Stochastic PDEs

BY BORIS ROZOVSKY

Table of contents

Та	able of contents $\dots \dots \dots$
1	Basic Facts from Stochastic Processes 1
	1.1 Lebesgue Integral
	1.2 Conditional Expectation
	1.3 Stochastic Processes
	1.4 Brownian Motion (Wiener Processes) 4
2	The Itô Integral and Formula
	2.1 The Itô Construction
	2.2 Itô's Formula 9
	2.2.1 Deriving from the Chain Rule
	2.2.2 SODEs
3	Some SPDEs
4	PDE/Sobolev Recap
	4.1 Sobolev Spaces H_2^{γ}
	4.2 SPDEs in Sobolev Spaces
	4.2.1 Classical Theory
	4.2.2 Stochastic Theory $\ldots \ldots \ldots$
5	Nonlinear Filtering ("Hidden Markov Models") 16
6	Solutions of PDEs and SPDEs
	6.1 Classical Solutions
	6.2 Generalized Solutions
	6.3 Mild Solutions
	6.4 Generalization of the notion of a "solution" in SDE
	Send corrections to kloeckner@dam.brown.edu.

Example: Heat Equation. Suppose $\omega \in \Omega$ is part of a probability space. Then chance can come in at any or all of these points:

$$\begin{aligned} \frac{\partial u(t,x)}{\partial t} &= a(x,\omega) \frac{\partial^2}{\partial x^2} u(t,x) + f(t,x,\omega) \quad x \in (a,b) \\ u(0,x) &= \varphi(x,\omega) \\ u(t,a) &= \psi_1(t,\omega) \\ u(t,b) &= \psi_2(t,\omega) \end{aligned}$$

1 Basic Facts from Stochastic Processes

Probability Theory	Measure Theory		
ω – elementary random event (outcomes)			
$\Omega = \bigcup \omega$ – probability space/space of outcomes	$\Omega-\mathrm{set}$		
Random events \leftrightarrow subsets of $\Omega \supset A$	Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ closed w.r.t. $\cap / \cup /\bar{\cdot}$.		
Operations on events: \cup , \cap , $\overline{A} = \Omega \setminus A$.			
$arnothing := \Omega \setminus \Omega$			
If A and B are random events, then $A \cup B$, $A \cap B$, \overline{A} are r.e.			
Elementary properties of probability:	Measures (see below)		
$P(A) \in [0, 1], P(\Omega) = 1$, additive for disjoint events.			

Definition 1.1. A function $\mu(A)$ on the sets of an algebra \mathcal{A} is called a measure if

- a) the values of μ are non-negative and real,
- b) μ is an additive function for any finite expression-explicitly, if $A = \bigcup_i A_i$ and $A_i \cap A_j = \emptyset$ iff $i \neq j$, then

$$\mu(A) = \sum_{i=1}^{n} \mu(A_i).$$

Definition 1.2. A system $\mathcal{F} \subset \mathcal{P}(\Omega)$ is called a σ -algebra if it is an algebra and, in addition, if $(A_i)_{i=1,2,\ldots}$, then also $\bigcup_i A_i \in \mathcal{F}$.

It is an easy consequence that $\bigcap_i A_i \in \mathcal{F}$.

Definition 1.3. A measure is called σ -additive if

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

if the A_i are mutually disjoint.

The above together form Kolmogorov's Axioms of Probability: A tuple (Ω, \mathcal{F}, P) is called a probability space $(\Omega \text{ a set}, \mathcal{F} \text{ a } \sigma\text{-algebra}, P \text{ a probability measure}).$

Lemma 1.4. Let ε be a set of events. Then there is a smallest σ -algebra \mathcal{F} such that $\varepsilon \subset \mathcal{F}$.

Definition 1.5. A function $X: \Omega \to \mathbb{R}^n$ is called a random variable if it is \mathcal{F} -measurable, i.e. for arbitrary A belonging to the Borel- σ -algebra $\mathcal{B}(\mathbb{R}^n)$, the set $X^{-1}(A) \in \mathcal{F}$.

Definition 1.6. Completion of \mathcal{F} with respect to P: For simplicity, $\Omega = (0, 1)$. P is the Lebesgue measure, \mathcal{F} the Borel- σ -algebra $\mathcal{B}(0, 1)$ on $\Omega = (0, 1)$. \mathcal{F} is called complete if it contains all subsets B of Ω with the property:

There are subsets B^- and B^+ from $\mathcal{B}(0,1)$ such that $B^- \subset B \subset B^+$ and $P(B^+ \setminus B^-) = 0$.

This process maps (Ω, \mathcal{F}, P) to $(\Omega, \overline{\mathcal{F}}^P, P)$, where $\overline{\mathcal{F}}^P$ is the completion of \mathcal{F} w.r.t. P.

Now suppose X is a random variable in (Ω, \mathcal{F}, P) in \mathbb{R}^n . $X^{-1}(\mathcal{B}(\mathbb{R}^n)) := \{X^{-1}(A) : A \in \mathcal{B}(\mathbb{R}^n)\} = \{\Gamma : X(\Gamma) \in \mathcal{B}(\mathbb{R}^n)\}$. \mathcal{H}_X is called the σ -algebra generated by X.

One reason to use this definition of a random variable is this:

Lemma 1.7. (Doob-Dynkin) If \mathcal{F} is generated by a random variable Y, then there exists a Borel function g such that X = g(Y).

1.1 Lebesgue Integral

Definition 1.8. X on (Ω, \mathcal{F}, P) is called simple if it is \mathcal{F} -measurable and takes a finite number of values: $x_1, x_2, ..., x_n$.

 $\Omega_i = \{\omega: X(\omega) = x_i\} = X^{-1}(x_i)$. Then the Lebesuge integral is

$$\int_{\Omega} X \mathrm{d}P = \sum_{i=1}^{n} x_i P(\Omega_i)$$

Definition 1.9. An arbitrary measurable function X on (Ω, \mathcal{F}, P) is called P-integrable if there exists a sequence of such simple functions X_n so that $X_n \to X$ a.s. and

$$\lim_{n,m\to\infty}\int_{\Omega}|X_n-X_m|\mathrm{d}P=0.$$

Lemma 1.10. If X is P-integrable, then

1. There exists a finite limit

$$\int_{\Omega} X \mathrm{d}P = \lim_{n \to \infty} \int_{\Omega} X_n \mathrm{d}P.$$

2. This limit does not depend on the choice of the approximating system.

If X is a random variable $X: \Omega \to \mathbb{R}^n$. Let \mathcal{B} be Borel's σ -algebra on \mathbb{R}^n . Then

$$\mu_X(\underbrace{A}_{\in\mathcal{B}}) = P(X^{-1}(A)) = P(\omega: X(\omega) \in A)$$

is called the *distribution function* of X.

Theorem 1.11.

$$\int_{\Omega} f(X) \mathrm{d}P = \int_{\mathbb{R}^n} f(x) \mu_X(\mathrm{d}x).$$

Thus

$$E[X] = \int_{\mathbb{R}^n} X\mu_X(\mathrm{d}X).$$

Example 1.12. Let X have values x_1, \ldots, x_n . $\Omega_i = X^{-1}(x_i)$. $\mu_X(x_i) = P(\Omega_i)$. Then

$$E[X] = \sum x_i \mu_X(x_i) = \sum x_i P(\Omega_i).$$

1.2 Conditional Expectation

 ξ and η are are random variables with a joint density p(x, y). Motivation:

$$E[\xi|\eta = y] = \int x \, p(x|y) \mathrm{d}x.$$
$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Now suppose X is a P-integrable random variable (Ω, \mathcal{F}, P) . G is a σ -algebra on $\Omega, \mathcal{G} \subset \mathcal{F}$.

Definition 1.13. Let η be \mathcal{F} -measurable random variable. If there exists a P-integrable \mathcal{G} -measurable function ξ such that for any bounded \mathcal{G} -measurable function φ

$$E(\xi\varphi) = E(\eta\varphi),$$

the ξ will be called conditional expectation of η and denoted $E[\eta|\mathcal{G}]$.

Properties of conditional expectation:

1. If η is \mathcal{G} -measurable, then $E[\eta|\mathcal{G}] = \eta$.

Proof. (1) By assumption, η is \mathcal{G} -measurable. (2) Let φ be an arbitrary \mathcal{G} -measurable function. Then

$$E(\eta\varphi) = E(E(\eta|\mathcal{G})\varphi) = E(\eta\varphi).$$

- 2. HW: Prove that the conditional expectation is unique.
- 3. If f is bounded, \mathcal{G} -measurable, then

$$E[f(\omega)X|\mathcal{G}](\omega) = f(\omega)E[X|\mathcal{G}] \quad (a.s.)$$

4. Let $g(\omega, X)$ be an \mathcal{F} -measurable function. Then

$$E[g(\omega, X)|\sigma(X)] = E[g(\omega, c)|\sigma(X)]|_{c=X}$$

5. Let $\mathcal{G}_1 \subset \mathcal{G}$ be σ -algebras. Then

$$E[E[X|\mathcal{G}]|\mathcal{G}_1] = E[X|\mathcal{G}_1].$$

This property can be memorized as "Small eats big".

