

,

X(t) = X(0) +

∫

0

t

A(s)ds+

∫

0

t

B(s) ◦ dW (s)�
Stratonovich Int.

.

F (Xn(t)) = F (X(0)) +

∫

0

t

F ′(Xn(s))A(s)ds+

∫

0

t

F ′(Xn(s))B(s)W n˙ (s)ds

F (X(t)) = F (X(0)) +

∫

0

t

F ′(X(s))A(s)ds+

∫

0

t

F ′(X(s))B(s) ◦ (s)dW (s).

In particular,

X =W (t)=

∫

0

t

1 ◦ dW (s), F (y)= y2,

∫

0

t

W (s) ◦ dW (s)=
1

2
W 2(t).

Remark 2.2. Itô integral is a martingale, Stratonovich is not . Also: there is no connection between the
two in the non-smooth case.

Now, let’s see what happens for Itô, again starting from a process X(t) given as

X(t) = X(0)+

∫

0

t

A(s)ds+

∫

0

t

B(s)dW (s).

Now, what is F (X(t))? Let’s look at a Taylor expansion of

F (X(ti+1))−F (X(ti))=F ′(X(ti))∆xi +
1

2
F ′′(X(ti))(∆xi)

2 +(� ) (∆xi)
3�

∼(∆t)3/2

So, in continuous time

F (X(t)) =
∑

∆F

= F (X(0)) +

∫

0

t

F ′(X(s))dX(s)+
1

2

∫

0

t

F ′′(X(s))(dX(s))2

= F (X(0)) +

∫

0

t

F ′(X(s))A(s)ds+

∫

0

t

F ′(X(s))B(s)dW (s)+
1

2

∫

0

t

F ′′(X(s))B2(s)ds

Theorem 2.3. If

X(t) =X(0)+

∫

0

t

A(s)ds+

∫

0

t

B(s)dW (s)

and F ∈C3, then

F (X(t))=F (X(0)) +

∫

0

t

F ′(X(s))A(s)ds+

∫

0

t

F ′(X(s))B(s)dW (s)+
1

2

∫

0

t

F ′′(X(s))B2(s)ds.

Now if F ∈C3(Rn,Rn),then

X(t)=X(0) +

∫

0

t

A(s)ds+

∫

0

t

B(s)dW (s)∈R
n,

where we recall that W ∈ R
p with all p components independent. Itô’s Formula in multiple dimensions

takes the form

Fk(X(t)) =Fk(X(0))+

∫

0

t
∑

i

∂Fk

∂xi
Aids+

∑

i,l

∫

0

t ∂Fk

∂xi
Bi,ldWl +

1

2

∫

0

t
∑

i,j

∂Fk

∂xi∂xj

∑

l

BilBjlds.
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Example 2.4. If F (x)= x2 and

X =

∫

0

t

dW (s),

then
∫

0

t

W (s)dW (s)=
1

2
(W 2(t)− t).

Example 2.5. If ∆F = 0 (i.e. F is harmonic), then F (W (t)) is a martingale.

2.2.2 SODEs

X(t)=X(0) +

∫

0

t

b(s,X(s))ds+

∫

0

t

σ(s,X(s))dW (s)

or, equivalently

dX = b(t,X)dt+σ(t,X)dW (t).

Example 2.6. Ornstein-Uhlenbeck Process . The equation

dX(t)= aX(t)dt+ b dW (t)

has the solution

X(t)= eatX(0)+ b

∫

0

t

ea(t−s)dW (s).

Proof. Consider

Xt = eatX(0)+ b

∫

0

t

ea(t−s)dWs

= eatX(0)+ b eat

∫

0

t

e−asdWs

= eatX(0)+ b eatZt

= g(t, Zt) with dZt = e−atdWt.

Ito’s Formula then gives

dXt =
∂g

∂t
dt+

∂g

∂x
dZt +

1

2

∂2g

∂x2
(dZt)

2

= X(0)a eat + b eatdZt + 0

= X(0)a eat + b eate−atdWt

= X(0)a eat + b dWt.

�

Example 2.7. (Geometric Brownian Motion)

dX(t)= aX(t)dt+ bX(t)dW (t)

is solved by

X(t)=X(0)e(a−b2/2)t+bW (t).

(Check this by Itô.)

Homework: Solve

dX(t)= (a1 + a2X(t))dt+ (b1 + b2X)dW (t).

Theorem 2.8. If |bi(s, x)− bi(s, y)|+ |σi,k(s, x)− σi,k(s, y) 6C |x− y | (a Lipschitz condition) and |bi(s,
x)| + |σi,k(s, x)| 6 C(1 + |X |) (a linear growth condition) and X(0) is independent of W and E |X(0)|2 <
∞, then there exists a solution X(t) that is continuous in time. X(t) is measurable w.r.t σ(X(0), W (s),
s6 t) and

E

[

sup
t6T

|X(t)|2
]

<∞.

