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Example: Heat Equation. Suppose w € 2 is part of a probability space. Then chance can come in at

any or all of these points:

2
(%gt’x) = a(zx, )%u(f,x)—i—f(t,x, ) z€(a,b)
u(0,z) = o(,
u(tva) = z/Jl(tu )
u(t,b) = Pot,w)

1 Basic Facts from Stochastic Processes

Probability Theory Measure Theory

w — elementary random event (outcomes)

Q= w — probability space/space of outcomes Q — set

Random events < subsets of QD A Algebra ACP(Q) closed w.r.t. N/U/~.

Operations on events: U, N, A =Q\ A.
g:=0\Q
If A and B are random events, then AUB, ANB, A are r.c.

Elementary properties of probability: Measures (see below)

P(A)€]0,1], P(©2) =1, additive for disjoint events.
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Definition 1.1. A function u(A) on the sets of an algebra A is called a measure if
a) the values of u are non-negative and real,
b) w is an additive function for any finite expression-explicitly, if A=), A; and A;NA; = iff i # j,
then

n

n(A) = Z 1(As).

=1

Definition 1.2. A system F C P(Q) is called a o-algebra if it is an algebra and, in addition, if
(Ai)i=1,2,..., then also |J, A;€ F.

It is an easy consequence that (1), A;€F.

Definition 1.3. A measure is called o-additive if

M( Ai) = Z 1(As)

if the A; are mutually disjoint.

The above together form Kolmogorov’s Axzioms of Probability: A tuple (Q, F, P) is called a probability
space (§ a set, F a o-algebra, P a probability measure).

Lemma 1.4. Let € be a set of events. Then there is a smallest o-algebra F such that € C F.

Definition 1.5. A function X:Q — R"™ is called a random variable if it is F-measurable, i.e. for arbitrary
A belonging to the Borel-o-algebra B(R™), the set X ~1(A) € F.

Definition 1.6. Completion of F with respect to P: For simplicity, Q = (0, 1). P is the Lebesgue mea-
sure, F the Borel-o-algebra B(0, 1) on Q = (0, 1). F is called complete if it contains all subsets B of §2
with the property:

There are subsets B~ and BT from B(0,1) such that B~ C BC Bt and P(BT\ B~)=0.

This process maps (Q, F, P) to (Q, FF, P), where FT is the completion of F w.r.t. P.

Now suppose X is a random variable in (Q, F, P) in R". X~ YB(R")):={X1(A4): A€ B(R")} = {I:
X (') e B(R™)}. Hx is called the o-algebra generated by X.
One reason to use this definition of a random variable is this:

Lemma 1.7. (Doob-Dynkin) If F is generated by a random variable Y, then there exists a Borel func-
tion g such that X = g(Y).

1.1 Lebesgue Integral

Definition 1.8. X on (Q, F, P) is called simple if it is F-measurable and takes a finite number of values:

L1, L2y .eey Ty
Qi={w: X(w)=x2;}=X"(x;). Then the Lebesuge integral is

l;XdP:E:xJ%QJ

i=1

Definition 1.9. An arbitrary measurable function X on (2, F, P) is called P-integrable if there ezists a
sequence of such simple functions X,, so that X, — X a.s. and

lim X, — Xpn|dP =0
Q

n,m— oo
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Lemma 1.10. If X is P-integrable, then
1. There exists a finite limit

/XdP— lim X dpP.

2. This limit does not depend on the choice of the approrimating system.
If X is a random variable X: — R". Let B be Borel’s o-algebra on R"™. Then
pux( A )=P(X YA))=Pw: X(w)€A)
ke"s’

is called the distribution function of X.

Theorem 1.11. /Qf(X)dP: o f(z)px(dz).

Thus

E[X]= | Xpx(dX).

Example 1.12. Let X have values x1, ..., 7,. Q=X "1(z;). px(z;) = P(Q;). Then

1= wipx (@) =Y mP(

1.2 Conditional Expectation

¢ and 7 are are random variables with a joint density p(z, y).
Motivation:

E[§|n=y]=/:vp(:v|y)dw

P(ANB)

P(AIB) =5

Now suppose X is a P-integrable random variable (2, F, P). G is a o-algebra on Q, G C F.

Definition 1.13. Let n be F-measurable random variable. If there exists a P-integrable G-measurable
function & such that for any bounded G-measurable function ¢

E(&p) = E(ny),

the & will be called conditional expectation of n and denoted E[n|G].

Properties of conditional expectation:

1. If 7 is G-measurable, then E[n|G] =1

Proof. (1) By assumption, 7 is G-measurable. (2) Let ¢ be an arbitrary G-measurable function.
Then

E(ne)=E(E(n|G)¢) = E(ng). O
Prove that the conditional expectation is unique.
3. If f is bounded, G-measurable, then
E[f(w)X|F](w) = f (W) EIX]|G] (as.)
4. Let g(w, X) be an F-measurable function. Then
Elg(w, X)|o(X)] = Elg(w, ¢)|o(X)][e=x-
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5. Let G1 C G be og-algebras. Then
E[E[XG]|G1] = E[X]G1].

This property can be memorized as “Small eats big”.

Example 1.14. Q= Un Qn, QlﬂQJ =@. Let £= {Ql, QQ, } Then 0’(5) = {Q“ UQZ'ZU } QOZQ \ 07,

Let € be a random variable
E[f1q,
=>" P%Q?)Jmi. (1.1)

Proof of (1.1):
a) The right-hand side is a function of indicators of ;= it is o(&)-measurable.
b) E[E[£|0(E)]g] = E€g for all g which are o(&)-measurable.
Suppose g =1q,. Then

E[rhs ]_Qk] = E|: P[Jflﬂk] 1q :| f;;]zk (/Q flgk

rhs: E(€lq,). What is a o(&)-measurable function? Answer: It is a function of the form

§=§:yﬂm-

What?