Example 1.14. $\Omega = \bigcup_n \Omega_n, \ \Omega_i \cap \Omega_j = \emptyset$. Let $\mathcal{E} = \{\Omega_1, \Omega_2, ...\}$. Then $\sigma(\mathcal{E}) = \{\Omega_{i_1} \cup \Omega_{i_2} \cup ...\}$. $\Omega_0 = \Omega \setminus \Omega$?. Let ξ be a random variable

$$E[\xi|\sigma(\mathcal{E})] = \sum_{i} \frac{E[\xi \mathbf{1}_{\Omega_{i}}]}{P(\Omega_{i})} \mathbf{1}_{\Omega_{i}}.$$
(1.1)

Proof of (1.1):

- a) The right-hand side is a function of indicators of $\Omega_i \Rightarrow$ it is $\sigma(\mathcal{E})$ -measurable.
- b) $E[E[\xi|\sigma(\mathcal{E})]g] = E\xi g$ for all g which are $\sigma(\mathcal{E})$ -measurable. Suppose $g = 1_{\Omega_k}$. Then

$$E[\operatorname{rhs} \mathbf{1}_{\Omega_k}] = E\left[\frac{E[\xi \mathbf{1}_{\Omega_k}]}{P(\Omega_k)} \mathbf{1}_{\Omega_k}\right] = \frac{E[\xi \mathbf{1}_{\Omega_k}]}{P(\mathcal{A}_k)} P(\mathcal{A}_k) = E(\xi \mathbf{1}_{\Omega_k}).$$

rhs: $E(\xi \mathbf{1}_{\Omega_k})$. What is a $\sigma(\mathcal{E})$ -measurable function? Answer: It is a function of the form

$$\xi = \sum_i \ y_i \mathbf{1}_{\Omega_i}$$

What?

1.3 Stochastic Processes

Assume that for all t, we are given a random variable $X_t = X_t(\omega) \in \mathbb{R}^n$. t could be from $\{0, 1, 2, 3, ...\}$ or from (a, b), it does not matter. In the former case, X_t is called a sequence of r.v. or a discrete time stochastic process. In the latter, it is called a continuous time stochastic process. If $t \in \mathbb{R}^2$, then X_t is a two-parameter random field.

Motivation: If X is a random variable, $\mu_X(A) = P(\omega; X(\omega) \in A)$.

Definition 1.15. The (finite-dimensional) distribution of the stochastic process $(X_t)_{t \in T}$ are the measures defined on $\mathbb{R}^{nk} = \mathbb{R}^n \otimes \cdots \mathbb{R}^n$ given by

$$\mu_{t_1,\ldots,t_k}(F_1 \otimes F_2 \otimes \cdots \otimes F_k) = P(\omega: X_{t_1} \in F_1,\ldots,X_{t_k} \in F_k),$$

where the $F_i \in \mathcal{B}(\mathbb{R}^n)$.

1.4 Brownian Motion (Wiener Processes)

Definition 1.16. A real-valued process X_t is called Gaussian if its finite dimensional distributions are Gaussian $\Leftrightarrow (X_{t_1}, ..., X_{t_k}) \sim \mathcal{N}(k)$.

Remember: A random variable ξ in \mathbb{R}^k is called *normal (multinormal)* if there exists a vector $m \in \mathbb{R}^k$ and a symmetric non-negative $k \times k$ -matrix $R = (R_{ij})$ such that

$$\varphi(\lambda) := E[e^{i(\xi,\lambda)}] = e^{i(m,\lambda) - (R\lambda,\lambda)/2}$$

for all $\lambda \in \mathbb{R}^k$, where (\cdot, \cdot) represents an inner product, $m = E[\xi]$ and $R = \operatorname{cov}(\xi_i, \xi_j)$.

Independence: Fact: $Y = (Y_1, ..., Y_n)$ are normal vectors in \mathbb{R}^k with (m_i, R_i) . Then elements of Y are independent iff

$$\varphi_{\lambda}(Y) = \prod_{i=1}^{n} \varphi_{\lambda_i}(Y_i),$$

where $\lambda = (\lambda_1, ..., \lambda_n)$, where $\lambda_i \in \mathbb{R}^n$.

Fact 2: $\zeta = (\zeta_1, ..., \zeta_m)$ is Gaussian iff for any $\lambda \in \mathbb{R}^m$,

$$(\zeta, \lambda) = \sum \lambda_i \zeta_i$$

is Gaussian in 1D.

Definition 1.17. Brownian motion W_t is a one-dimensional continuous Gaussian process with

 $E[W_t] = 0, \quad E[W_tW_s] = t \land s := \min(t, s).$

Alternative Definition:

Definition 1.18. Brownian motion W_t is a Brownian motion iff

- 1. $W_0 = 0$
- 2. $\forall t, s: W_t W_s \sim \mathcal{N}(0, t-s)$

3. $W_{t_1}, W_{t_2} - W_{t_1}, \dots$ are independent for all partitions $t_1 < t_2 < t_3 < \cdots$.

Yet another:

Definition 1.19. The property (3) in Definition 1.18 may be replaced by 3'. $W_{t_n} - W_{t_{n-1}}$ is independent of $W_{t_{n-1}} - W_{t_{n-2}}$...

Definition 1.20.

$$\mathcal{F}_t^W := \sigma(\{W_{s_1}, W_{s_2}, \dots; s_i \leqslant t\}).$$

Theorem 1.21. Brownian motion is a martingale w.r.t. $\mathcal{F}_t^W \Leftrightarrow$

 $E[W_t | \mathcal{F}_s^W] = W_s$

for s < t. (This is also the definition of a martingale.)

Remark 1.22. $\sigma(W_{t_1}, W_{t_2}, ..., W_{t_n}) = \sigma(W_{t_1}, W_{t_2} - W_{t_1}, ..., W_{t_n} - W_{t_{n-1}})$ (knowledge of one gives the other-add or subtract). This is important because RHS is independent, but LHS is not.

Corollary 1.23.

- 1. $E[W_t^2] = t$. (So W_t grows roughly as \sqrt{t} .)
- 2. $W_t^2/t \to 0$ almost surely. Proof: By Chebyshev's inequality, $P(|W_t/t| > c) < E[|W_t/t|^2]/c^2 = t/t^2c^2 \to 0$ as $t \to \infty$.

Law of iterated logarithm:

$$\begin{split} \varphi_t^0 = & \frac{W_t}{\sqrt{2t \log \log(1/t)}}, \quad \varphi_t^\infty = \frac{W_t}{\sqrt{2t \log \log(t)}}, \\ & \limsup_{t \to 0} \varphi_t^0 = 1, \quad \limsup_{t \to \infty} \varphi_t^\infty = 1, \\ & \liminf_{t \to 0} \varphi_t^0 = -1, \quad \liminf_{t \to \infty} \varphi_t^\infty = -1. \end{split}$$

Continuity and Differentiability:

- W_t is continuous.
- W_t is nowhere differentiable.

Spectral representation of Brownian motion:

Theorem 1.24.

$$W_t = t\eta_0 + \sum_{n=1}^{\infty} \eta_n \sin(nt) \approx t \eta_0 + \sum_{n=1}^{N} \eta_n \sin(nt), \quad where$$

$$\eta_n \sim \mathcal{N}(0, 2/\pi n^2) \quad (n \ge 1),$$

$$\eta_0 \sim \mathcal{N}(0, 1/\pi).$$

Proof. Consider $t \in [0, \pi]$.

Then

$$\tilde{W}_t := W_t - \frac{t}{\pi} W_\pi \quad \text{for } t \in [0, \pi]$$
$$\tilde{W}(t) = \sum_{n=1}^{\infty} \eta_n \sin(n t),$$

where

$$\eta_n = \frac{2}{\pi} \int_0^{\pi} \tilde{W}(t) \sin(nt) dt \quad (n > 0)$$
$$\eta_0 = \frac{W(\pi)}{\pi}.$$

and

For n = 0,

First fact: η_n are Gaussian because linear combinations of normal r.v.s. are normal.

$$E\eta_k\eta_n = \frac{4}{\pi^2} \int_0^{\pi} \int_0^{\pi} (t \wedge s - t s/\pi) \sin(n t) \sin(k s) = \begin{cases} 0 & k \neq n, \\ \frac{2}{\pi n^2} & k = n > 0. \end{cases}$$
$$E[\eta_0^2] = E \frac{W^2[\pi]}{\pi^2} = \frac{1}{\pi}.$$

2 The Itô Integral and Formula

Suppose we have some system described by X_t that has some additive noise ξ_t : $Y_t = X_t + \xi_t$. (t = 1, 2, 3, ...)The $\xi_1, \xi_2, ...$ are assumed to be

1. iid

2.
$$\xi_i \sim N(\mu, \sigma^2)$$

If the ξ_t satisfy the first property, they are called *white noise*. If they satisfy both, it is *Gaussian white noise*.

If we now consider $W_t \xi_0 = W_0 = 0$, $\xi_1 = W_{t_1} - W_0$, $\xi_2 = W_{t_2} - W_{t_1}$, ..., then

1. holds

2. holds

A popular model in dynamics is

$$X_{t+\Delta} = A X_t + B + \xi_{t+1}$$

for, say, the dynamics of an "aircraft". Another possibility is modeling the price of a risky asset

$$X_{t+\Delta} = X_t + \mu X_t \Delta + \sigma X_t (W_{t+1} - W_t),$$

where μ is the individual trend of the stock, while σ is market-introduced volatility. Equivalently, we might write

$$\frac{X_{t+\Delta} - X_t}{\Delta} = \mu X_t - \sigma X_t \frac{W_{t+1} - W_t}{\Delta}$$

and then let $\Delta t \downarrow 0$, such that we obtain

$$\dot{X}_t = \mu X_t + \sigma X_t \dot{W}_t,$$

which is all nice and well except that the derivative of white noise does not exist. But note that there is less of a problem defining the same equation in integral terms.