The Itô Integral and Formula 11



3 Some SPDEs

ut = a uxx, u(0, x) =u0(x).

(a> 0–ellipticity: if it holds, then the equation is called parabolic) General solution:

u(t, x)=
1

4π a t
√

∫

R

exp

(

− 2|x− y |2
4 a t

)

u0(y)dy=E[u0(x+ 2π
√

W (t)]

(Feynman-Kac formula–averaging over characteristics)
Monte-Carlo simulation:

area(A)=
#hits in a set A

#hits in a surrounding square
.

More general parabolic equation:

ut(x, t) = aijDiDju(x, t)+ biDiu(x, t)+ c u+ f (t> 0, x∈R
d) u(0, x) =u0(x)

This equation is parabolic iff a ijyi yj > a|y |2 for all y ∈R
d (the ellipticity property). If the highest order

partial differential operator in the equation is elliptic, then the equation is parabolic. (The elliptic equa-
tion would be

aijDiDju(x, t)+ biDiu(x, t)+ c u+ f =0.)

Now, onwards to Stochastic PDEs. A model equation is

du(t, x)= a uxx(t, x)dt+σux(t, x)dWt.

Recall from geometric Brownian motion:

du(t) = a u(t)dt+ σu(t)dWt, u(0) =0.

The solution is

u(t) =u0exp

((

a− σ2

2

)

+ σWt

)

and

E[u2(t)] =u0
2exp{u t}E[exp

{

2σWt − σ2t2
}

].

Now consider

E







exp

(

bWt − 1

2
b2t

)�
ρ(t)







=1,

which is an example of an exponential martingale, which satisfies the general property

E[ρ(t)|Fs
W ] = ρ(s) for s< t, ρ(0) =1.

We find

E(ρ(t)] =E[ρ(s)] =E[ρ(0)] = 1.

Proof. By Ito’s formula,

dρ(t)= bρ(t)dWt ⇒ ρ(t)= 1+ b

∫

0

t

ρ(s)dWs.

�

Here’s a crude analogy: In stochastic analysis, ρ(t) plays the role of exp(t) in “regular” real analysis.
Going back to our above computation, we find

E[u2(t)] = u0
2exp{u t}E[exp

{

2σWt− σ2t2
}

] = u0exp{2a t}.

So we find for geometric Brownian motion that it remains square-integrable for all time. (Consider that
this is also the case for the regular heat equation.) Now, let’s return to our SPDE,

du(t, x)= a uxx(t, x)dt+σux(t, x)dWt.

12 Section 3



We begin by applying the Fourier transform to u, yielding û.

dû =− a y2û + iσyû(t, y)dWt

û = û(0, y)exp(−
(

a− σ2/2)y2t
)

+ i yσWt).

Parseval’s equality tells us
∫

|u(t, x)|2 =

∫

|û(t, y)|2dy <∞

iff a − σ2/2> 0. In SPDEs, first order derivatives in stochastic terms has the same strength as the second
derivative in deterministic terms. The above condition is also called super-ellipticity , and the whole evolu-
tion equation is then called super-parabolic.

There’s another example of SPDE in the lecture notes:

du(t, x)= a uxx(t, x)dt+ σu(t, x)dWt.

Here, the superellipticity equation is

a− 02

2
> 0 ⇔ a> 0.

For the homework, see the notes as well. One of these problems is to consider the more general equation

du= aijDiDju+ biDiu+ c udt+ (σikDiu+ νk)dWk(t) i, j=1,� , d, k=1, 2, 3,�
where we have

σ=





σ11 σ12 �

σd1 σd2 � 

.

We have to assume

σσ∗=
∑

k=1

∞

σikσjk<∞,
∑

k

νk
2<∞.

A substitution that sometimes helps in the deterministic case is illustrated below:

∂u

∂t
= a(t, x)uxx + c u

Then we set v(t, x) = e−ctu(t, x) and obtain

dv(t, x)=− c e−ctu(t, x)+ a(t, x) e−ctuxx + c e−ctu= a(t, x)u vxx.

For the stochastic case, note:

dρ(t)= ρ(t)σdWt.

Then, let

η(t) 4 e−σW (t)−(σ2/2)t

dη(t) = − η(t)σdΩt

ρ−1(t) = η(t)exp(σ2t)

dρ−1(t) = − η(t)σdWtexp(σ2t)+ η(t)exp(σ2t)σ2dt=− ρ−1σdWt + σ2ρ−1(t)dt

Applied to an SPDE, we get

du(t, x) = a u(t, x)dt+σu(t, x)dWt

u(0, x) = u0

v(t, x) = e−σW (t)+(σ2/2)t�
ρ−1(t)

u(t, x)

d(u(t, x)ρ−1(t)) = a vxxdt+σvdWt − vσdWt + σ2vdt− σ2vdt

= a vxxdt.