1.3 Stochastic Processes

Assume that for all ¢, we are given a random variable X; = X;(w) € R™. t could be from {0, 1, 2,3, ...} or
from (a, b), it does not matter. In the former case, X; is called a sequence of r.v. or a discrete time
stochastic process. In the latter, it is called a continuous time stochastic process. If ¢t € R?, then X, is a
two-parameter random field.

Motivation: If X is a random variable, ux(A)=P(w: X (w) € A.

Definition 1.15. The (finite-dimensional) distribution of the stochastic process (Xi)ier are the measures
defined on R"*=R"®---R"™ given by

pty, 1 (F1R@Fa® - @ Fy) = P(w: Xy, € Fi, ..., X3, € Fy,),
where the F; € B(R™).

1.4 Brownian Motion (Wiener Processes)

Definition 1.16. A real-valued process X; is called Gaussian if its finite dimensional distributions are

Gaussian < (X4, ..., Xy,) ~ N (k).

Remember: A random variable ¢ in R* is called normal (multinormal) if there exists a vector m € RF
and a symmetric non-negative k x k-matrix R = (R;;) such that

<P(/\) — E[ei(g,)\)] — (M, A) = (RA, ) /2
for all A € R¥, where (-, ) represents an inner product, m = E[{] and R=cov(&;, £;).
Independence: Fact: Y = (Y1, ..., Y,,) are normal vectors in R¥ with (m;, R;). Then elements of Y are
independent iff
= H (Y
where A= (A1, ..., \n), where \; € R™ =t

Fact 2: {=((1, ...y Gm) is Gaussian iff for any A € R™,

= Z AiGi
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is Gaussian in 1D.

Definition 1.17. Brownian motion Wy is a one-dimensional continuous Gaussian process with
E[Wy =0, E[WW,]=tAs:=min(t,s).
Alternative Definition:

Definition 1.18. Brownian motion Wy is a Brownian motion iff
1. Wp=0
2. Vt,s: Wy — Wy~ N(0,t— s)
3. Wy, Wi, — Wy, ... are independent for all partitions t1 <to <tz <---.

Yet another:

Definition 1.19. The property (8) in Definition 1.18 may be replaced by
3. Wy, — Wy, _, is independent of Wy, . — Wi ...

Definition 1.20. FV = a({Ws,, W, ...:5; < t}).

Theorem 1.21. Brownian motion is a martingale w.r.t. F}¥ <
EW|FY =W,

for s<t. (This is also the definition of a martingale.)
Remark 1.22. o(Wi,, Wh,, ..., Wi) = o(We,, We, — Wy, oo, Wy, — Wi 1) (knowledge of one gives the
other—add or subtract). This is important because RHS is independent, but LHS is not.
Corollary 1.23.

1. E[W2 =t. (So W; grows roughly as \/t.)

2. WZ/t—0 almost surely.

Proof: By Chebyshev’s inequality, P(|Wy/t| >c) < E[|Wi/t|?]/c*=t/t?c* =0 as t — .

Law of iterated logarithm:
0 Wi ~ Wi

e /2tloglog(1/t)’ vt V/2tloglog(t)’

limsup Y =1, limsup ¢ =1,
t—0 t—o00
liminf p?=—1, liminf @{°=—1.
t—0 t—oo
Continuity and Differentiability:
e W, is continuous.

e W, is nowhere differentiable.

Spectral representation of Brownian motion:

Theorem 1.24.

00 N
W, = tno—i—z Npsin(n t)%tno—i—z nesin(nt),  where
n=1 n=1

N ~ N(0,2/7n?) (n>1),
o ~ N(O,l/Tr).
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Proof. Consider ¢ € [0, 7].
Wt =W — %WW for t €10, 7].

Then
W(t)=>" nusin(nt),

n=1

where
= % / W (t)sin(nt)dt  (n>0)

and 0

_W(m)

o =——"

First fact: n, are Gaussian because linear combinations of normal r.v.s. are normal.

k+mn,

k=n>0.

s ™ O
Eﬁkﬁn:%/ / (tAs—ts/m)sin(nt)sin(ks)={ 2
™ Jo Jo s
For n=0,
W3nr 1

E[n] = ET T

2 The It6 Integral and Formula
Suppose we have some system described by X; that has some additive noise &: V; =X+ &. (t=1,2,3,...)
The &1, &9, ... are assumed to be

1. iid

2. &NN(/L,U2)

If the & satisfy the first property, they are called white noise. If they satisfy both, it is Gaussian white
noise.

If we now consider W, &,=Wy=0, & =Wy, — Wo, Ea=Wy, — Wy, ..., then
1. holds
2. holds
A popular model in dynamics is
Xiya=AX;+B+&411
for, say, the dynamics of an “aircraft”. Another possibility is modeling the price of a risky asset
Xiya=Xi+ pXiA+ 0 Xy(Wip1 — W),

where p is the individual trend of the stock, while o is market-introduced volatility. Equivalently, we

might write
Xipa—Xi
A

and then let At |0, such that we obtain

Wit1— W,

Xi—oX
KAt — OAg A

X = uXi+ UXtWta

which is all nice and well except that the derivative of white noise does not exist. But note that there is
less of a problem defining the same equation in integral terms.
Step 1: Suppose we have a function f(s), which might be random. Then define

()= F(sh) (W, — W),
k
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But what happens if f(s)=W,. We get the term
Wsk(Wsk+1 - Wsk)
Or is it
W,

5k+1(WS Wsk)?

k+1
Or even

W5k+1+5k (Wsk+1 - WSk)?
2

In the Riemann integral, it does not matter where you evaluate the integrand—it all converges to the same
value. But here, we run into trouble. Consider

E|W5k(W5k+l_W5k)|2 :/é E|W5k+1(W5k+l_W5k)|2

| N
E|W5k|2E|W5k+1_W5k|2 E|W5k—1(W5k+l_W5k)|2

[ b
Sk(SkJrl_Sk) E|W5k+l+5k(WSk+1_WSk)|2'
2

Problem: Compute each of the above expectations, and show they are not equal.