Step 1: Suppose we have a function f(s), which might be random. Then define

$$I_n(f) = \sum_k f(s_k^*)(W_{s_{k+1}} - W_{s_k}).$$

But what happens if $f(s) = W_s$. We get the term

Or is it

$$W_{s_{k+1}}(W_{s_{k+1}}-W_{s_k})?$$

 $W_{s_k}(W_{s_{k+1}} - W_{s_k}).$

Or even

$$W_{\frac{s_{k+1}+s_k}{2}}(W_{s_{k+1}}-W_{s_k})?$$

In the Riemann integral, it does not matter where you evaluate the integrand–it all converges to the same value. But here, we run into trouble. Consider

Problem: Compute each of the above expectations, and show they are not equal.

2.1 The Itô Construction

The idea here is to use simple functions:

$$f(s) = \sum_{i=0}^{n} e_i(\omega) \mathbf{1}_{(t_i, t_{i+1})}(s),$$

where e_i is $\mathcal{F}^W_{t_i}\text{-measurable},$ where $\mathcal{F}^W_{t_i} = \sigma(W_{s_1},...,W_{s_k};s_i \!\leqslant\! s)$

$$\begin{array}{c} \Leftrightarrow \\ e_i = e_i(W_r, r \in [0, t_i]) \\ \Leftrightarrow \\ e_i \text{ is "adapted" to } \mathcal{F}^W_i \end{array}$$

$$e_i$$
 is "adapted" to $\mathcal{F}_{t_i}^{W}$

Definition 2.1.
$$I(f) = \sum_{i=0}^{n} e_i (W_{t_{i+1}} - W_{t_i}).$$

Properties:

1.
$$E[I(f)] = 0$$

Proof:

$$E[I(f)] = \sum_{\substack{i=0\\n}}^{n} Ee_i(W_{t_{i+1}} - W_{t_i})$$

= $\sum_{\substack{i=0\\n}}^{n} E(E(e_i(W_{t_{i+1}} - W_{t_i})|\mathcal{F}_{t_i}^W))$
= $\sum_{\substack{i=0\\n}}^{n} E(e_i E[(W_{t_{i+1}} - W_{t_i})|\mathcal{F}_{t_i}^W])$
= $\sum_{\substack{i=0\\n}}^{n} E(e_i E[W_{t_{i+1}} - W_{t_i}])$
= $\sum_{\substack{i=0\\n}}^{n} E(e_i 0) = 0.$

2.

$$\begin{split} E|I(f)|^2 &= \sum_{i=1}^N E|e_i|^2(t_{i+1} - t_i) = \int_0^T E|f(s)|^2 \mathrm{d}s \\ &= E\Big[\sum_{i=1}^N e_i(W_{t_{i+1}} - W_{t_i})\Big]^2 \\ &= \sum_i E\Big[e_i^2(W_{t_{i+1}} - W_{t_i})^2\Big] - E\Big[e_i e_j(W_{t_{i+1}} - W_{t_i})(W_{t_{j+1}} - W_{t_j})\Big]^2 \\ &= E\big(E(e_i^2(W_{t_{i+1}} - W_{t_i})|\mathcal{F}_{t_i}^W)) \\ &= E[e_i^2](t_{i+1} - t_i). \end{split}$$

3. I(f) is linear.

Next: If f(s) is only \mathcal{F}_s^W -measurable (but not a step function), and if $\int_0^T E f^2(s) ds < \infty \Rightarrow$ could be approximated by a sequence of step functions $f_n(s) \to f(s)$. [Insert lecture6.pdf here, courtesy of Mario.]

2.2 Itô's Formula

Suppose we have a partition of a time interval (0, T) as $t_0 = 0, t_1, t_2, ..., t_n = T$. $\Delta t_i = t_{i+1} - t_i$. We assume max $\Delta t_i \rightarrow 0$. Also, we assume we have a function

$$f = f(t), \quad \Delta f_i = f(t_{i+1}) + f(t_i).$$

a) If f = f(t), continuous, bounded variation. Then

$$\lim_{\max \Delta t_i \to 0} \sum_{i=0}^{n-1} |\Delta f_i|^2 = \lim_{\max \Delta t_i \to 0} \max \underbrace{|\Delta f_i|}_{\to 0} \underbrace{\sum_{i=0}^{n-1} |\Delta f_i|}_{\text{variation} \to \text{bounded}} = 0.$$

b) If W = W(t) is Standard Brownian Motion, then

$$\lim_{\max \Delta t_i} \sum_{i=0}^{n-1} |\Delta W_i|^2 = T \quad \text{(in } L^2 \text{ and in probability)}.$$

Proof. We need $E |\sum |\Delta W_i|^2 |-T|^2 \rightarrow 0$. So

$$\begin{split} & E \Biggl(\left(\sum_{i} (\Delta W_i)^2 \right)^2 - 2 \sum_{i} (\Delta W_i)^2 T + T^2 \Biggr) \\ &= E \Biggl[\sum_{i,j} |\Delta W_i|^2 |\Delta W_j|^2 - 2T^2 + T^2 \Biggr] \\ &= E \Biggl[\sum_{i=0}^{n-1} |\Delta W_i|^4 + \sum_{i \neq j} |\Delta W_i|^2 |\Delta W_j|^2 - T^2 \Biggr] \\ &= 3 \sum_{i} |\Delta t_i|^2 + \sum_{i \neq j} \Delta t_i \Delta t_j - T^2 \\ &= 2 \sum_{i} |\Delta t_i|^2 + \underbrace{\left(\sum_{i} |\Delta t_i| \right)^2 - T^2}_{T^2} \\ &= 2 \sum_{i} |\Delta t_i|^2 \leqslant 2 \max\left\{ \Delta t_i \right\} \cdot T \to 0. \end{split}$$

_ 1			

So we essentially showed:

$$\sum_{i=0}^{n-1} |\Delta W_i|^2 \to T,$$

$$(\mathrm{d}W)^2 \to \mathrm{d}t,$$

$$\mathrm{d}W \to \sqrt{\mathrm{d}t}. \quad \text{(not rigorous)}$$

2.2.1 Deriving from the Chain Rule

if $x = x(t) \in C^1$ and $F = F(y) \in C^1$. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}F(x(t)) = F'(x(t))x'(t).$$

Alternatively,

$$x(t) = x(0) + \int_0^t \underbrace{f(s)}_{x'(s)} \mathrm{d}s.$$

 $F(x(t)) = F(x(0)) + \int_0^t F'(x(s))f(s) ds.$

Then

First of all, there is no "Stratonovich Formula". Suppose $W^n \rightrightarrows W$ (double arrows: uniformly), then

$$\begin{split} X^{n}(t) &= X(0) + \underbrace{\int_{0}^{t} A(s) ds + \int_{0}^{t} B(s) \dot{W^{n}}(s) ds}_{=\int_{0}^{t} (X^{n})'(s) ds}, \\ X(t) &= X(0) + \int_{0}^{t} A(s) ds + \underbrace{\int_{0}^{t} B(s) \circ dW(s)}_{\text{Stratonovich Int.}}, \\ F(X^{n}(t)) &= F(X(0)) + \int_{0}^{t} F'(X^{n}(s)) A(s) ds + \int_{0}^{t} F'(X^{n}(s)) B(s) \dot{W^{n}}(s) ds \\ F(X(t)) &= F(X(0)) + \int_{0}^{t} F'(X(s)) A(s) ds + \int_{0}^{t} F'(X(s)) B(s) \circ (s) dW(s). \end{split}$$

In particular,

$$X = W(t) = \int_0^t 1 \circ dW(s), \quad F(y) = y^2, \quad \int_0^t W(s) \circ dW(s) = \frac{1}{2}W^2(t).$$

Remark 2.2. Itô integral is a martingale, Stratonovich is *not*. Also: there is no connection between the two in the non-smooth case.

Now, let's see what happens for Itô, again starting from a process X(t) given as

$$X(t) = X(0) + \int_0^t A(s) ds + \int_0^t B(s) dW(s).$$

Now, what is F(X(t))? Let's look at a Taylor expansion of

$$F(X(t_{i+1})) - F(X(t_i)) = F'(X(t_i))\Delta x_i + \frac{1}{2}F''(X(t_i))(\Delta x_i)^2 + (\cdots)\underbrace{(\Delta x_i)^3}_{\sim (\Delta t)^{3/2}}$$

So, in continuous time

$$\begin{aligned} F(X(t)) &= \sum \Delta F \\ &= F(X(0)) + \int_0^t F'(X(s)) dX(s) + \frac{1}{2} \int_0^t F''(X(s)) (dX(s))^2 \\ &= F(X(0)) + \int_0^t F'(X(s)) A(s) ds + \int_0^t F'(X(s)) B(s) dW(s) + \frac{1}{2} \int_0^t F''(X(s)) B^2(s) ds \end{aligned}$$

Theorem 2.3. If

$$X(t) = X(0) + \int_0^t A(s) ds + \int_0^t B(s) dW(s)$$

and $F \in C^3$, then

$$F(X(t)) = F(X(0)) + \int_0^t F'(X(s))A(s)ds + \int_0^t F'(X(s))B(s)dW(s) + \frac{1}{2}\int_0^t F''(X(s))B^2(s)ds + \int_0^t F'(X(s))A(s)ds + \int_0^t F'(X(s))B(s)dW(s) + \frac{1}{2}\int_0^t F''(X(s))B^2(s)ds + \int_0^t F'(X(s))B(s)dW(s) + \frac{1}{2}\int_0^t F''(X(s))B(s)dW(s) + \frac{1}{2}\int_$$

Now if $F \in C^3(\mathbb{R}^n, \mathbb{R}^n)$, then

$$X(t) = X(0) + \int_0^t A(s) \mathrm{d}s + \int_0^t B(s) \mathrm{d}W(s) \in \mathbb{R}^n,$$

where we recall that $W \in \mathbb{R}^p$ with all p components independent. Itô's Formula in multiple dimensions takes the form

$$F_k(X(t)) = F_k(X(0)) + \int_0^t \sum_i \frac{\partial F_k}{\partial x_i} A_i ds + \sum_{i,l} \int_0^t \frac{\partial F_k}{\partial x_i} B_{i,l} dW_l + \frac{1}{2} \int_0^t \sum_{i,j} \frac{\partial F_k}{\partial x_i \partial x_j} \sum_l B_{il} B_{jl} ds.$$

Example 2.4. If $F(x) = x^2$ and

then

$$\int_{0}^{t} W(s) dW(s) = \frac{1}{2} (W^{2}(t) - t)$$

 $X - \int^t dW(s)$

Example 2.5. If $\Delta F = 0$ (i.e. F is harmonic), then F(W(t)) is a martingale.