Some SPDEs 13



Let W̃ (t) be a Wiener process independent of W .

v(t, x) = E
[

u0

(

t+ 2a
√

W̃t

)]

.

Then

u(t, x) = E
[

u0

(

x+ 2a
√

W̃t

)]

exp(σ2Wt − (σ2/2)t

= E
[

u0

(

x+ 2a
√

W̃t

)

exp(σ2Wt − (σ2/2)t
∣

∣

∣
Ft

W
]

.

Example 3.1. Now consider

du(t, x)= a uxx(t, x)+ σux(t, x)dWt ⇔ 2a− σ2> 0.

(Remark: There is not a chance to reduce to ∂tũ= aũxx.)

∂v

∂t
= (a− σ2/2)vxx(t)

u(t, x) = v(t, x+ σW (t)) then u verifies equation.

v(t, x) = E
[

u0

(

x+ 2a−σ2
√

W̃ (t)
)]

⇓
u(t, x) = E

[

u0

(

x+Wt + 2a− σ2
√

W̃t

)∣

∣

∣
Ft

W
]

.

(Note that, as above, the point of the conditional expectation is not measurability w.r.t. time (...), but
with respect to W and not w.r.t. W̃ .) By a naive application of Ito’s formula, we would get

u(t, x) = v(t, x+ σWt)

v(t, x) = u(t, x− σWt)

du(t, x− σWt) = σ2/2uxx(t, x− σWt)

− σux(t, x−σWt)dWt =
σ2

2
vxxdt− σvxdWt.

But this is wrong because Ito’s formula only applies to deterministic functions of brownian motion. The
function u itself is random, though, so it does not work. To the rescue, the Ito-Wentzell formula.

Theorem 3.2. (Ito-Wentzell) Suppose

dF (t, x)= J(t, x)dt+H(t, x)dWt

and

dY (t)= b(t)dt+σ(τ )dWt.

Then

dF (t, Y (t))= J(Y (t))dt+H(Y (t))dWt�
dtF

+Fx(Y (t))bdt+
σ2

2
Fxx(Y (t))dt+σFx(Y (t))dWt +Hx(t, Y (t))σ(t)dt

For comparison, if we suppose dG(t, x) =J(t, x)dt and work out the regular Ito formula, we would find

dG(t, Y (t)) =J(t, Y (t))dt�
dtG

+Gx(Y (t))b(t)dt+
1

2
Gxxσ

2dt+Gx(Y )dWt.

4 PDE/Sobolev Recap

• Spaces: H2
γ =H2

γ(Rd)

• Heat equation: H2
γ, L2(R

d), H2
−1.

• an SPDE: H2
γ, L2(R

d), H2
−1.
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We will need:

• Gronwall Inequality: ...

• BDG Inequality (p= 1)

E

∣

∣

∣

∣

sup
t6T

∫

0

t

g(s)dWs

∣

∣

∣

∣

6CE

∣

∣

∣

∣

∣

∫

0

T

g2(t)dt

∣

∣

∣

∣

∣

1/2

.

• ε-inequality

|a b|6 εa2 +
1

ε
b2.

• Itô-Wentzell formula.

4.1 Sobolev Spaces H2

γ

Definition 4.1. Suppose f ∈C0
∞(Rd). Then

f̂ (y) =
1

(2π)d/2

∫

Rd

e−ixyf(x)dx.

Then we have Parseval’s Inequality
∫

Rd

|f |2dx=

∫

Rd

|f̂ |2dy
and define

‖f ‖
γ
4 ∫

Rd

(1+ |y |2)γ |f̂ (y)|2dy
√

,

a norm. Then Hγ
2 is the closure of C0

∞ in the norm ‖ · ‖
y
.

δ(x), δ̂ (x)= const, δ ∈Hγ
2 for what γ? (γ <− d/2?)

H2
0 =L2, H2

γ1⊂H2
γ2 if γ1> γ2.

Sobolev embeddings: H2
γ+d/2⊂C0,γ if 0< γ < 1. Alternative (but equivalent) definition:

H2
n = {f : f ,Df ,� , Dnf ∈L2}

with

‖f ‖
n
∼‖f ‖

L2 +
∑

k=1

n
∥

∥Dkf
∥

∥

L2
.

H2
γ is a Hilbert space with

(f , g)γ
=

∫

Rd

(1 + |y |2)γf̂ (y)ĝ(y)dy.

H2
γ is dual to H2

−γ relative to L2. (γ > 0) Because if f ∈H2
γ and g ∈H2

−γ. Then

(f , g)0 =

∫

Rd

(1 + |y |2)γ/2f̂ (y)
ĝ(y)

(1 + |γ |2)γ/2
dy6 ‖f ‖

γ
‖g‖−γ

.