2.1 The It6 Construction
The idea here is to use simple functions:
f(S) = Z ei(w)l(ti;ti+1)(s)7
i=0

where ¢; is f,};v—measurable, where f,};v =o(Wsy,..., Ws,:8: < 8)

=4

e; = ei(WT, re [0, tl])
=4
e; is “adapted” to ftviv.

Definition 2.1. I(f)= Z ei(Weipy — Wey).
i=0
Properties:
L E[(f)]=0
Proof:

E[I(f)] = ZEei(Wti+1_Wti)
1=0

= > B(E(ei(Wi,, — Wi)| FY))
=0
= Y E(E[(We,, — W )IFY))

=0
n

= Z E(eiE[Wti+1 - Wtz])

1=0
= > E(e;0)=0.
1=0
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N T
BIUP = 3 Bl —t)= [ Blr)Pds
1=1

= E{ Z ei(Wiy — Wti):|2

Y BV, WP - Bl (W~ W)W, W)
= B(E(@E(Wi,, — W)|F))

— E[e(tis1 —t).

3. I(f) is linear.

Next: If f(s) is only F¥-measurable (but not a step function), and if fOT E f?(s)ds < 0o = could be
approximated by a sequence of step functions f,(s) — f(s).
[Insert lecture6.pdf here, courtesy of Mario.|
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2.2 Itd’s Formula

Suppose we have a partition of a time interval (0,7T) as to =0, t1, t2, ..., tn,=T. At; =t;41 —t;. We assume
max At; — 0. Also, we assume we have a function

f=1), Afi=fltis1)+ f(ta).
a) If f= f(t), continuous, bounded variation. Then
n—1 n—1
: 12— 1 _ N
lim Z::o A fi] _mathntliHOmaX|Afz| Z::o IAfil  =0.

max At;—0
—0

variation—bounded

b) If W=W/(t) is Standard Brownian Motion, then

n—1
lim > |AW;*=T (in L? and in probability).
=0

max At;

Proof. We need E|Y |AW;]?|—T|*>—0. So

E(( 3 (AWi)2)2 2y (AWZ-)2T+T2>

i

E| Y AW HAW,|2 = 2T% 4+ T?

0,

n—1
E| > AW Y AW PAW; 2 - 12
i=0 i+
= 3 |ALP+> ] AtiAL - T?
i iy )
23" |Ati|2+<z |Ati|) 7

23 " |At[* < 2max {At;} - T—0.

So we essentially showed:
n—1
S AW — T,
i=0
(dW)? — dt,

dW — Vdt. (not rigorous)

2.2.1 Deriving from the Chain Rule
if t=x(t)€C! and F = F(y) € C'. Then

d ! I
@)= F(z()z'(t).

Alternatively,

Then
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First of all, there is no “Stratonovich Formula”. Suppose W" =W (double arrows: uniformly), then

X"(t) = X(O)—I—/O A(s)ds—l—/o B(s)W"(s)ds,
= [ HXm)/(s)ds
X(t) = / A(s ds+/ B(s)odW(s).

Stratonovich Int.

F(X™t) = F(X(O))+/ F'(X"(s ))A(s)ds—i—/ot F'(X™(s))B(s)W™"(s)ds

0

FXO)+ | "X () As)ds + / "X (5)B(s) o (s)AW ()

=
fa
I

In particular,
t t
X=W({t)= / lodW(s), F(y)=vy? / W(s)odW(s) = %WQ(t).
0 0
Remark 2.2. It6 integral is a martingale, Stratonovich is not. Also: there is no connection between the
two in the non-smooth case.

Now, let’s see what happens for Ito, again starting from a process X (t) given as

t t
X(t) = X(0) +/ A(s)d8+/ B(s)dW (s).
0 0
Now, what is F(X (¢))? Let’s look at a Taylor expansion of

F(X(tiv1)) — F(X(t:) = F'(X(t:)) Azi + %F”(X(ti))(Axi)Q + () (Azy)?
~(At)3/?

So, in continuous time

F(X(t)) = ZAF

+/0th s+1/tF"Xs (dX(s))?
_ )+ /0 FY(X(s))A(s)ds + / F/(X () B(s)W (s) + 5 /O "R (5)) B2 (s)ds

Theorem 2.3. If

X(t):X(O)+/O A(s)ds+/0 B(s)dW (s)
and F € C3, then

no| —

/0 " F(X (5))B2(s)ds.

Now if € C3(R", R"),then
t t
X(t)=X(0) +/ A(s)ds+ / B(s)dW(s) e R",
0 0

where we recall that W € RP with all p components independent. It6’s Formula in multiple dimensions
takes the form

OF, OF OF
Fu(X (1) = / Z kAd +Z/ kBl AW, + / Z . al; ZB”B]lds
J
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Example 2.4. If F(z)=2? and
t
X:/ dW (s),
0

then .
/ W ()T (s) = 2 (W2(1) 1)
0

Example 2.5. If AF =0 (i.e. F is harmonic), then F(W(t)) is a martingale.
2.2.2 SODEs
t t
X(t) = X(0) +/ b(s,X(s))ds+/ o(s, X ()W (s)
0 0

or, equivalently
dX =b(t, X)dt + o (t, X)dW (t).