2.2.2 SODEs

$$X(t) = X(0) + \int_0^t b(s, X(s)) ds + \int_0^t \sigma(s, X(s)) dW(s)$$

or, equivalently

 $dX = b(t, X)dt + \sigma(t, X)dW(t).$

Example 2.6. Ornstein-Uhlenbeck Process. The equation

$$dX(t) = a X(t) dt + b dW(t)$$

has the solution

$$X(t) = e^{at}X(0) + b \int_0^t e^{a(t-s)} \mathrm{d}W(s).$$

Proof. Consider

$$X_{t} = e^{at}X(0) + b \int_{0}^{t} e^{a(t-s)} dW_{s}$$

= $e^{at}X(0) + b e^{at} \int_{0}^{t} e^{-as} dW_{s}$
= $e^{at}X(0) + b e^{at}Z_{t}$
= $g(t, Z_{t})$ with $dZ_{t} = e^{-at} dW_{t}$

Ito's Formula then gives

$$dX_t = \frac{\partial g}{\partial t}dt + \frac{\partial g}{\partial x}dZ_t + \frac{1}{2}\frac{\partial^2 g}{\partial x^2}(dZ_t)^2$$

= X(0)a e^{at} + b e^{at}dZ_t + 0
= X(0)a e^{at} + b e^{at}e^{-at}dW_t
= X(0)a e^{at} + b dW_t.

Example 2.7. (Geometric Brownian Motion)

$$dX(t) = a X(t) dt + b X(t) dW(t)$$

is solved by

$$X(t) = X(0)e^{(a-b^2/2)t+bW(t)}$$

(Check this by Itô.)

Homework: Solve

$$dX(t) = (a_1 + a_2X(t))dt + (b_1 + b_2X)dW(t).$$

Theorem 2.8. If $|b_i(s,x) - b_i(s,y)| + |\sigma_{i,k}(s,x) - \sigma_{i,k}(s,y)| \leq C|x-y|$ (a Lipschitz condition) and $|b_i(s,x)| + |\sigma_{i,k}(s,x)| \leq C(1+|X|)$ (a linear growth condition) and X(0) is independent of W and $E|X(0)|^2 < \infty$, then there exists a solution X(t) that is continuous in time. X(t) is measurable w.r.t $\sigma(X(0), W(s), s \leq t)$ and

$$E\left[\sup_{t\leqslant T}|X(t)|^2\right]<\infty.$$

. 6		

3 Some SPDEs

$$u_t = a u_{xx}, \quad u(0, x) = u_0(x),$$

(a > 0-ellipticity: if it holds, then the equation is called parabolic) General solution:

$$u(t,x) = \frac{1}{\sqrt{4\pi \, a \, t}} \int_R \, \exp\!\left(-\frac{2|x-y|^2}{4 \, a \, t}\right) u_0(y) \mathrm{d}y = E[u_0(x+\sqrt{2\pi}W(t))]$$

(Feynman-Kac formula-averaging over characteristics)

Monte-Carlo simulation:

$$\operatorname{area}(A) = \frac{\# \operatorname{hits in a set} A}{\# \operatorname{hits in a surrounding square}}.$$

More general parabolic equation:

$$u_t(x,t) = a_{ij}D_iD_ju(x,t) + b_iD_iu(x,t) + c\,u + f \quad (t > 0, x \in \mathbb{R}^d) \quad u(0,x) = u_0(x)$$

This equation is parabolic iff $a_{ij}y_i y_j \ge a|y|^2$ for all $y \in \mathbb{R}^d$ (the ellipticity property). If the highest order partial differential operator in the equation is elliptic, then the equation is parabolic. (The elliptic equation would be

$$a_{ij}D_iD_ju(x,t) + b_iD_iu(x,t) + c u + f = 0.$$

Now, onwards to *Stochastic* PDEs. A model equation is

$$\mathrm{d}u(t,x) = a \, u_{xx}(t,x) \mathrm{d}t + \sigma u_x(t,x) \mathrm{d}W_t.$$

Recall from geometric Brownian motion:

$$\mathrm{d} u(t) = a \, u(t) \mathrm{d} t + \sigma u(t) \mathrm{d} W_t, \quad u(0) = 0.$$

The solution is

$$u(t) = u_0 \exp\left(\left(a - \frac{\sigma^2}{2}\right) + \sigma W_t\right)$$

and

$$E[u^{2}(t)] = u_{0}^{2} \exp\{u t\} E[\exp\{2\sigma W_{t} - \sigma^{2} t^{2}\}]$$

Now consider

$$E\left[\underbrace{\exp\left(b\,W_t - \frac{1}{2}b^2t\right)}_{\rho(t)}\right] = 1,$$

which is an example of an *exponential martingale*, which satisfies the general property

$$E[\rho(t)|\mathcal{F}^W_s] = \rho(s) \quad \text{for} \quad s < t, \quad \rho(0) = 1.$$

We find

$$E(\rho(t)] = E[\rho(s)] = E[\rho(0)] = 1.$$

Proof. By Ito's formula,

$$d\rho(t) = b\rho(t)dW_t \quad \Rightarrow \quad \rho(t) = 1 + b \int_0^t \rho(s)dW_s.$$

Here's a crude analogy: In stochastic analysis, $\rho(t)$ plays the role of $\exp(t)$ in "regular" real analysis. Going back to our above computation, we find

$$E[u^{2}(t)] = u_{0}^{2} \exp\{u t\} E[\exp\{2\sigma W_{t} - \sigma^{2} t^{2}\}] = u_{0} \exp\{2a t\}.$$

So we find for geometric Brownian motion that it remains square-integrable for all time. (Consider that this is also the case for the regular heat equation.) Now, let's return to our SPDE,

$$du(t, x) = a u_{xx}(t, x) dt + \sigma u_x(t, x) dW_t$$

We begin by applying the Fourier transform to u, yielding \hat{u} .

$$d\hat{u} = -a y^2 \hat{u} + i\sigma y \hat{u}(t, y) dW_t$$
$$\hat{u} = \hat{u}(0, y) \exp(-(a - \sigma^2/2)y^2 t) + i y \sigma W_t).$$

Parseval's equality tells us

$$\int |u(t,x)|^2 = \int |\hat{u}(t,y)|^2 \mathrm{d}y < \infty$$

iff $a - \sigma^2/2 > 0$. In SPDEs, first order derivatives in stochastic terms has the same strength as the second derivative in deterministic terms. The above condition is also called *super-ellipticity*, and the whole evolution equation is then called *super-parabolic*.

There's another example of SPDE in the lecture notes:

$$du(t, x) = a u_{xx}(t, x)dt + \sigma u(t, x)dW_t.$$

Here, the superellipticity equation is

$$a - \frac{0^2}{2} > 0 \quad \Leftrightarrow \quad a > 0.$$

For the homework, see the notes as well. One of these problems is to consider the more general equation

$$\mathrm{d} \boldsymbol{u} = a_{ij} D_i D_j \boldsymbol{u} + b_i D_i \boldsymbol{u} + c \, \boldsymbol{u} \mathrm{d} \boldsymbol{t} + (\sigma_{ik} D_i \boldsymbol{u} + \nu_k) \mathrm{d} W_k(\boldsymbol{t}) \quad i, j = 1, \dots, d, \quad k = 1, 2, 3, \dots$$

where we have

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots \\ \vdots & \\ \sigma_{d1} & \sigma_{d2} & \cdots \end{pmatrix}.$$

We have to assume

$$\sigma\sigma^* = \sum_{k=1}^{\infty} \sigma_{ik}\sigma_{jk} < \infty, \quad \sum_k \nu_k^2 < \infty.$$

A substitution that sometimes helps in the deterministic case is illustrated below:

$$\frac{\partial u}{\partial t} = a(t, x)u_{xx} + c u$$

Then we set $v(t, x) = e^{-ct}u(t, x)$ and obtain

$$dv(t,x) = -c e^{-ct}u(t,x) + a(t,x) e^{-ct}u_{xx} + c e^{-ct}u = a(t,x)u v_{xx}$$

For the stochastic case, note:

$$\mathrm{d}\rho(t) = \rho(t)\sigma\mathrm{d}W_t.$$

Then, let

$$\begin{split} \eta(t) &:= e^{-\sigma W(t) - (\sigma^2/2)t} \\ \mathrm{d}\eta(t) &= -\eta(t)\sigma\mathrm{d}\Omega_t \\ \rho^{-1}(t) &= \eta(t)\exp(\sigma^2 t) \\ \mathrm{d}\rho^{-1}(t) &= -\eta(t)\sigma\mathrm{d}W_t\exp(\sigma^2 t) + \eta(t)\exp(\sigma^2 t)\sigma^2\mathrm{d}t = -\rho^{-1}\sigma\mathrm{d}W_t + \sigma^2\rho^{-1}(t)\mathrm{d}t \end{split}$$