All this by S.L. Sobolev (1908-1989). Derived Sobolev spaces & generalized derivatives in the 1930s.

4.2 SPDEs in Sobolev Spaces

4.2.1 Classical Theory

Let’s consider the heat equation in (H2
1, L2, H2

−1), namely

ut =uxx + f , u|t=0 = u0.

Theorem 4.2. If u is a classical solution and u(t, · ) and u0 are in C0
∞(R), then

sup
t6T

‖u(t)‖0
2 +

∫

0

T

‖u(t)‖1
2dt6C(T )

(

‖u0‖0
2 +

∫

0

T

‖f(t)‖−1
2 dt

)

.
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(Note the slight abuse of notation with ‖u(t)‖
γ
.)

Proof.
∫

u
∂u

∂t
dx =

∫

uuxxdx+

∫

u fdx |
∫

·udx
‖

dv

dt
= ‖ux‖0

2 +(u, f0)± 2v(t)

v(t) = v(0)−
∫

0

t (

‖u(s)‖0
2 + ‖ux(s)‖0

2
)

ds+

∫

0

t

(u, f)0ds+ 2

∫

0

t

v(s)ds

v(t)+C

∫

0

t

‖u(s)‖1
2
ds 6 v(0)+

∫

0
‖u‖1‖f ‖−1ds+ 2

∫

v(s)ds+
C

2

∫

0

t

‖u‖1
2
ds+C1

∫

0

t

‖f ‖−1
2

ds

v(t)+
C

2

∫

0

t

‖u(s)‖1
2ds 6 F +2

∫

0

t

v(s)ds

v(t) 6 F +2

∫

0

t

v(s)ds

sup v(t) 6 F .

where v(t) =
1

2
‖u(t)‖0

2 and all the constant-tweaking is done with the ε-inequality. �

4.2.2 Stochastic Theory

du= (a(t)uxx + f)dt+ (σ(t)ux + g)dWt,

where 0<δ <a(t)− σ2(t)/2<C∗. f , g adapted to Ft
W , u, f , g ∈C0

∞, u|t=0 =u0 independent of W . Then

E
[

sup ‖u(t)‖0

]2
+E

∫

0

T

‖u(t)‖1
2dt6E

(

‖u0‖0
2 +

∫

0

T

‖f ‖−1
2 dt+

∫

0

T

‖g‖0
2dt

)

.

Step 1: WLOG, σ=0 (check at home!). Use the substitution

v(t, x)= u

(

t, x−
∫

0

t

σ(s)dWs

)

.

Step 2 : Ito formula for |u(t, x)|2.

u2 = u0
2 +2

∫

0

t

a uxx uds�
−‖u‖1

2

+

∫

0

t

f uds�
ε‖u‖1

2+C‖f‖−1
2

+

∫

0

t

g udWs +

∫

0

t

g2ds.

Step 3: Take expectation, which kills the dWs term, giving a bound on

E

∫

0

T

‖u‖1
2ds and E‖u(t)‖0

2
.

Step 4: Take care of the sup, which is outside of the expectation, but needs to be inside.

E

∣

∣

∣

∣

sup
t

∫

0

t1

g udW

∣

∣

∣

∣

6CE

(

∫

0

T

(g, u)0
2dt

)1/2

6CE

[

sup
t

∫

0

T

‖g‖0
2dt

]

6 εEsupt‖u‖2 +C(ε)

∫

0

t

‖g‖0
2ds.

5 Nonlinear Filtering (“Hidden Markov Models”)

State/signal Xt: Markov process/chain. Observation Yt = h(Xt) + gV̇ (t). State is not observed directly.
The inf about Xt comes “only” from Ys, s6 t. Find the best mean-squares estimate of f(Xt) given Ys, s6

t, where f is a known function. Claim: This estimator is given by

f̂t 4 E
[

f(Xt)|Ft
Y
]

.

16 Section 5



Proof. Let gt be an Ft
Y -measurable square-integable function⇔E[gt

2]<∞, gt = g(Y0
t).

E[ft − gt]
2 = E[f(Xt)− f̂t + f̂t − gt]

2

= E[f(Yt)− f̂ (Xt)]
2 +E[f̂t − gt]

2

> E[f(Xt)− f̂ (Xt)]
2 +2E[(f(Yt)− f̂t)(f̂t − gt)]

= E[E[(f(Xt)− f̂t)(f̂t − gt)|Ft
Y ]] = 0.

Geometric interpretation: conditional expectation, with respect ot the σ-algebra G is an orthogonal pro-
jection on a space of G-measurable functions.

f̂t 4 E[f(Xt)|Ft
Y ]

=

∫

f(x)P (Xt∈ dx|Ft
Y ).