Example 2.6. Ornstein-Uhlenbeck Process. The equation
dX(t)=a X (t)dt+bdW ()
has the solution

t
X(t)=e"X(0)+b / =AW (s).
0
Proof. Consider

t
X, = eX(0)+b / et =)W,
0

t
= e‘”X(O)—i—be“t/ e~ 45dW,
0

= e X(0)+be*Z;
= g(f,Zt) with dZtZG_atth.

Ito’s Formula then gives

_ 994, . 9 10°9 472
ax, = Far+Lazi+ 555z
= X(0)ae*+berdZ;+0

= X(0)ae* +be e *tdW,

= X(0)ae+bdW,.

Example 2.7. (Geometric Brownian Motion)
dX(t)=a X (t)dt + b X (t)dW (¢)
is solved by
X(t) _ X(O)e(“_b2/2)t+bw(t).
(Check this by It6.)

Homework: Solve
dX(t) = (a1 4 axX (t))dt + (b1 + b2 X )dW (2).

Theorem 2.8. If |bi(s,z) —bi(s,y)| +|oik(s,x) —0ik(s,y) <Clz —y| (a Lipschitz condition) and |b;(s,
z)| + |oi k(s, 2)] < C(1 +|X]|) (a linear growth condition) and X (0) is independent of W and E|X(0)* <
00, then there exists a solution X (t) that is continuous in time. X (t) is measurable w.r.t o(X(0), W(s),
s<t) and

E[sup |X(t)|2} < o0.

t<T
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3 Some SPDEs
U= A Uzy, u(0,z)=1up(z).

(a > O—ellipticity: if it holds, then the equation is called parabolic) General solution:

1 2z — y|? ) o
u(t,x)= exp| —————— |u dy = Flug(x + v2r W (t
(t,z) rwat/}% P( dTat o(y)dy [uo( (t)]
(Feynman-Kac formula—averaging over characteristics)

Monte-Carlo simulation:
arca(A) — #hits in a set A

~ #hits in a surrounding square’

More general parabolic equation:
u(z,t) =a;;D;Dju(z,t) + b;Diu(z,t) +cu+ f  (t>0,2€RY)  u(0,2)=wuo(z)

This equation is parabolic iff a,;y; y; > aly|? for all y € R? (the ellipticity property). If the highest order
partial differential operator in the equation is elliptic, then the equation is parabolic. (The elliptic equa-
tion would be

a; ;D;D ju(z,t) +b;Diu(z,t) +cu+ f=0.)
Now, onwards to Stochastic PDEs. A model equation is
du(t, ) = auy(t, x)dt + oug(t, z)dW;.

Recall from geometric Brownian motion:

du(t) =au(t)dt + ou(t)dWy, u(0)=0.

<o (a- % ) o)

E[?(t)] = u%exp{ut}E[exp{2aWt —o*t?}].

The solution is

and

Now consider
E[exp(bWt — %b2t>-‘ =1,

=]

which is an example of an exponential martingale, which satisfies the general property

Elpt)|F=p(s) for s<t, p(0)=1.
We find

Proof. By Ito’s formula,
t
dp(t)=bp(t)dW, = pt)=1+ b/ p(s)dWs.
0
O

Here’s a crude analogy: In stochastic analysis, p(t) plays the role of exp(t) in “regular” real analysis.
Going back to our above computation, we find

E[u?(t)] = ugexp{ut} Elexp{20W; — 6%t?}] = upexp{2a t}.

So we find for geometric Brownian motion that it remains square-integrable for all time. (Consider that
this is also the case for the regular heat equation.) Now, let’s return to our SPDE,

du(t, z) = auy(t, x)dt + oug(t, z)dW;.
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We begin by applying the Fourier transform to u, yielding .
di = — ay?i +ioyi(t, y)dW;
i =14(0,y)exp(— (a—o0?/2)y*t) +iyoWy).
Parseval’s equality tells us

[ ute.o= [ttt Pay <

iff @ —0?/2>0. In SPDEs, first order derivatives in stochastic terms has the same strength as the second
derivative in deterministic terms. The above condition is also called super-ellipticity, and the whole evolu-
tion equation is then called super-parabolic.

There’s another example of SPDE in the lecture notes:

du(t, z) = aug,(t, x)dt + ou(t, x)dW;.
Here, the superellipticity equation is

2

a—%>0 < a>0.

For the homework, see the notes as well. One of these problems is to consider the more general equation
du= aijDiDju + b;D;u + cudt + (aikDiu + Vk)de(t) i,j=1,....,d, k=1,2,3,...

where we have

011 012 -
o= :
0d1 O0d2 -
We have to assume
oo
JU*:E O k0 jk < 00, E I/;%<OO.
k=1 k

A substitution that sometimes helps in the deterministic case is illustrated below:

@:a(t,x)um +cu

ot
Then we set v(t, ) =e~“*u(t,x) and obtain
dv(t,z) =—ce “u(t,x) +a(t,z) ey, +ce” u=a(t,z)uvy,.

For the stochastic case, note:
dp(t) = p(t)odWs.

