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Sources

This presentation is based largely on [3], with some influence from [6]. [7] builds on [6], but is rarely
referred to. Nothing in here is original.

1 Elliptic Equations

Elliptic partial differential equations are quite different from the other PDEs treated in this seminar in
one major aspect: The solution is globally coupled. One cannot hope to solve the problem just on a sub-
domain. This means especially:

• There is no innate time dependency, and hence no time stepping in a numerical solution.



• There are no characteristics.

Consider for a minute that DG as we have seen it heavily relies on both these features.
Poisson’s equation is the prime example of an elliptic equation, and its Dirichlet problem is what we

will be treating here. Let Ω⊂R
n be a bounded, open, polygonal domain.

−∆u = f on Ω,

u = g on ∂Ω.

In 1D, this boils down to the boundary value problem for u′′ = f . Wlog, g ≡ 0–otherwise, continue g onto
Ω in an arbitrary fashion and solve for ũ4 u− g, which leads to −∆ũ = f + ∆g. Put weakly, we want a
u∈H0

1(Ω) such that

B(u, v)4 ∫

Ω

∇u∇v =

∫

Ω

f v ∀v ∈H0
1(Ω).

1.1 A little bit of Theory

Theorem 1. (Lax-Milgram) ((2.7.7) in [ 5]) Let V be a Hilbert space. For a bilinear form B: V × V →
R and a linear functional l:V →R,

B(u, v)= l(v) ∀v ∈ V

is uniquely solvable if

• B is continuous: |B(u, v)|6C1‖u‖‖v‖,

• B is coercive: B(v, v)>C2‖v‖,

• l is continuous: l(v)6C3‖v‖.

This theorem guarantees solvability of both the continuous and the discrete flavor of the problem. We will
come up with a bilinear form, and we will have to show that it satisfies the assumptions of Lax-Milgram.

Theorem 2. (Regularity) ([ 4], Thm. 7.2) Let B:H0
1(Ω) ×H0

1(Ω) →R be a coercive bilinear form with
sufficiently smooth coefficent functions, and let Ω be convex. Then the variational problem

B(u, v)= (f , v)0 ∀v ∈V

with H0
1(Ω)⊂V ⊂H1(Ω) has a solution u∈H2(Ω) and

‖u‖2 6 c‖f ‖0.

Note that for higher order error estimates, you need better regularity, which may or may not be available,
depending on your domain.

Theorem 3. (Trace Theorem) ([ 9], Thm. 1.12 or [ 1]) Let Ω be a Lipschitz domain, k ∈ N, and l ∈

{0,� , k− 1}. Then there exists a continuous map γl:H
k(Ω)→L2(Ω) with

γl(ϕ)=

(

∂

∂n

)l

ϕ|∂Ω ∀ϕ∈Ck(Ω̄).

2 Dipping into DG

2.1 Why consider DG for Elliptic Equations?

For most relevant cases, the above regularity theorem states that our solution will be in H2, which is
fairly smooth. Why, then, do we even consider discontinuous approximations to this solution? The answer
lies mostly in the difficulty of constructing “smooth” methods. The “usual” finite element method chooses

an approximation space Vh ⊂ H0
1 = : V . Methods with this property are called conforming. Non-con-

forming means that Vh� V . DG is clearly non-conforming.

2 Section 2



Consider the following difficulties:

• h-adaptivity: Hanging nodes.

• p-adaptivity: Non-matched polynomial degrees on element interfaces.

• C1 elements exist, but are pretty awkward to construct (e.g. the Argyris element with 21 degrees
of freedom, cf. (3.2.10) in [5]). The “easy” simplical or quadrilateral elements are only C0. Certain
discretizations of the biharmonic problem ∆2u= f require H2, and hence C1 approximations.

DG methods alleviate this by only requiring us to be able to compute a boundary integral, nothing more–
we are not confined by continuity or differentiability requirements at element interfaces. Like in the hyper-
bolic case, numerical fluxes will help us enforce the regularity requirements that we are choosing to not
build into the approximation space. For the most part (but not in all methods), this will happen by
means of a penalty method.

These advantages come at a price, however. A calculation using DG typically has twice the number of
degrees of freedom of a conforming one, for no direct gain in the accuracy (and hence error) estimates. It
depends on the individual application whether this price is worth paying.

2.2 What is a Penalty Method? And why do we need one?

The whole point of our method is that we will not force the inter-element jump uh,1 − uh,2|Γ to be zero.
We will use a softer approach instead: Our bilinear form will contain a term that looks like

B(u, v)=� +
1

|Γ|α

∫

Γ

(uh,1− uh,2)v,

where Γ represents an element interface, |Γ| its n − 1-dimensional measure, and α > 0 is the order of the
penalty term. A similar method enforces our zero boundary condition.