�

State:

dXt = b(Xt)dt+ σ(X(t))dWt

dYt = A(X(t))dt+ g(Yt)dVt,

We assume Wt and Vt are independent Wiener processes. X(0) = x0, Y (0) = 0. Further f = f(x), with
supt E[f(Xt)

2]<∞.

f̂t = E[f(Xt)|Ft
Y ].

Zakai Equation of nonlinear filtering:

f̂t =

∫

f(x)u(t, x)dx
∫

u(t, x)dx
,

where u(t, x) is a solution of the SPDE

du(t, x) =

[

1

2
σ2(x)u(t, x)xx − (b(x)u(t, x))x

]

dt+h(x)u(t, x)dYt,

where h= g−1A.

P̃ (A) =

∫

A

exp

{

−
∫

0

T

hds− 1

2

∫

0

T

h2dV

}

dP

dYt = dVt.

If we add another term to the state process,

dXt = b(Xt)dt+σ(X(t))dWt + f(X(t))dVt,

then we get

du(t, x)=

[[

1

2
σ2(x)+ ρ2

]

u(t, x)xx − (b(x)u(t, x))x

]

dt− (ρu(t, x))xdYt + h(x)u(t, x)dYt

as the corresponding Zakai equation. (not sure about this last equation)

6 Solutions of PDEs and SPDEs

6.1 Classical Solutions

Here, we assume that u is twice continuously differentiable in x and once in t.

u̇(t, x) = a(x)uxx, u(0, x)= u0(x). (6.1)

Solutions of PDEs and SPDEs 17



6.2 Generalized Solutions

First, let us talk about generalized functions. Suppose we wanted to find a derivative of f(x) = sign(x).
Classically, f ′(0) does not exist. Let g be a differentiable function and ϕ very smooth with compact sup-
port. Then

∫

fϕ′(x)dx=−
∫

f(x)ϕ(x)dx.

If f is not differentiable,
∫

f ′(x)ϕ(x)dx=−
∫

ϕ(x)ϕ′(x)dx

for all ϕ∈C0
∞(Rn).

Now reconsider the heat equation in a different form, namely

u̇(t, x)= (a(x)ux)x, u(0, x)= u0(x). (6.2)

A weak general solution of (6.2) is a function u∈H2
1(R) such that for all t > 0

(u(t), ϕ)= (u0, ϕ)−
∫

0

t

(ux, ϕx)ds

for every function ϕ∈C0
∞(R).

Going back to (6.1), we find that a generalized solution is also a function from H2
1 so that

(u(t), ϕ) = (u0, ϕ)−
∫

0

t

(ux, (aϕ)x)ds

for all ϕ∈C0
∞(R).

This definition is equivalent to saying that

u(t) =u0 +

∫

a uxxds

as an equality in H−1.

6.3 Mild Solutions

Let us now consider yet another different equation, namely

u̇(t, x)= uxx(t, x) + sin(u(t, x)), u(t, x)= u0(x). (6.3)

Direct differentiation shows

u(t, x)=

∫

R

k(t, x− y)u0(y)dy+

∫

0

t ∫

R

k(t− s, x− y)sin(u(s, y))dyds,

where k is the heat kernel

k(t, x− y)=
1

4πt
√ e

−
|x−y|2

4t .

Write this now in SPDE form

du(t, x) = a uxx + f(u(t, x)).

A mild solution is a solution u that satisfies

u(t, x) =

∫

R

k(t, x− y)u0(y)dy+

∫

0

t ∫

R

k(t− s, x− y)f(u(s, y))dyds.

6.4 Generalization of the notion of a “solution” in SDE

OSDE

dXt = b(X(t))dt+σ(X(t))dWt, X0 = x0.

Given b, σ, x0, (Ω, P ), W . If b and σ are Lipschitz-continuous and

|b(x)|6K(1 + |x|), |σ(x)|6K(1 + |x|) ⇒ ∃!u.
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Tanaka’s Example shows an OSDE that can’t be solved in this way:

dXt = sign(Xt)dWt.

This equation has no solution for fixed (Ω, P ), W . One could find (Ω̃, P̃ ), W̃ such that dXt =

sign(Xt)dW̃t. The mechanism for this is Girsanov’s theorem, by which you can kill the drift and obtain a
different equation.

If you specify the measure space and the Wiener process, you are looking for a probabilistically strong
soltuion. If you allow yourself the freedom of choosing these as part of your solution, your solution is
probabilistically weak .

7 Existence and Uniqueness

7.1 Scales of Sobolev Spaces

Simple Example: x∈ (0, b), ∆4 ∂x
2, Λ4 1−∆. H4 L2(0, b). For smooth functions f , clearly

(Λf , f)
H

= ((1−∆)f , f)
H

=

∫

0

b

f2(X)dx+

∫

0

b

fx
2dx= : ‖f ‖

H2
1

2
.