Then, let
n(t) _ e—UW(t)—(a2/2)t
dnt) = —n(t)od
pH(t) = n(t)exp(o?t)
dp~t(t) = —nt)odWiexp(a?t) + n(t)exp(o?t)o?dt = — p~lodW;+ o?p~1(t)dt

du(t,z) = au(t,z)dt+ou(t,z)dW;
u(0,2) = wup
’U(t, fE) — e—UW(t)+(a'2/2)tu(t, CE)

P (1)
d(u(t,z)p~Y(t)) = avydt +ovdW; —vodW; + o?vdt — ovdt

= avggdt.
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Let W (t) be a Wiener process independent of W.
o(t,x) = E[uo(t—i- \/%Wt)}
Then
u(t,z) = E{uo(:v + \/%Wt)]exp(o2Wt —(0%/2)t
E{uo(:v + \/%Wt)exp(ath - (02/2)t’_7-'tw}.

Example 3.1. Now consider
du(t,z) =aug,(t,z) + ouy(t,x)dW; < 2a—0%2>0.

(Remark: There is not a chance to reduce to 0yt = atiz,.)
v

Y (@ —02/2)v,4(t)

u(t,x) = v(t,z+0oW(t)) then wu verifies equation.

)

ot,2) = Bluo(z+v2a—a?W ()]

u(t,x) = E[uo(x—l—Wt—i-\/th)’fg/V]

(Note that, as above, the point of the conditional expectation is not measurability w.r.t. time (...), but
with respect to W and not w.r.t. W.) By a naive application of Ito’s formula, we would get

u(t,x) = v(t,z+oWy)
v(t,x) = u(t,x—oWy)
du(t,z —oWy) = 02/2uys(t,z — oWy)
2

—oug(t,x —oWy)dW; = %vz 2dt — ov  dW,.

But this is wrong because Ito’s formula only applies to deterministic functions of brownian motion. The
function w itself is random, though, so it does not work. To the rescue, the Ito-Wentzell formula.

Theorem 3.2. (Ito-Wentzell) Suppose
dF(t,z)=J(t,z)dt+ H(t, z)dW;
and
dY (t) =b(t)dt + o (17)dW,.
Then

dF(t,Y (t))=J(Y(t)dt + H(Y (¢))dW, + F.(Y (¢))bdt + %QFM(Y(t))dt +oF,(Y () dW,+ H.(t, Y (t))o(t)dt
diF

For comparison, if we suppose dG(t,x)=J(t,z)dt and work out the reqular Ito formula, we would find

AG(t,Y (£)) = J(t, Y (£))dt + Go (Y (£))b(t)dt + %Gmcﬂdt + Go(Y)AW,.
d:G

4 PDE/Sobolev Recap
e Spaces: H) = H)(R%)
e Heat equation: HJ, Ly(R%), Hy .
e an SPDE: HJ, Ly(R%), Hy "



PDE/SoBoLEV RECAP

We will need:
e Gronwall Inequality: ...

e BDG Inequality (p=1)
1/2

E <CE

/0 " 2w

lab| < 5a2+lb2.
€

¢
sup / g(s)dWs
0

t<T

e c-inequality

o Ito-Wentzell formula.

4.1 Sobolev Spaces HY

Definition 4.1. Suppose f € C5°(RY). Then

Fly)=—1

(27T)d/2 /Rd e*imyf(df)dx.

[ rpa= [ iy

9=y [ arwprii @,

a norm. Then H?2 is the closure of C§° in the norm || - ||
§(x), 6 (x) = const, 6 € H? for what 7? (y<—d/2?)
HY= Ly, HJ* C HJ? if 71> 7.

Sobolev embeddings: H;er/? C C%7if 0< v < 1. Alternative (but equivalent) definition:

Hy={f:f,Df,..D"f e L?}

Then we have Parseval’s Inequality

and define

¥

with

L~ 11+ D DA e
k=1

HJ] is a Hilbert space with

(Fr0),= [ (IR ()7,

HJ is dual to H, 7 relative to L2 (vy>0) Because if f € Hy and g€ H, 7. Then

_ ~v/2 ¢ ﬁ
(0= [, 0+ WP F ) 2 <Ll

All this by S.L. Sobolev (1908-1989). Derived Sobolev spaces & generalized derivatives in the 1930s.

4.2 SPDEs in Sobolev Spaces

4.2.1 Classical Theory

Let’s consider the heat equation in (H3, Ly, Hy '), namely

ut:uxac+f; u|t:0:u0-

Theorem 4.2. If u is a classical solution and u(t,-) and ugp are in C§°(R), then

2 T 2 2 T 2
sup [lu(t) |2+ / |u<t>||1dt<c<T><|uo|o+ / |f<t>||_1dt>.

X

15
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(Note the slight abuse of notation with |[u(t)|,-)

/u%dx = /uumdx—i—/ufdx |/udx

I
dv
at

o) = w0 = [ (@l Jas+ [ s +2 [ vis)as
o) +0 [ fuis < v+ [l 71 ds+2 foas+ G [ uifascn [ as

Proof.

= luallg+ (u, fo) £20(t)

N

t t
o(®) +%/ lu(s)|2ds < F+2/ o(s)ds
0 0
¢
v(t) < F—|—2/ v(s)ds
0
sup v(t) < F.
where v(t) = %||u(t)||(2) and all the constant-tweaking is done with the e-inequality. O

4.2.2 Stochastic Theory
du= (a(t)ugy + f)dt + (o(t)uy + g)dWr,

where 0 < § < a(t) — 0%(t)/2 < C*. f,g adapted to FV, u, f, g€ C§°, u|s—o =uo independent of . Then
2 T 2 2 r 2 T 2
E[sup |u(®)[l,]”+E | [u(®)]1dt < E| [[uolly + ; [ £11Z,dt + ; lgllgdt -

Step 1: WLOG, 0 =0 (check at home!). Use the substitution

¢
v(t,x)—u(t,:zr—/ O'(S)dWS>.
0
Step 2: Tto formula for |u(t,z)|?.

t t t ¢
0 0 0 0

—llul? ellulF+CIAIZ,

Step 8: Take expectation, which kills the dWy term, giving a bound on
r 2 2
E/o ullids and E|u(t)|];.