Applied to an SPDE, we get

$$\begin{aligned} \mathrm{d}u(t,x) &= a\,u(t,x)\mathrm{d}t + \sigma u(t,x)\mathrm{d}W_t \\ u(0,x) &= u_0 \\ v(t,x) &= \underbrace{e^{-\sigma W(t) + (\sigma^2/2)t}}_{\rho^{-1}(t)} u(t,x) \\ \mathrm{d}(u(t,x)\rho^{-1}(t)) &= a\,v_{xx}\mathrm{d}t + \sigma v\mathrm{d}W_t - v\sigma\mathrm{d}W_t + \sigma^2 v\mathrm{d}t - \sigma^2 v\mathrm{d}t \\ &= a\,v_{xx}\mathrm{d}t. \end{aligned}$$

Let $\tilde{W}(t)$ be a Wiener process independent of W.

$$v(t,x) = E\Big[u_0\Big(t+\sqrt{2a}\tilde{W}_t\Big)\Big].$$

Then

$$u(t,x) = E\Big[u_0\Big(x+\sqrt{2a}\tilde{W}_t\Big)\Big]\exp(\sigma^2 W_t - (\sigma^2/2)t)$$
$$= E\Big[u_0\Big(x+\sqrt{2a}\tilde{W}_t\Big)\exp(\sigma^2 W_t - (\sigma^2/2)t\Big|\mathcal{F}_t^W\Big].$$

Example 3.1. Now consider

$$du(t,x) = a u_{xx}(t,x) + \sigma u_x(t,x) dW_t \quad \Leftrightarrow \quad 2a - \sigma^2 > 0$$

(Remark: There is not a chance to reduce to $\partial_t \tilde{u} = a \tilde{u}_{xx}$.)

$$\begin{aligned} \frac{\partial v}{\partial t} &= (a - \sigma^2/2) v_{xx}(t) \\ u(t,x) &= v(t,x + \sigma W(t)) \quad \text{then} \quad u \text{ verifies equation.} \\ v(t,x) &= E \Big[u_0 \Big(x + \sqrt{2a - \sigma^2} \tilde{W}(t) \Big) \Big] \\ & \downarrow \\ u(t,x) &= E \Big[u_0 \Big(x + W_t + \sqrt{2a - \sigma^2} \tilde{W}_t \Big) \Big| \mathcal{F}_t^W \Big]. \end{aligned}$$

(Note that, as above, the point of the conditional expectation is not measurability w.r.t. time (...), but with respect to W and not w.r.t. \tilde{W} .) By a naive application of Ito's formula, we would get

$$\begin{aligned} u(t,x) &= v(t,x+\sigma W_t) \\ v(t,x) &= u(t,x-\sigma W_t) \\ \mathrm{d}u(t,x-\sigma W_t) &= \sigma^2/2u_{xx}(t,x-\sigma W_t) \\ -\sigma u_x(t,x-\sigma W_t)\mathrm{d}W_t &= \frac{\sigma^2}{2}v_{xx}\mathrm{d}t - \sigma v_x\mathrm{d}W_t. \end{aligned}$$

But this is wrong because Ito's formula only applies to deterministic functions of brownian motion. The function u itself is random, though, so it does not work. To the rescue, the Ito-Wentzell formula.

Theorem 3.2. (Ito-Wentzell) Suppose

$$dF(t, x) = J(t, x)dt + H(t, x)dW_t$$

and

$$\mathrm{d}Y(t) = b(t)\mathrm{d}t + \sigma(\tau)\mathrm{d}W_t.$$

Then

$$\mathrm{d}F(t,Y(t)) = \underbrace{J(Y(t))\mathrm{d}t + H(Y(t))\mathrm{d}W_t}_{\mathrm{d}_tF} + F_x(Y(t))b\mathrm{d}t + \frac{\sigma^2}{2}F_{xx}(Y(t))\mathrm{d}t + \sigma F_x(Y(t))\mathrm{d}W_t + H_x(t,Y(t))\sigma(t)\mathrm{d}t + \sigma F_x(Y(t))\mathrm{d}W_t + H_x(t,Y(t))\sigma(t)\mathrm{d}W_t + H_x(t,Y(t))\sigma(t)\mathrm{d}W_t$$

For comparison, if we suppose dG(t, x) = J(t, x)dt and work out the regular Ito formula, we would find

$$\mathrm{d}G(t,Y(t)) = \underbrace{J(t,Y(t))\mathrm{d}t}_{\mathrm{d}_t G} + G_x(Y(t))b(t)\mathrm{d}t + \frac{1}{2}G_{xx}\sigma^2\mathrm{d}t + G_x(Y)\mathrm{d}W_t$$

1

4 PDE/Sobolev Recap

- Spaces: $H_2^{\gamma} = H_2^{\gamma}(\mathbb{R}^d)$
- Heat equation: H_2^{γ} , $L_2(\mathbb{R}^d)$, H_2^{-1} .
- an SPDE: H_2^{γ} , $L_2(\mathbb{R}^d)$, H_2^{-1} .

 $\rm PDE/Sobolev \ Recap$

We will need:

- Gronwall Inequality: ...
- BDG Inequality (p=1)

$$E\left|\sup_{t\leqslant T}\int_{0}^{t}g(s)\mathrm{d}W_{s}\right|\leqslant CE\left|\int_{0}^{T}g^{2}(t)\mathrm{d}t\right|^{1/2}$$
$$|a\,b|\leqslant\varepsilon a^{2}+\frac{1}{\varepsilon}b^{2}.$$

 ε -inequality

4.1 Sobolev Spaces H_2^{γ}

Definition 4.1. Suppose $f \in C_0^{\infty}(\mathbb{R}^d)$. Then

$$\hat{f}(y) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-ixy} f(x) \mathrm{d}x.$$

Then we have Parseval's Inequality

$$\begin{split} \int_{\mathbb{R}^d} |f|^2 \mathrm{d}x &= \int_{\mathbb{R}^d} |\hat{f}|^2 \mathrm{d}y \\ \|f\|_{\gamma} &:= \sqrt{\int_{\mathbb{R}^d} (1+|y|^2)^{\gamma} |\hat{f}(y)|^2 \mathrm{d}y}, \end{split}$$

and define

a norm. Then H^2_{γ} is the closure of C^{∞}_0 in the norm $\|\cdot\|_{u}$.

$$\begin{split} &\delta(x),\, \hat{\delta}(x) = \mathrm{const},\, \delta \in H_{\gamma}^2 \text{ for what } \gamma ? ~(\gamma < -d/2?) \\ &H_2^0 = L_2,\, H_2^{\gamma_1} \subset H_2^{\gamma_2} \text{ if } \gamma_1 > \gamma_2. \\ &\text{Sobolev embeddings: } H_2^{\gamma+d/2} \subset C^{0,\,\gamma} \text{ if } 0 < \gamma < 1. \text{ Alternative (but equivalent) definition:} \end{split}$$

 $H_2^n = \{f: f, Df, ..., D^n f \in L^2\}$

with

$$\|f\|_n \sim \|f\|_{L^2} + \sum_{k=1}^n \|D^k f\|_{L^2}.$$

 H_2^γ is a Hilbert space with

$$(f,g)_{\gamma} = \int_{\mathbb{R}^d} (1+|y|^2)^{\gamma} \hat{f}(y) \overline{\hat{g}(y)} \mathrm{d}y.$$

 H_2^{γ} is dual to $H_2^{-\gamma}$ relative to L^2 . $(\gamma > 0)$ Because if $f \in H_2^{\gamma}$ and $g \in H_2^{-\gamma}$. Then

$$(f,g)_0 = \int_{\mathbb{R}^d} (1+|y|^2)^{\gamma/2} \hat{f}(y) \frac{\overline{\hat{g}(y)}}{(1+|\gamma|^2)^{\gamma/2}} \mathrm{d}y \leq \|f\|_{\gamma} \|g\|_{-\gamma}$$

All this by S.L. Sobolev (1908-1989). Derived Sobolev spaces & generalized derivatives in the 1930s.

4.2 SPDEs in Sobolev Spaces

4.2.1 Classical Theory

Let's consider the heat equation in (H_2^1, L_2, H_2^{-1}) , namely

$$u_t = u_{xx} + f, \quad u|_{t=0} = u_0.$$

Theorem 4.2. If u is a classical solution and $u(t, \cdot)$ and u_0 are in $C_0^{\infty}(\mathbb{R})$, then

$$\sup_{t \leqslant T} \|u(t)\|_0^2 + \int_0^T \|u(t)\|_1^2 \mathrm{d}t \leqslant C(T) \left(\|u_0\|_0^2 + \int_0^T \|f(t)\|_{-1}^2 \mathrm{d}t \right).$$

(Note the slight abuse of notation with $||u(t)||_{\gamma}$.)

Proof.

$$\begin{aligned} \int & u \frac{\partial u}{\partial t} dx = \int u \, u_{xx} dx + \int u \, f dx \quad | \int \cdot u dx \\ & \| \\ & \frac{dv}{dt} = \| u_x \|_0^2 + (u, f_0) \pm 2v(t) \\ & v(t) = v(0) - \int_0^t \left(\| u(s) \|_0^2 + \| u_x(s) \|_0^2 \right) ds + \int_0^t (u, f)_0 ds + 2 \int_0^t v(s) ds \\ & v(t) + C \int_0^t \| u(s) \|_1^2 ds \leqslant v(0) + \int_0 \| u \|_1 \| f \|_{-1} ds + 2 \int v(s) ds + \frac{C}{2} \int_0^t \| u \|_1^2 ds + C_1 \int_0^t \| f \|_{-1}^2 ds \\ & v(t) + \frac{C}{2} \int_0^t \| u(s) \|_1^2 ds \leqslant F + 2 \int_0^t v(s) ds \\ & v(t) \leqslant F + 2 \int_0^t v(s) ds \\ & \sup v(t) \leqslant F. \end{aligned}$$

where $v(t) = \frac{1}{2} ||u(t)||_0^2$ and all the constant-tweaking is done with the ε -inequality.