Let us consider the basis
{

mk(x)=
2

b
sin

π(k− 1)x

b

√

}

,

which is an ONS in H . Observe

Λmk = (1−∆)mk =mk +

[

π(k− 1)

b

]2

mk =

(

1 +

[

π(k− 1)

b

]2
)

mk.

Define

λk4 1+

[

π(k− 1)

b

]2

as the eigenvalues of Λ w.r.t. the eigenbasis mk. For s∈ (−∞,∞), we can construct an arbitrary power of
the operator by defining its effect on the eigenbasis mk by Λsmk4 λk

smk. Further, we may observe

(Λsf , f)H
=
∑

k

λs
kfk =

(

Λs/2f ,Λs/2f
)

=
∥

∥

∥
Λs/2

∥

∥

∥

H
,

where

fk =(f ,mk)H

are the Fourier coefficients. Then the Sobolev Space

H2
s(0, b)4 {

f ∈H : ‖f ‖
s

24 ∥

∥

∥
Λs/2f

∥

∥

∥

H

2
<∞

}

.

For s< 0, define

H2
s(0, b)4 Λ−sH.

We may also define

‖f ‖
s
4 ∑

k>1

(

λk
s/2
fk, λk

s/2
fk

)

√

. It was
∑

k>1

(

λk
s/2
fk, λk

sfk

)

on the board, but that seemed wrong.

The spaces {H2
s(0, b), s∈R} form the scale of spaces H2

s1⊂H2
s2 if s1>s2.

Properties: Let s1>s2. Then

1. Hs1 is dense in Hs2 in the norm ‖ · ‖
s2
.

2. Hs is a Hilbert space (f , g)
s
=
(

Λs/2f ,Λs/2g
)

0
.
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3. For s> 0, v ∈H−s(0, b), u∈Hs(0, b), denote

[u, v]4 (

Λsv�
∈H

,Λ−su�
∈H

)

.

a. If v also belongs to H , then [u, v] = (v, u)
H
. Proof: Λs is self-adjoint in H .

Remark 7.1. We will typically work with three elements of the Sobolev scale–the middle, e.g. L2, then
the space where the solution lives and finally the space that the solution gets mapped to by the operator.

Important mnemonic rule:
∂n

∂xn�
Λn/2

:Hs→Hs−n.

7.2 Normal triples/Rigged Hilbert space/Gelfand’s triple

Definition 7.2. The triple of Hilbert spaces (V , H, V ′) is called a normal triple if the following condi-
tions hold:

1. V ⊂H ⊂V ′.

2. The imbeddings V →H→V ′ are dense and continuous.

3. V ′ is the space dual to V with respect to the scalar product in H.

Note that we always assume that H is identified with its dual.

Example 7.3. Any triple H2
s+γ , Hs, Hs−γ for γ> 0 is a normal triple.

7.3 Actual SPDEs

du(t)= (Au(t)= f(t))dt+
∑

k=1

∞

(Mku(t) + gk(t))dWk
t, u(0) =u0∈H.

We will assume that A: V → V ′ and Mk: V →H , and further f ∈L2(0, T ; V ′) and gk ∈L2(0, T ;H). We fur-

ther assume f(t) and gk(t) are Ft
W -measurable, and V =H2

1(Rd), H =L2(R
d), V ′=H−1(Rd).

Au=
∑

i,j

(ai,j(t, x)uxi
)xj

+
∑

i

bi(t, x)uxi
+ c.

Mku=
∑

i

σi,k(t, x)uxi
+hk(t, x)u.

We might also want to consider

Au=
∑

|α|62n

aα∂
αu, Mku=

∑

|α|6n

σα∂
αu.

8 Existence and Uniqueness

We assume we have a normal triple V ⊂H ⊂V ′. Consider

du(t)= (Au(t)+ f(t))dt+ (µku(t) + gk(t))dWk(t), (8.1)

where we assume that Wk are infinitely many independent Brownian motions, u(0) = u0, A: A(t): V → V ′,
µk: µk(t):V →H ,

∑

k

E

∫

0

T

‖µkϕ‖H

2 dt<∞,
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f ∈L2(Ω× (0, T ));V ′), i.e.

E

∫

0

T

‖f(t)‖V ′

2
dt <∞,

gk ∈L2(Ω× (0, T );H) and
∑

k=1

∞

E

∫

0

T

‖gk(t)‖H

2 dt <∞.

If A is A(t, ω), then A(t)ϕ is Ft
W -adapted, and likewise for µk.

Au = a(t, x)u(t, x)xx,

µku = σk(t, x)u(t, x)x,

V = H1(Rd),

H = L2(Rd),

V ′ = H−1(Rd).