Step 4: Take care of the sup, which is outside of the expectation, but needs to be inside.

" T 1/2
sup/ gudW‘ <CE</ (g,u)édt) <CFE
0 0

t

E

T t
sup/o ||g|§dt]<€ESUPtIIUI2+C(€)/O lgllgds.
t

5 Nonlinear Filtering (“Hidden Markov Models”)

State/signal X;: Markov process/chain. Observation Y; = h(X;) + gV (t). State is not observed directly.
The inf about X; comes “only” from Y, s <t. Find the best mean-squares estimate of f(X;) given Yj, s <
t, where f is a known function. Claim: This estimator is given by

fi = E[F(X)|F].
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Proof. Let ¢g; be an F} -measurable square-integable function < E[g?] < o0, g:= g(Y{).

Elfi— g = E[f(X:)— ft+ft g9i)?

Lf
= E[f() - J(XDP+Elf—gl*
> E[f(X)) = f (X)) +2E[(f(YD) = ) (fi — 90)]
= E[ [( (X ) ft)(ft gt)|]:ty]]:0~

Geometric interpretation: conditional expectation, with respect ot the o-algebra G is an orthogonal pro-
jection on a space of G-measurable functions.

fe = BIf(X)|F]
= /f(x)P(Xtede-'tY).

State:
dY; = A(X())dt + g(Y;)dV,,

We assume W; and V; are independent Wiener processes. X (0) = zp, Y (0) = 0. Further f = f(z), with
sup B[f(X¢)?] < oo

ft = E[f(Xt”]'?/]

Zakai Equation of nonlinear filtering:
f _ J f(x)u(t,z)d
K J u(t,z)dx
where u(t,x) is a solution of the SPDE

du(t,z) = [%Uz(x)u(t, )z — (b(x)u(t, x))w}dt + h(z)u(t, z)dYs,

~ T 1 (7
P(4) = /Aexp —/0 hds—§/0 h2dV SdP

dy; = dV,.

where h=g 1 A.

If we add another term to the state process,

AX, = b(X)dt + o (X (1)dAW, + F(X(1))dV,,

then we get
du(t,z) = H%Uz(x) + pz}u(t, ) wx — (b(z)ult, x)), |dt — (pu(t, ©))dY; + h(z)u(t, z)dY;

as the corresponding Zakai equation. (not sure about this last equation)

6 Solutions of PDEs and SPDEs

6.1 Classical Solutions

Here, we assume that u is twice continuously differentiable in = and once in t.

u(t,z) =a(r)ugy, w(0,z)=mu(x). (6.1)
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6.2 Generalized Solutions

First, let us talk about generalized functions. Suppose we wanted to find a derivative of f(z) = sign(z).
Classically, f’(0) does not exist. Let g be a differentiable function and ¢ very smooth with compact sup-
port. Then

[re@xas == [fa)oteias.

If f is not differentiable,

[r@e@a=— [ola)¢(@)a
for all p € C§°(R™).
Now reconsider the heat equation in a different form, namely

u(t,z) = (a(z)ug)z, w(0,2)=1up(x). (6.2)

A weak general solution of (6.2) is a function u € H3(RR) such that for all ¢ >0

(u(0) ) = (a0 )~ [ " (s 2)ds

for every function ¢ € Cg°(R).
Going back to (6.1), we find that a generalized solution is also a function from Hj3 so that

t
(u(t). )= (0. 9) = [ (1 (ap). s
for all p € C§°(R).
This definition is equivalent to saying that

u(t) =uo+ /a Uy ds

as an equality in H 1.

6.3 Mild Solutions

Let us now consider yet another different equation, namely
U(t, ) =uzx(t, ) +sin(u(t, z)), u(t,z)=uo(x). (6.3)

Direct differentiation shows

u(t,a:):/R k(t,x—y)uo(y)dy—i-/o /Rk(t—s,x—y)sin(u(s,y))dyds,

where k is the heat kernel
1 _le—yl?

k(t,z—y)= _47Tte a

Write this now in SPDE form

A mild solution is a solution u that satisfies

ulta) = [ Kt~ pus()ay + / [ K== ) s, s

6.4 Generalization of the notion of a “solution” in SDE
OSDE
AX, =b(X (£)dt + o (X (£)dWs,  Xo= 0.
Given b, o, g, (Q, P), W. If b and o are Lipschitz-continuous and
)| <KQ+]z]), |o@)|<K1+]z]) = Hu
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Tanaka’s Example shows an OSDE that can’t be solved in this way:
dXt = sign(Xt)th.

This equation has no solution for fixed (€, P), W. One could find (Q, P), W such that dX, =
sign(X;)dW;. The mechanism for this is Girsanov’s theorem, by which you can kill the drift and obtain a
different equation.

If you specify the measure space and the Wiener process, you are looking for a probabilistically strong
soltuion. If you allow yourself the freedom of choosing these as part of your solution, your solution is
probabilistically weak.

7 Existence and Uniqueness

7.1 Scales of Sobolev Spaces
Simple Example: x € (0,b), A:=92, A:=1—A. H:=L?0,b). For smooth functions f, clearly

b b 9
(A D= (=80 D= [ PG+ [ o= 11,

Let us consider the basis
{mk(ac) = %sin—w(k ; Lz },
which is an ONS in H. Observe

Amk_(l_A>mk_mk+[M}2mk_(H[mr)mk.