What does this term do? For α= 0, a condition like
∫

Γ

(uh,1− uh,2)v=0 ∀v

ensures uh,1− uh,2|Γ = 0. But, we did not add this as a separate condition. We just added the condition to
our existing equation, which might yield a different solution altogether. The saving grace is the division
by |Γ|α. If we let h4 max hK → 0 (where hK is the diameter of the element K), automatically |Γ|α → 0,
and thus |Γ|−α → ∞, so allowing uh,1 − uh,2 to be nonzero becomes more and more “expensive” as the
mesh is refined. Curiously though, in practice, α6 1 is sufficient ([6], Thm. 2.2), which means

1

|Γ|α

∫

Γ

(uh,1− uh,2)v=O(1).

Higher powers of α would certainly work, but lead to an increasingly larger condition number of the stiff-
ness matrix.

2.3 Obtaining a Weak Formulation

Since integration by parts yields no easy way to deal with functions whose derivatives have jumps (and
remember, we are dealing with second derivatives here), we rephrase the Poisson equation as a system of
first-order equations

∆u=∇·∇u � σ4 ∇u, −∇ ·σ = f.

We can imagine these equations to specify the divergence of a flux σ, and solving for a potential that gen-
erates this gradient, somewhat like a conservation law.

Let K be a compact set. Considering the two nearly identical equalities
∫

K

(∇u) · τ +

∫

K

u∇· τ =
Gauß

∫

K

∇· (uτ )�
start here

=

∫

∂K

uτ ·n,

∫

K

σ · (∇v)+

∫

K

v∇ ·σ =
Gauß

∫

K

∇· (σv)�
start here

=

∫

∂K

vσ ·n,
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and plugging in the rewritten system in the appropriate spots, we get
∫

K

σ · τ = −

∫

K

u∇· τ +

∫

∂K

uτ ·n,
∫

K

σ · ∇v =

∫

K

v f +

∫

∂K

vσ ·n,

where we seek solutions u∈ V , σ ∈ V n, for some V ⊂H1(Ω), that satisfy these equations for all v ∈ V , τ ∈
V n.

At this point, it is appropriate to note that the Trace Theorem allows us to safely talk about the
boundary values used in these expressions, since they are defined at least in an L2-function sense.

2.4 Discretizing the Weak Formulation

For the rest of this presentation, we specialize to n= 2. When discretizing the weak formulation above, we
run into one problem: We need the values of u and σ on ∂K in the boundary terms. The problem is that
these functions are potentially double-valued there. Like with hyperbolic problems, this problem is
resolved by picking numerical fluxes û and σ̂ :

∫

K

σh · τh = −

∫

K

uh∇· τ h +

∫

∂K

ûhτh ·n,
∫

K

σh · ∇vh =

∫

K

vh f +

∫

∂K

vhσ̂h ·n.

Observe that only the normal component of σ̂h is ever used in our method.

2.4.1 Function Spaces

Let’s worry for a minute about the spaces to which these functions belong. To that end, let Th be a trian-
gulation of Ω with h4 maxK∈Th

hK, where hK4 diam(K) for K ∈Th.

Vh 4 {v ∈L2(Ω): v |K ∈P (K)∀K ∈Th},

Σh 4 Vh
2,

where P (K) is a suitable finite-dimensional approximation space on the element K, such as the polyno-
mials Pp of up to degree p. A key point here is that the local space P (K) is allowed to vary depending on
K. We assume uh, vh ∈ Vh and σh, τ h ∈ Σh. Notice that this is the point where we depart from the “safe
grounds” of conforming methods, since for v ∈ Vh, v |K1

∈ P (K1) and v |K2
∈ P (K2) do not need to agree on

K1∩K2, and thus v � H1(Ω).
For the purposes of our error analysis, we also need continuous spaces that admit discontinuities of the

kind that occur in Vh. The appropriate space for this is

H l(Th)4 ∏

K∈Th

H l(K).

Naturally, Vh⊂H l(Th) for any l.
To finish off our dealings with function spaces, we also define trace spaces, that is spaces for the func-

tion values on the boundaries. If we let Γ4 ⋃

K∈Th
∂K and Γ0 4 Γ \ ∂Ω, then Theorem 3 allows us to

define traces of a function v ∈H l(Th), which are guaranteed to be in a trace space, which we define analo-
gously to H l(Th), like this

T (Γ)4 ∏

K∈Th

L2(∂K)

v ∈T (Γ) may be double-valued on the inner boundary Γ0 and is single-valued on Γ \Γ0.

2.4.2 A Global View

If we add over all elements in the formula above, we get
∫

Ω

σh · τh = −

∫

Ω

uh∇h · τ h +
∑

K

∫

∂K

ûh,Kτh,K ·nK ,

∫

Ω

σh · ∇hvh =

∫

Ω

vh f +
∑

K

∫

∂K

vh,Kσ̂h,K ·nK.
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One small piece of magic was smuggled in here, namely the introduction of ∇h and ∇h · , which we needed
since the “jumpy” functions vh and τ h do not actually have H1-derivatives on element boundaries. Thus,
we define ∇h to use the H1-derivatives on the element interior, and leave it undefined elsewhere.