Saying that A(t)ϕ ∈ V ′ is Ft
W -adapted means that ∀ψ ∈ V , [A(t)ϕ, ψ] is an Ft

W -adapted random variable.
Consider Pettis’ Theorem , which states that

Suppose we have a measure space (Ω,F , P ). Suppose X and Y are Hilbert spaces. Then

• f(ω): Ω→X is F -measurable iff {ω: f(ω)∈A⊂X}∈F
is equivalent to

• (g, f(ω))X
is F -measurable for all g ∈ X̃ where X̃ is a dense subset of X .

u is a solution of (8.1) iff for all t

u(t)= u0 +

∫

0

t

(Au(s) + f(s))ds+
∑

k

∫

0

t

(µku(s)+ gk(s))dWk(s)

with probability 1 in V ′, that is

[u(t), ϕ] = [u0, ϕ] +

∫

0

t

[Au(s)+ f(s), ϕ]ds+
∑

k

∫

0

t

[µku+ gk, ϕ]dWk(s).

If u∈V , we would have

(u(t), ϕ)
H

= (u0, ϕ)
H

+

∫

0

t

[Au(s) + f(s), ϕ]ds+
∑

k

∫

0

t

(µku+ gk, ϕ)dWk(s).

Theorem 8.1. In addition to the assumptions we already made, assume

(A1). ∃δ > 0 and C0 > 0, so that

∃δ > 0, C0 > 0: 2[Aϕ(t), ϕ] +
∑

k

‖µkϕ‖H

2
6− δ‖ϕ‖

V

2 +C0‖ϕ‖H

2
.

(“coercivity condition” ⇔ superellipticity)

(A2). ‖Aϕ‖
V ′ 6CA‖ϕ‖V

.

Then there is existence and uniqueness for the above equations.

That means there is a u∈L2(Ω:C([0, T ]);H)∩L2(Ω:C([0, T ]);V ), moreover

E sup
t6T

‖u(t)‖
H

2
+E

∫

0

T

‖u(t)‖
V

2
dt6CE

(

‖u0‖H

2
+

∫

0

T

‖f ‖
V ′

2
dt+

∑

k

∫

0

T

‖gk‖H

2
dt

)

Interpretation: If H = L2, V = H1 , u(t) is cont. in L2 and has one derivative in x which is square-inte-

grable. (We might have also used H =H1 and V =H2, in which case u is cont. in H1 and has two deriva-
tives which are square-integrable.)
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Now consider the following fact leading up to the energy equality: Suppose we have a function u(t) ∈
L2(0, T ) and a generalized derivative u′(t)∈L2(0, T )⇒u(t) is continuous on [0, T ] and

u(t) =

∫

0

T

u′(s)ds,

|u(t)|2 = 2

∫

0

t

u(s)u′(s)ds.

Proof: Homework.
In the infinite-dimensional setting, we have a very analogous statement:

Suppose u(t)∈L2([0, T ];V ) and u′(t)∈L2([0, T ];V ′). Then u(t)∈C([0, T ];H) and

‖u(t)‖
H

2
=2

∫

0

t

[u′(s), u(s)]ds.

[Lectures 14-15 not typed, notes available from Prof. Rozovsky]
[April 10, 2007, Lototsky, Lecture 16]

9 SPDE with space-time white noise

du= uxxdt+ g(u)dW (t, x)

on 0<x<π with

u|t=0 = u0,

u|x=0 = u|x=π = 0,

ut|x=0 = ut|x=π = 0.

Two different ways of writing this equation are

∂u

∂t
=
∂2u

∂x2
+ g(u)

∂2W

∂t∂x
or

du= uxxdt+
∑

k=1

∞

g(u)hkdWk(t).

Theorem 9.1. (Walsh, Lecture Notes in Mathematics 1180, 1984)

If u0∈C∞, then u∈Ct
0,1/4−ε∩Cx

0,1/2−ε.

Three kinds of space-time white noise:

• Brownian sheet — W (t, x) = µ([0, t]× [0, x])

• Cylindrical/Brownian motion — family of Gaussian random variables Bt = Bt(h), h ∈ H a Hilbert
space, E[Bt(h)] = 0, E[Bt(h)Bs(g)] = (h, g)

H
(t∧ s)

• Space-time white noise dW (t, x) =
∂2W

∂t∂x
=
∑

k=1
∞

hk(x)dWk(t), where {hk} is assumed a Basis of the

Hilbert space we’re in — if {hk, k> 1} is a complete orthonormal system, then {Bt(hk), k> 1}-inde-
pendet standard Brownian motion.

Connection between the three: If H =L2(R) or H =L2(0, π), then

Bt(h)=

∫

∂W

∂x
h(x)dx,

and

Bt(x)=Bt(χ[0,X])=
∑

k=1

∞ ∫

0

x

(hk(y)dyWk(t))=W (t, x)
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9.1 A closer look

Consider g(u)≡ 1.

du= uxxdt+
∑

k=1

∞

hk(x)dWk(t),

where we assume that

hk(x)=
2

π

√

sin(k x).