Define

as the eigenvalues of A w.r.t. the eigenbasis my. For s € (— 00, 00), we can construct an arbitrary power of
the operator by defining its effect on the eigenbasis my by A*my:= Aimy. Further, we may observe

(AL, )= D0 M= (A2 f a2 ) = [
k

’ ’ H
where

fk:(fvmk)H

are the Fourier coefficients. Then the Sobolev Space

s 2 s/2 2
H5(0,b) = feH:||f|\S::HA fHH<oo.
For s <0, define
H5(0,b):= A—°H.

We may also define

| £l := Z (/\z/ka, )\Z/ka) It was Z <)\Z/2fk:7 )\‘Zlfk>on the board, but that seemed wrong.

k>1 E>1

The spaces {H3(0,b),s € R} form the scale of spaces H5' C H5? if s1> so.
Properties: Let s1 > so. Then

1. H®'is dense in H*? in the norm || - H52'

2. H* is a Hilbert space (f,g),= (AS/2f7A5/29)0-
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3. For s >0, ve H*(0,b), uc H*(0,b), denote
[u,v]:= (A%,A‘su).
N~~~

€eH €H

a. If v also belongs to H, then [u,v] = (v,u). Proof: A® is self-adjoint in H.

Remark 7.1. We will typically work with three elements of the Sobolev scale-the middle, e.g. L?, then
the space where the solution lives and finally the space that the solution gets mapped to by the operator.

Important mnemonic rule:
8” . HS — HS*H
oxn’ ’

A2

7.2 Normal triples/Rigged Hilbert space/Gelfand’s triple

Definition 7.2. The triple of Hilbert spaces (V, H, V') is called a normal triple if the following condi-
tions hold:

1. VCHCV'.

2. The imbeddings V— H — V' are dense and continuous.

3. V' is the space dual to V with respect to the scalar product in H.
Note that we always assume that H is identified with its dual.

Example 7.3. Any triple H"7, H*, H*~" for >0 is a normal triple.

7.3 Actual SPDEs

du(t) = (Au(t) = F)dt+ S (Meu(t) + ()W, w(0) =uo € H.
k=1
We will assume that A:V — V'’ and My:V — H, and further f € L?(0,T;V’) and gy € L?(0,T; H). We fur-
ther assume f(t) and gx(t) are F}/V-measurable, and V = H3(R%), H = Ly(RY), V'= H~Y(RY).
Au= Z (a™I(t, 2)uz,)e, + Z bi(t, o) uy, + c.
J i
Myu= Z otk (t, x)uy, + hE(t, 7)u.

We might also want to consider

Au= Z a0, Mpu= Z 0.,0%u.

lal<2n laf<n

8 Existence and Uniqueness

We assume we have a normal triple V C H C V'. Consider
du(t) = (Au(t) + f(8)dt + (pru(t) + gr(t))dWi(t), (8.1)

where we assume that W, are infinitely many independent Brownian motions, u(0) = ug, A: A(t): V — V7|

i p(t): V— H, .
> E/ lrep 7yt < oo,
> 0
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FELXAQx (0,T)); V'), ie.
r 2
B[ 1@<
0

oo T
> E/ [l gx(t)]],dt < .
k=1 0

If Ais A(t,w), then A(t)yp is F}V-adapted, and likewise for jiz.

g€ L2(Q2 % (0,T); H) and

Au = a(t,z)u(t, )y,
e = op(t, x)u(t, ).,
V= H(R),
H = IR,
V' = H-LY(RY).

Saying that A(t)¢ € V' is F}"-adapted means that Vi € V, [A(t)e, ¥] is an F}V-adapted random variable.
Consider Pettis’ Theorem, which states that

Suppose we have a measure space (2, F, P). Suppose X and Y are Hilbert spaces. Then
o f(w):Q— X is F-measurable iff {w: f(w)e ACX}eF

is equivalent to
¢ (g, f(w))y is F-measurable for all g € X where X is a dense subset of X.

u is a solution of (8.1) iff for all ¢
u(t) = o+ / (Auts) + S5+ 3 / (uxu(s) + gi(s))dWi(s)
with probability 1 in V', that is
t t
[u(t), ) = [0, ] + / [Au(s)+ f(s) s + 3 / L+ g QAW (s).

If uweV, we would have

(ult) ) = (0 D)+ [ 1) + 7). s+ 2 [ (et g )W),
k

Theorem 8.1. In addition to the assumptions we already made, assume

(A1). 36 >0 and Cy >0, so that
30> 0,C0>0:2[Ap(t), o] + Y [l |y, <=8l @lly + Collo 13-
k

(“coercivity condition” < superellipticity)
(A2). | Aelly < Callelly-
Then there is existence and uniqueness for the above equations.
That means there is a u € L?(Q: C([0,T]); H) N L*(Q: C([0,T)); V), moreover
2 T 2 2 r 2 T 2
Bsw (o) + £ [ fuoljae <O uoli+ [ 171503 [ Lol
~X k

t

Interpretation: If H = L? V = H' , u(t) is cont. in L? and has one derivative in x which is square-inte-
grable. (We might have also used H = H' and V = H?, in which case u is cont. in H! and has two deriva-
tives which are square-integrable.)
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Now consider the following fact leading up to the energy equality: Suppose we have a function u(t) €
L?(0,T) and a generalized derivative u/(t) € L?(0,T) = u(t) is continuous on [0,7] and

T
u(t) = /0 tu (s)ds,
lu(t)|> = 2/0 u(s)u’(s)ds.