4.2.2 Stochastic Theory

$$du = (a(t)u_{xx} + f)dt + (\sigma(t)u_x + g)dW_t$$

where $0 < \delta < a(t) - \sigma^2(t)/2 < C^*$. f, g adapted to \mathcal{F}_t^W , $u, f, g \in C_0^\infty$, $u|_{t=0} = u_0$ independent of W. Then

$$E\left[\sup\|u(t)\|_{0}\right]^{2} + E\int_{0}^{T}\|u(t)\|_{1}^{2}dt \leq E\left(\|u_{0}\|_{0}^{2} + \int_{0}^{T}\|f\|_{-1}^{2}dt + \int_{0}^{T}\|g\|_{0}^{2}dt\right)$$

Step 1: WLOG, $\sigma = 0$ (check at home!). Use the substitution

$$v(t,x) = u\left(t, x - \int_0^t \sigma(s) \mathrm{d}W_s\right).$$

Step 2: Ito formula for $|u(t,x)|^2$.

$$u^{2} = u_{0}^{2} + \underbrace{2 \int_{0}^{t} a \, u_{xx} \, u \mathrm{d}s}_{- \|u\|_{1}^{2}} + \underbrace{\int_{0}^{t} f \, u \mathrm{d}s}_{\varepsilon \|u\|_{1}^{2} + C \|f\|_{-1}^{2}} + \int_{0}^{t} g \, u \mathrm{d}W_{s} + \int_{0}^{t} g^{2} \mathrm{d}s.$$

Step 3: Take expectation, which kills the dW_s term, giving a bound on

$$E \int_{0}^{T} \|u\|_{1}^{2} ds$$
 and $E \|u(t)\|_{0}^{2}$

Step 4: Take care of the sup, which is outside of the expectation, but needs to be inside.

$$E\left|\sup_{t}\int_{0}^{t_{1}}g\,u\mathrm{d}W\right| \leqslant CE\left(\int_{0}^{T}\left(g,u\right)_{0}^{2}\mathrm{d}t\right)^{1/2} \leqslant CE\left[\sup_{t}\int_{0}^{T}\left\|g\right\|_{0}^{2}\mathrm{d}t\right] \leqslant \varepsilon \mathrm{Esup}_{t}\left\|u\right\|^{2} + C(\varepsilon)\int_{0}^{t}\left\|g\right\|_{0}^{2}\mathrm{d}s.$$

5 Nonlinear Filtering ("Hidden Markov Models")

State/signal X_t : Markov process/chain. Observation $Y_t = h(X_t) + g\dot{V}(t)$. State is not observed directly. The inf about X_t comes "only" from Y_s , $s \leq t$. Find the best mean-squares estimate of $f(X_t)$ given Y_s , $s \leq t$, where f is a known function. *Claim*: This estimator is given by

$$\hat{f}_t := E[f(X_t)|\mathcal{F}_t^Y].$$

Proof. Let g_t be an \mathcal{F}_t^Y -measurable square-integable function $\Leftrightarrow E[g_t^2] < \infty, \ g_t = g(Y_0^t).$

$$\begin{split} E[f_t - g_t]^2 &= E[f(X_t) - \hat{f}_t + \hat{f}_t - g_t]^2 \\ &= E[f(Y_t) - \hat{f}(X_t)]^2 + E[\hat{f}_t - g_t]^2 \\ &\geqslant E[f(X_t) - \hat{f}(X_t)]^2 + 2E[(f(Y_t) - \hat{f}_t)(\hat{f}_t - g_t)] \\ &= E[E[(f(X_t) - \hat{f}_t)(\hat{f}_t - g_t)|\mathcal{F}_t^Y]] = 0. \end{split}$$

Geometric interpretation: conditional expectation, with respect of the σ -algebra \mathcal{G} is an orthogonal projection on a space of \mathcal{G} -measurable functions.

$$\hat{f}_t := E[f(X_t)|\mathcal{F}_t^Y] = \int f(x)P(X_t \in \mathrm{d}x|\mathcal{F}_t^Y).$$

State:

$$dX_t = b(X_t)dt + \sigma(X(t))dW_t$$

$$dY_t = A(X(t))dt + g(Y_t)dV_t,$$

We assume W_t and V_t are independent Wiener processes. $X(0) = x_0$, Y(0) = 0. Further f = f(x), with $\sup_t E[f(X_t)^2] < \infty$.

$$\hat{f}_t = E[f(X_t)|\mathcal{F}_t^Y].$$

Zakai Equation of nonlinear filtering:

$$\hat{f}_t = \frac{\int f(x)u(t,x)\mathrm{d}x}{\int u(t,x)\mathrm{d}x},$$

where u(t, x) is a solution of the SPDE

$$du(t,x) = \left[\frac{1}{2}\sigma^{2}(x)u(t,x)_{xx} - (b(x)u(t,x))_{x}\right]dt + h(x)u(t,x)dY_{t},$$

where $h = g^{-1}A$.

$$\tilde{P}(A) = \int_{A} \exp\left\{-\int_{0}^{T} h ds - \frac{1}{2} \int_{0}^{T} h^{2} dV\right\} dP$$
$$dY_{t} = dV_{t}.$$

If we add another term to the state process,

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X(t))\mathrm{d}W_t + f(X(t))\mathrm{d}V_t,$$

then we get

$$du(t,x) = \left[\left[\frac{1}{2} \sigma^2(x) + \rho^2 \right] u(t,x)_{xx} - (b(x)u(t,x))_x \right] dt - (\rho u(t,x))_x dY_t + h(x)u(t,x) dY_t$$

as the corresponding Zakai equation. (not sure about this last equation)

6 Solutions of PDEs and SPDEs

6.1 Classical Solutions

Here, we assume that u is twice continuously differentiable in x and once in t.

$$\dot{u}(t,x) = a(x)u_{xx}, \quad u(0,x) = u_0(x).$$
(6.1)

6.2 Generalized Solutions

First, let us talk about generalized functions. Suppose we wanted to find a derivative of $f(x) = \operatorname{sign}(x)$. Classically, f'(0) does not exist. Let g be a differentiable function and φ very smooth with compact support. Then

$$\int f\varphi'(x)dx = -\int f(x)\varphi(x)dx.$$
$$\int f'(x)\varphi(x)dx = -\int \varphi(x)\varphi'(x)dx$$

If f is not differentiable,

for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$.

Now reconsider the heat equation in a different form, namely

$$\dot{u}(t,x) = (a(x)u_x)_x, \quad u(0,x) = u_0(x).$$
(6.2)

A weak general solution of (6.2) is a function $u \in H_2^1(\mathbb{R})$ such that for all t > 0

$$(u(t), \varphi) = (u_0, \varphi) - \int_0^t (u_x, \varphi_x) ds$$

for every function $\varphi \in C_0^{\infty}(\mathbb{R})$.

Going back to (6.1), we find that a generalized solution is also a function from H_2^1 so that

$$(u(t), \varphi) = (u_0, \varphi) - \int_0^t (u_x, (a\varphi)_x) \mathrm{d}s$$

for all $\varphi \in C_0^\infty(\mathbb{R})$.

This definition is equivalent to saying that

$$u(t) = u_0 + \int a \, u_{xx} \mathrm{d}s$$

as an equality in H^{-1} .

6.3 Mild Solutions

Let us now consider yet another different equation, namely

$$\dot{u}(t,x) = u_{xx}(t,x) + \sin(u(t,x)), \quad u(t,x) = u_0(x).$$
 (6.3)

Direct differentiation shows

$$u(t,x) = \int_{\mathbb{R}} k(t,x-y)u_0(y)\mathrm{d}y + \int_0^t \int_{\mathbb{R}} k(t-s,x-y)\mathrm{sin}(u(s,y))\mathrm{d}y\mathrm{d}s,$$

where k is the heat kernel

$$k(t, x - y) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|x - y|^2}{4t}}$$

Write this now in SPDE form

$$\mathrm{d}u(t,x) = a\,u_{xx} + f(u(t,x)).$$

A mild solution is a solution u that satisfies

$$u(t,x) = \int_{\mathbb{R}} k(t,x-y)u_0(y)\mathrm{d}y + \int_0^t \int_{\mathbb{R}} k(t-s,x-y)f(u(s,y))\mathrm{d}y\mathrm{d}s.$$

6.4 Generalization of the notion of a "solution" in SDE OSDE

$$\mathrm{d}X_t = b(X(t))\mathrm{d}t + \sigma(X(t))\mathrm{d}W_t, \quad X_0 = x_0.$$

Given $b, \sigma, x_0, (\Omega, P), W$. If b and σ are Lipschitz-continuous and

$$|b(x)|\leqslant K(1+|x|), \quad |\sigma(x)|\leqslant K(1+|x|) \quad \Rightarrow \quad \exists ! u.$$

Tanaka's Example shows an OSDE that can't be solved in this way:

$$\mathrm{d}X_t = \mathrm{sign}(X_t)\mathrm{d}W_t.$$

This equation has no solution for fixed (Ω, P) , W. One could find $(\tilde{\Omega}, \tilde{P})$, \tilde{W} such that $dX_t = \text{sign}(X_t)d\tilde{W}_t$. The mechanism for this is Girsanov's theorem, by which you can kill the drift and obtain a different equation.