Observe that, strictly, the series on the RHS diverges in L2. Now consider the setting of a Sobolev space

Hγ =Hγ((0, π)),

with

‖f ‖
γ

2
=
∑

k=1

∞

k2γfk
2, fk =

∫

0

π

f(x)hk(x)dx

for γ ∈R. Now consider

M(t, x) =
∑

k=1

∞

hk(x)Wk(t)∈Hγ ,

i.e.

E‖M ‖
γ

2 = t
∑

γ=1

∞

k2γ<∞

if γ <− 1/2.

u(t) =u0 +

∫

0

t

Auds+M(t),

where

A=
∂2

∂x2
:Hγ+1→Hγ−1.

Then

∃!u∈L2(Ω;L2(0, T );Hγ+1)∩L2(Ω;C(0, T );Hγ)

for all γ <− 1/2, so u is almost in H1/2 for almost all t.
We assume a Fourier point of view, so that

u(t, x)=
∑

k=1

∞

uk(t)hk(x)

and

duk =− k2uk + dWk(t).

Then

uk(t)=

∫

0

t

e−k2(t−s)dWk(s).

Next, note

Kolmogorov’s criterion: If

E |X(x)−X(y)|p<C |x− y |d+q

for x∈R
d, then X ∈C0,q/p−ε for all ε> 0.

Now, consider try to prove its assumption:

E |u(t, x)−u(t, y)|p = E

∣

∣

∣

∣

∣

∑

k=1

∞

uk(t)(hk(x)− hk(y))

∣

∣

∣

∣

∣

p

6
BDG

C

(

∑

k=1

∞
1

2k2
(1− e−2k2t)|hk(x)− hk(y)|2

)p/2

6
(∗)

C |x− y |(1/2−ε)p.
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where we’ve used the BDG (Burkholder/Davis/Gundy) Inequality, i.e.

E[MT
p] 6CE 〈M 〉Tp/2

,

where M is assumed a martingale, which we can achieve by fixing time t to T in the expression for uk

above. Next, note

E[uk
2(t)] =

∫

0

t

e−2k2(t−s)ds=
1

2k2
(1− e−2k2t),

also quadration variation if we fix time as hinted above.
Once we get to ( ∗ ) above, realize that we want

∑

k2δ−2<∞,

and usethe fact that

|hk(x)− hk(y)| ∼ |sin(k x)− sin(k y)|6C(K |x− y |)δ

for 2δ− 2<− 1, i.e. δ < 1/2, i.e. δ= 1/2− ε.
So altogether, we obtain E |u(t, x)−u(t, y)|p 6C |x− y |(1/2−ε)p. Thus

u∈Cx

1/2−ε−
1

p
−ε

=Cx
1/2−ε

.

9.2 Mild solutions

Our u above is “a solution” to our SPDE, but not in the variational sense defined so far. So we need a
more general idea of what a solution is, to subsume both concepts. If you have a general PDE

u̇=A(t)U ,

then u(t) =Φt,0u0. Then

u̇=A(t)u+ f(t)

gives us

u(t)= Φt,0u0 +

∫

0

t

Φt,sf(s)ds.

For example, if we have
∂u

∂t
= uxx,

then

Φt,0: f� ∫
0

t

G(t, x, y)f(y)dy,

where Greeen’s function is given by

G(t, x, y) =
∑

k=1

∞

e−k2thk(x)hk(y)

if

du= uxxdt+
∑

k

hk(x)dWk, u0 = 0.

Then

u(t, x)=
∑

k=1

∞ ∫

0

t ∫

0

π

G(t− s, x, y)hk(y)dydWk(s).

Now for

du=uxxdt+
∑

g(u)hkdWk,

we write

u(t, x) =

∫

0

π

G(t, x, y)u0(y)dy+
∑

k=1

∞ ∫

0

t ∫

0

π

G(t− s, x, y)g(u(y))hk(y)dydWk(s).

Then you define a mild solution to be a solution to the above integral equation.
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Now try

E |u(t, x1)− u(t, x2)|p ∼ E

∣

∣

∣

∣

∣

∑

k

∫ ∫

G(t− s, x1, y)−G(t− s, x2, y)hk(y)g(u(s, y))dydWk(s)

∣

∣

∣

∣

∣

p

6 E

(

∑

k

∫

0

t
∣

∣

∣

∣

∫

0

π

(G(t− s, x1, y)−G(t− s, x2, y))hk(y)gdy

∣

∣

∣

∣

2

ds

)p/2

= E

(
∫

0

t ∫

0

π

|G(t− s, x1, y)−G(t− s, x2, y)|2g2(u(x, y))dyds

)p/2

.

Then came Krylov (1996) and turned this “hard analysis” into clever “soft analysis” or so.

SPDE with space-time white noise 25