Proof: Homework.
In the infinite-dimensional setting, we have a very analogous statement:

Suppose u(t) € L3([0,T]; V) and u'(t) € L2([0,T]; V"). Then u(t) € C([0,T]; H) and
) ¢
Ol =2 [ [u/(s) u(s)as.
[Lectures 14-15 not typed, notes available from Prof. Rozovsky]|

[April 10, 2007, Lototsky, Lecture 16]

9 SPDE with space-time white noise

du = ugdt + g(u)dW (¢, x)
on 0 <z <7 with

u|t:0 = Uuo,
u|m:O:u|m:7r = 07
ut|z:O:ut|x:7r = 0.

Two different ways of writing this equation are

ou  O%u O*W
o = oz T W g

or

du =g odt + Y g(u)hpdWi(t).
k=1

Theorem 9.1. (Walsh, Lecture Notes in Mathematics 1180, 1984)
If ug€ C*, then ue COY4=enc%1/2=¢,

Three kinds of space-time white noise:
e Brownian sheet — W (¢, z) = u([0,¢] x [0, z])

e Cylindrical/Brownian motion — family of Gaussian random variables B; = B(h), h € H a Hilbert
space, E[Bi(h)] =0, E[By(h)Bs(g)] = (h, 9) 5 (t\5)

e Space-time white noise dW (¢, z) = gj—avz =502, hi(x)dWi(t), where {h} is assumed a Basis of the
Hilbert space we're in — if {hg,k > 1} is a complete orthonormal system, then {B(hg), k > 1}-inde-
pendet standard Brownian motion.

Connection between the three: If H= L*(R) or H= L?(0, ), then

B = [ D)z,

and

Bi(#) = Bilxio.x) =Y / " () dy W) = W (£, 2)
k=1 Y0
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9.1 A closer look
Consider g(u)=1.

du=1ugzdt + Y hg(z)dWi(1),
k=1

hio(z) = \/%sin(k;v).

Observe that, strictly, the series on the RHS diverges in L2. Now consider the setting of a Sobolev space
HY=H"((0,)),

where we assume that

with

o0

IF12=5" k952, fo= / F(@)hn(2)dz
for v € R. Now consider =1

M(t,z)= i hi(x)Wi(t) e H7,
k=1

ie.
BIM|2=t> k*7<oo
=1
if y<—1/2. !
t
u(t)=u0+/ Auds+ M(t),
where 0
0 +1 ~1
A:W:H’Y — H” .
Then

€ LA(Q; L2(0,T); HY YN LA(Q; C(0,T); H)

for all v < —1/2, so u is almost in H'/2 for almost all t.
We assume a Fourier point of view, so that

and =1
duy, = — k2uy + de(t)
Then
t
up(t) = / e =) qWy(s)
0
Next, note

Kolmogorov’s criterion: If
E|X(z) = X(y)|P < Cla — y|¥*e
for z € R?, then X € C%%/?~¢ for all £ > 0.

Now, consider try to prove its assumption:

Blu(t,a)—u(t, )P = E| Y un(t)(hule) = hiy))
k=1
e} p/2
< c( > (1= e ) () —hk<y>|2>
k=1

(2 Clz —y|/2—=p,

23
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where we’ve used the BDG (Burkholder/Davis/Gundy) Inequality, i.e.
E[MF| < CE(M)3?,

where M is assumed a martingale, which we can achieve by fixing time ¢ to 7' in the expression for wug
above. Next, note

t
2 _ ok (t—s)q._ L —2k2
Elui(t)] = /0 e )dS—W(l—e ),

also quadration variation if we fix time as hinted above.
Once we get to (*) above, realize that we want

Z E20-2 0,

(@) = hi(y)| ~ [sin(k x) = sin(ky)| < C(K |z - yl)°

for26 —2<—1,ie 6<1/2,1ie. §=1/2—¢.
So altogether, we obtain F|u(t,z) —u(t, y)|? < C|x — y|(/2=9)P, Thus

and usethe fact that

wec) T ool

9.2 Mild solutions

Our u above is “a solution” to our SPDE, but not in the variational sense defined so far. So we need a
more general idea of what a solution is, to subsume both concepts. If you have a general PDE

u=A(t)U,
then u(t) = @4 oup. Then
u=At)u+ f(t)

gives us

t
u(t) = Py ouo + / D, o f(s)ds
0

Qu_y,
8t_ )

For example, if we have

then
t
Dy o fH/O G(t,z,y) f(y)dy,

where Greeen’s function is given by

8

txy:z e~ " hy(z)ha(y)

if
du:umdt—i—z ) dWy, wue=0.

Then y

oo t g

ut.o) = [ [ Gt =,z huln)aydwics

— Jo Jo
Now for =t

du=ugdt + Z g(u)hpd Wy,
we write

ut,x) = / ! Gt y)un(w)y-+ 3 / t / "Gt — 5,2, 1) 9 (u()) hi(y)dydWa(s).

Then you define a mild solution to be a solution to the above integral equation.
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Now try
P

Elu(t,z1) —u(t,z2)|? ~ E Z//G(t—s,xl,y)—G(t—s,xg,y)hk(y)g(u(s,y))dyde(s)
k

(¥ “)

- E( / t I |G<t—s,x1,y>—G(t—s,x2,y>|2g2<u<x,y))dyds>p/2.

N

/Oﬂ (G(t —s,71,y) — G(t — 5,22, y)) () gdy

Then came Krylov (1996) and turned this “hard analysis” into clever “soft analysis” or so.