If you specify the measure space and the Wiener process, you are looking for a *probabilistically strong* soltuion. If you allow yourself the freedom of choosing these as part of your solution, your solution is *probabilistically weak*.

7 Existence and Uniqueness

7.1 Scales of Sobolev Spaces

Simple Example: $x \in (0, b), \ \Delta := \partial_x^2, \ \Lambda := 1 - \Delta$. $H := L^2(0, b)$. For smooth functions f, clearly

$$(\Lambda f, f)_{H} = ((1 - \Delta)f, f)_{H} = \int_{0}^{b} f^{2}(X) dx + \int_{0}^{b} f^{2}_{x} dx = : \|f\|_{H^{1}_{2}}^{2}$$

Let us consider the basis

$$\left\{m_k(x) = \sqrt{\frac{2}{b}\sin\frac{\pi(k-1)x}{b}}\right\},\,$$

which is an ONS in H. Observe

$$\Lambda m_k = (1 - \Delta)m_k = m_k + \left[\frac{\pi(k - 1)}{b}\right]^2 m_k = \left(1 + \left[\frac{\pi(k - 1)}{b}\right]^2\right)m_k.$$
$$\lambda_k := 1 + \left[\frac{\pi(k - 1)}{b}\right]^2$$

Define

as the eigenvalues of
$$\Lambda$$
 w.r.t. the eigenbasis m_k . For $s \in (-\infty, \infty)$, we can construct an arbitrary power of
the operator by defining its effect on the eigenbasis m_k by $\Lambda^s m_k := \lambda_k^s m_k$. Further, we may observe

$$(\Lambda^s f, f)_H = \sum_k \lambda_s^k f_k = \left(\Lambda^{s/2} f, \Lambda^{s/2} f\right) = \left\|\Lambda^{s/2}\right\|_H$$

where

$$f_k = (f, m_k)_H$$

are the Fourier coefficients. Then the Sobolev Space

$$H_2^s(0,b) := \left\{ f \in H : \|f\|_s^2 := \left\| \Lambda^{s/2} f \right\|_H^2 < \infty \right\}.$$

For s < 0, define

$$H_2^s(0,b) := \Lambda^{-s} H.$$

We may also define

$$\|f\|_{s} := \sqrt{\sum_{k \ge 1} \left(\lambda_{k}^{s/2} f_{k}, \lambda_{k}^{s/2} f_{k}\right)}. \quad \text{It was} \sum_{k \ge 1} \left(\lambda_{k}^{s/2} f_{k}, \lambda_{k}^{s} f_{k}\right) \text{on the board, but that seemed wrong.}$$

The spaces $\{H_2^s(0,b), s \in \mathbb{R}\}$ form the scale of spaces $H_2^{s_1} \subset H_2^{s_2}$ if $s_1 > s_2$.

- Properties: Let $s_1 > s_2$. Then
- 1. H^{s_1} is dense in H^{s_2} in the norm $\|\cdot\|_{s_2}$.
- 2. H^s is a Hilbert space $(f, g)_s = \left(\Lambda^{s/2} f, \Lambda^{s/2} g\right)_0$.

3. For $s \ge 0, v \in H^{-s}(0, b), u \in H^{s}(0, b)$, denote

$$[u,v] := \left(\underbrace{\Lambda^s v}_{\in H}, \underbrace{\Lambda^{-s} u}_{\in H}\right)$$

a. If v also belongs to H, then $[u, v] = (v, u)_H$. Proof: Λ^s is self-adjoint in H.

Remark 7.1. We will typically work with three elements of the Sobolev scale–the middle, e.g. L^2 , then the space where the solution lives and finally the space that the solution gets mapped to by the operator.

Important mnemonic rule:

$$\frac{\partial^n}{\partial x^n}: H^s \to H^{s-n}.$$

7.2 Normal triples/Rigged Hilbert space/Gelfand's triple

Definition 7.2. The triple of Hilbert spaces (V, H, V') is called a normal triple if the following conditions hold:

1. $V \subset H \subset V'$.

- 2. The imbeddings $V \rightarrow H \rightarrow V'$ are dense and continuous.
- 3. V' is the space dual to V with respect to the scalar product in H.

Note that we always assume that H is identified with its dual.

Example 7.3. Any triple $H_2^{s+\gamma}$, H^s , $H^{s-\gamma}$ for $\gamma \ge 0$ is a normal triple.

7.3 Actual SPDEs

$$du(t) = (A u(t) = f(t))dt + \sum_{k=1}^{\infty} (M_k u(t) + g_k(t))dW_k^t, \quad u(0) = u_0 \in H.$$

We will assume that $A: V \to V'$ and $M_k: V \to H$, and further $f \in L^2(0, T; V')$ and $g_k \in L^2(0, T; H)$. We further assume f(t) and $g_k(t)$ are \mathcal{F}_t^W -measurable, and $V = H_2^1(\mathbb{R}^d)$, $H = L_2(\mathbb{R}^d)$, $V' = H^{-1}(\mathbb{R}^d)$.

$$A u = \sum_{i,j} (a^{i,j}(t,x)u_{x_i})_{x_j} + \sum_i b^i(t,x)u_{x_i} + c$$
$$M_k u = \sum_i \sigma^{i,k}(t,x)u_{x_i} + h^k(t,x)u.$$

We might also want to consider

$$A u = \sum_{|\alpha| \leqslant 2n} a_{\alpha} \partial^{\alpha} u, \quad M_k u = \sum_{|\alpha| \leqslant n} \sigma_{\alpha} \partial^{\alpha} u.$$

8 Existence and Uniqueness

We assume we have a normal triple $V \subset H \subset V'$. Consider

$$du(t) = (A u(t) + f(t))dt + (\mu_k u(t) + g_k(t))dW_k(t),$$
(8.1)

where we assume that W_k are infinitely many independent Brownian motions, $u(0) = u_0$, $A: A(t): V \to V'$, $\mu_k: \mu_k(t): V \to H$,

$$\sum_{k} E \int_{0}^{T} \|\mu_{k}\varphi\|_{H}^{2} \mathrm{d}t < \infty,$$

$$\begin{split} f \in L^2(\Omega \times (0,T)); V'), \text{ i.e.} \\ g_k \in L^2(\Omega \times (0,T); H) \text{ and} \\ & \sum_{k=1}^{\infty} E \int_0^T \|g_k(t)\|_H^2 \mathrm{d}t < \infty, \end{split}$$

If A is $A(t,\omega)$, then $A(t)\varphi$ is \mathcal{F}_t^W -adapted, and likewise for μ_k .

$$Au = a(t, x)u(t, x)_{xx}$$

$$\mu_k u = \sigma_k(t, x)u(t, x)_x$$

$$V = H^1(\mathbb{R}^d),$$

$$H = L^2(\mathbb{R}^d),$$

$$V' = H^{-1}(\mathbb{R}^d).$$

Saying that $A(t)\varphi \in V'$ is \mathcal{F}_t^W -adapted means that $\forall \psi \in V$, $[A(t)\varphi, \psi]$ is an \mathcal{F}_t^W -adapted random variable. Consider *Pettis' Theorem*, which states that

Suppose we have a measure space (Ω, \mathcal{F}, P) . Suppose X and Y are Hilbert spaces. Then

• $f(\omega): \Omega \to X$ is \mathcal{F} -measurable iff $\{\omega: f(\omega) \in A \subset X\} \in \mathcal{F}$

is equivalent to

• $(g, f(\omega))_X$ is \mathcal{F} -measurable for all $g \in \tilde{X}$ where \tilde{X} is a dense subset of X.

u is a solution of (8.1) iff for all t

$$u(t) = u_0 + \int_0^t (Au(s) + f(s)) ds + \sum_k \int_0^t (\mu_k u(s) + g_k(s)) dW_k(s)$$

with probability 1 in V', that is

$$[u(t),\varphi] = [u_0,\varphi] + \int_0^t [Au(s) + f(s),\varphi] \mathrm{d}s + \sum_k \int_0^t [\mu_k u + g_k,\varphi] \mathrm{d}W_k(s).$$

If $u \in V$, we would have

$$(u(t),\varphi)_H = (u_0,\varphi)_H + \int_0^t [Au(s) + f(s),\varphi] \mathrm{d}s + \sum_k \int_0^t (\mu_k u + g_k,\varphi) \mathrm{d}W_k(s).$$

Theorem 8.1. In addition to the assumptions we already made, assume

(A1). $\exists \delta > 0 \text{ and } C_0 \ge 0, \text{ so that}$

$$\exists \delta > 0, C_0 \ge 0: 2[A\varphi(t), \varphi] + \sum_k \|\mu_k \varphi\|_H^2 \le -\delta \|\varphi\|_V^2 + C_0 \|\varphi\|_H^2$$

("coercivity condition" \Leftrightarrow superellipticity)

(A2). $||A\varphi||_{V'} \leq C_A ||\varphi||_V$.

Then there is existence and uniqueness for the above equations.

That means there is a $u \in L^2(\Omega; C([0,T]); H) \cap L^2(\Omega; C([0,T]); V)$, moreover

$$E \sup_{t \leq T} \|u(t)\|_{H}^{2} + E \int_{0}^{T} \|u(t)\|_{V}^{2} dt \leq C E \left(\|u_{0}\|_{H}^{2} + \int_{0}^{T} \|f\|_{V}^{2} dt + \sum_{k} \int_{0}^{T} \|g_{k}\|_{H}^{2} dt \right)$$

Interpretation: If $H = L^2$, $V = H^1$, u(t) is cont. in L^2 and has one derivative in x which is square-integrable. (We might have also used $H = H^1$ and $V = H^2$, in which case u is cont. in H^1 and has two derivatives which are square-integrable.)

Now consider the following fact leading up to the *energy equality:* Suppose we have a function $u(t) \in L^2(0,T)$ and a generalized derivative $u'(t) \in L^2(0,T) \Rightarrow u(t)$ is continuous on [0,T] and

$$\begin{array}{lll} u(t) &=& \int_0^T u'(s) \mathrm{d} s, \\ |u(t)|^2 &=& 2 \int_0^t u(s) u'(s) \mathrm{d} s. \end{array}$$

Proof: Homework.

In the infinite-dimensional setting, we have a very analogous statement:

Suppose $u(t) \in L^2([0,T]; V)$ and $u'(t) \in L_2([0,T]; V')$. Then $u(t) \in C([0,T]; H)$ and

$$\|u(t)\|_{H}^{2} = 2 \int_{0}^{t} [u'(s), u(s)] ds.$$

[Lectures 14-15 not typed, notes available from Prof. Rozovsky]

[April 10, 2007, Lototsky, Lecture 16]

9 SPDE with space-time white noise

$$\mathrm{d}u = u_{xx}\mathrm{d}t + g(u)\mathrm{d}W(t,x)$$

on $0 < x < \pi$ with

$$u|_{t=0} = u_{0,t}$$
$$u|_{x=0} = u|_{x=\pi} = 0,$$
$$u_t|_{x=0} = u_t|_{x=\pi} = 0.$$

Two different ways of writing this equation are

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + g(u) \frac{\partial^2 W}{\partial t \partial x}$$

or

$$\mathrm{d}u = u_{xx}\mathrm{d}t + \sum_{k=1}^{\infty} g(u)h_k\mathrm{d}W_k(t)$$

Theorem 9.1. (Walsh, Lecture Notes in Mathematics 1180, 1984)

If $u_0 \in C^{\infty}$, then $u \in C_t^{0,1/4-\varepsilon} \cap C_x^{0,1/2-\varepsilon}$.

Three kinds of space-time white noise:

- Brownian sheet $W(t, x) = \mu([0, t] \times [0, x])$
- Cylindrical/Brownian motion family of Gaussian random variables $B_t = B_t(h), h \in H$ a Hilbert space, $E[B_t(h)] = 0, E[B_t(h)B_s(g)] = (h, g)_H (t \wedge s)$
- Space-time white noise $dW(t, x) = \frac{\partial^2 W}{\partial t \partial x} = \sum_{k=1}^{\infty} h_k(x) dW_k(t)$, where $\{h_k\}$ is assumed a Basis of the Hilbert space we're in if $\{h_k, k \ge 1\}$ is a complete orthonormal system, then $\{B_t(h_k), k \ge 1\}$ -independet standard Brownian motion.

Connection between the three: If $H = L^2(\mathbb{R})$ or $H = L^2(0, \pi)$, then

$$B_t(h) = \int \frac{\partial W}{\partial x} h(x) \mathrm{d}x,$$

$$B_t(x) = B_t(\chi_{[0,X]}) = \sum_{k=1}^{\infty} \int_0^x (h_k(y) \mathrm{dyW}_k(t)) = W(t,x)$$

22

and

9.1 A closer look

Consider $g(u) \equiv 1$.

where we assume that

for $\gamma \in \mathbb{R}$. Now consider

 $du = u_{xx}dt + \sum_{k=1}^{\infty} h_k(x)dW_k(t),$ $h_k(x) = \sqrt{\frac{2}{\pi}}\sin(kx).$

Observe that, strictly, the series on the RHS diverges in L^2 . Now consider the setting of a Sobolev space

$$H^{\gamma} = H^{\gamma}((0,\pi)),$$

with

i.e.

$$\|f\|_{\gamma}^{2} = \sum_{k=1}^{\infty} k^{2\gamma} f_{k}^{2}, \quad f_{k} = \int_{0}^{\pi} f(x) h_{k}(x) dx$$
$$M(t, x) = \sum_{k=1}^{\infty} h_{k}(x) W_{k}(t) \in H^{\gamma},$$
$$E\|M\|_{\gamma}^{2} = t \sum_{\gamma=1}^{\infty} k^{2\gamma} < \infty$$

if
$$\gamma < -1/2$$
.

$$u(t) = u_0 + \int_0^t A \, u \mathrm{d}s + M(t),$$

where

$$A = \frac{\partial^2}{\partial x^2} \colon H^{\gamma+1} \to H^{\gamma-1}.$$

Then

$$\exists ! u \in L^2(\Omega; L^2(0,T); H^{\gamma+1}) \cap L^2(\Omega; C(0,T); H^{\gamma})$$

for all $\gamma < -1/2$, so u is almost in $H^{1/2}$ for almost all t.

We assume a Fourier point of view, so that

$$u(t,x) = \sum_{k=1}^{\infty} u_k(t) h_k(x)$$

and

$$\mathrm{d}u_k = -k^2 u_k + \mathrm{d}W_k(t)$$

Then

$$u_k(t) = \int_0^t e^{-k^2(t-s)} \mathrm{d}W_k(s).$$

Next, note

Kolmogorov's criterion: If

$$E|X(x) - X(y)|^p < C|x - y|^{d+q}$$

for $x \in \mathbb{R}^d$, then $X \in C^{0, q/p - \varepsilon}$ for all $\varepsilon > 0$.

Now, consider try to prove its assumption:

$$E|u(t,x) - u(t,y)|^{p} = E \left| \sum_{k=1}^{\infty} u_{k}(t)(h_{k}(x) - h_{k}(y)) \right|^{p}$$

$$\stackrel{\text{BDG}}{\leq} C \left(\sum_{k=1}^{\infty} \frac{1}{2k^{2}}(1 - e^{-2k^{2}t})|h_{k}(x) - h_{k}(y)|^{2} \right)^{p/2}$$

$$\stackrel{(*)}{\leq} C|x - y|^{(1/2 - \varepsilon)p}.$$

where we've used the BDG (Burkholder/Davis/Gundy) Inequality, i.e.

$$E[M_T^p] \leqslant C E \langle M \rangle_T^{p/2},$$

where M is assumed a martingale, which we can achieve by fixing time t to T in the expression for u_k above. Next, note

$$E[u_k^2(t)] = \int_0^t e^{-2k^2(t-s)} \mathrm{d}s = \frac{1}{2k^2}(1-e^{-2k^2t}),$$

also quadration variation if we fix time as hinted above.

Once we get to (*) above, realize that we want

$$\sum k^{2\delta-2} < \infty,$$

and use the fact that

$$|h_k(x) - h_k(y)| \sim |\sin(kx) - \sin(ky)| \leq C(K|x-y|)^{\delta}$$

for $2\delta - 2 < -1$, i.e. $\delta < 1/2$, i.e. $\delta = 1/2 - \varepsilon$.

So altogether, we obtain $E|u(t,x) - u(t,y)|^p \leq C|x-y|^{(1/2-\varepsilon)p}$. Thus

$$u \in C_x^{1/2-\varepsilon - \frac{1}{p}-\varepsilon} = C_x^{1/2-\varepsilon}.$$

9.2 Mild solutions

Our u above is "a solution" to our SPDE, but not in the variational sense defined so far. So we need a more general idea of what a solution is, to subsume both concepts. If you have a general PDE

$$\dot{u} = A(t)U,$$

then $u(t) = \Phi_{t,0}u_0$. Then

$$\dot{u} = A(t)u + f(t)$$

gives us

$$u(t) = \Phi_{t,0}u_0 + \int_0^t \Phi_{t,s}f(s)\mathrm{d}s.$$

For example, if we have

$$\frac{\partial u}{\partial t} = u_{xx}$$

 $\Phi_{t,0}: f \mapsto \int_0^t \, G(t,x,y) f(y) \mathrm{d} y,$

where *Greeen's function* is given by

$$G(t, x, y) = \sum_{k=1}^{\infty} e^{-k^2 t} h_k(x) h_k(y)$$

if

then

$$\mathrm{d}u = u_{xx}\mathrm{d}t + \sum_{k} h_k(x)\mathrm{d}W_k, \quad u_0 = 0.$$

Then

$$u(t,x) = \sum_{k=1}^{\infty} \int_0^t \int_0^{\pi} G(t-s,x,y)h_k(y)\mathrm{d}y\mathrm{d}W_k(s).$$

Now for

$$\mathrm{d}u = u_{xx}\mathrm{d}t + \sum g(u)h_k\mathrm{d}W_k,$$

we write

$$u(t,x) = \int_0^{\pi} G(t,x,y)u_0(y)dy + \sum_{k=1}^{\infty} \int_0^t \int_0^{\pi} G(t-s,x,y)g(u(y))h_k(y)dydW_k(s).$$

Then you define a *mild solution* to be a solution to the above integral equation.

Now try

$$\begin{split} E|u(t,x_1) - u(t,x_2)|^p &\sim E \left| \sum_k \int \!\!\!\!\int G(t-s,x_1,y) - G(t-s,x_2,y) h_k(y) g(u(s,y)) \mathrm{d}y \mathrm{d}W_k(s) \right|^p \\ &\leqslant E \left(\sum_k \int_0^t \left| \int_0^\pi \left(G(t-s,x_1,y) - G(t-s,x_2,y) \right) h_k(y) g \mathrm{d}y \right|^2 \mathrm{d}s \right)^{p/2} \\ &= E \left(\int_0^t \int_0^\pi |G(t-s,x_1,y) - G(t-s,x_2,y)|^2 g^2(u(x,y)) \mathrm{d}y \mathrm{d}s \right)^{p/2}. \end{split}$$

Then came Krylov (1996) and turned this "hard analysis" into clever "soft analysis" or so.