2.5 Jumps and Averages

We will now define two quantities, the jump and the average. We will write down our fluxes in terms of
these.

Step 1: Definition on the interior boundary. Let K1, K2 ∈ Th be two elements sharing an edge ∂K1 ∩
∂K2, and let n be the outward normal of K1. Then for a scalar quantity v ∈ T (Γ), we define

{v} 4 vK1
+ vK2

2
,

JvK 4 n v |K1
+ (−n) v |K2

,

where vKi
(i=1, 2) is the part of v associated with Ki.

Note how we cleverly skirt having to fix a sign (or edge orientation) convention for the jump by noting
that it does not matter which element we call K1 and which K2. This is the major reason to define JϕK as
a vector quantity, even though it strictly only represents a scalar value.

For a vector quantity τ ∈ T (Γ)2, we define

{τ } 4 τK1
+ τK2

2
,

Jτ K 4 τK1
·n+ τK2

· (−n).

Similar comments as above apply here.

Step 2: On the outer boundary, we only define

JvK 4 vn,

{τ } 4 τ .

2.5.1 Integration by Parts using Jumps and Averages

The sums at the end of each of the above two terms look very much alike. Let us develop a formula to
deal with that kind of sum, using the above notation for the jump and the average.

Let v ∈ T (Γ) and τ ∈ T (Γ)2, and let Eh denote all edges of elements in Th, while Eh,0 denotes all inte-
rior edges, i.e. such edges along wich v and τ can be double-valued.

∑

K

∫

∂K

vKτK ·nK

=
∑

e∈Eh,0

∫

e

[vK1
τK1

·n− vK2
τK2

·n] +
∑

e∈Eh\Eh,0

∫

e

[vKτK ·n]

=
∑

e∈Eh,0

∫

e

[

(vK1
n− vK2

n) ·
τK1

+ τK2

2
+
vK1

+ vK2

2
(τK1

− τK2
) ·n

]

+
∑

e∈Eh\Eh,0

∫

e

[vKn · τK]

=

∫

Γ
JvK · {τ }+

∫

Γ0

{v}Jτ K.

In this calculation, we have assumed n =nK1
for brevity.

We can milk this formula even further, by applying Gauß’s Theorem:
∫

Γ
JvK · {τ }+

∫

Γ0

{v}Jτ K =
∑

K

∫

∂K

vKτK ·nK =
∑

K

∫

K

∇· (vKτK) =

∫

Ω

∇h · (vτ )

=

∫

Ω

∇hv · τ +

∫

Ω

v∇h · τ .

Naturally, here we need to have v ∈ H1(Th) and τ ∈ H1(Th)2. So we have gained an easy integration-by-
parts formula involving only the jump and average terms.
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2.6 Final Touches to the Framework

Using the formula from Section 2.5.1 with the equations above yields
∫

Ω

σh · τ h = −

∫

Ω

uh∇h · τ h +

∫

Γ
JûhK · {τh}+

∫

Γ0

{ûh}Jτ hK,
∫

Ω

σh · ∇vh =

∫

Ω

vh f +

∫

Γ
JvhK · {σ̂h}+

∫

Γ0

{vh}Jσ̂hK.

We will now have to worry about how we can choose our fluxes. It turns out that our choice will fall into
one of two categories, depending on whether the vector flux σ̂h depends on σh. If this is not the case,
then we can easily eliminate σh: we pick τh = ∇hvh, use the equality of the left hand sides of the above
equations. There is a small catch, however. We can only do this if ∇: Vh→ Vh

2, and that map is also onto.
One way to not have this condition is to have polynomial spaces with bubble functions. The “onto” condi-
tion says that we are still using all possible test functions on the first equation. The polynomial spaces Pk

satisfy these conditions.

If we can use this shortcut, then our method is called a primal method . If not, the method is called a
flux method (cf. [8]). For flux methods, it seems that we truly have a system of equations. But it turns
out that by investing a little bit more work, we can sidestep this requirement, as Dan will show later.

3 A Closer Look at the Interior Penalty Method

For the rest of this presentation, let us focus on one specific method, namely the Interior Penalty Method .
We obtain it from the above deduction if we choose

û 4 {uh},

σ̂h 4 {∇huh}−
η

he
JuhK,

where he is the length of the edge at which σ̂h is evaluated, and η is some large positive constant. Notice
that the last term in σ̂h is the penalty term mentioned in Section 2.2.

3.1 Obtaining a Bilinear Form

We equate both right hand sides from above, substituting in our fluxes in the process:

−

∫

Ω

uh∇h · τ h +

∫

Γ
J{uh}K · {τh} +

∫

Γ0

{{uh}}Jτ hK =

∫

Ω

vhf +

∫

Γ
JvhK ·

{

{∇huh} −
η

he
JuhK

}

+

∫

Γ0

{vh}

s
{∇huh}−

η

he
JuhK

{

Now use J{ · }K =0, JJ · KK= 0, {{ · }}= { · } and {J · K}= J · K:

−

∫

Ω

uh∇h · τ h +

∫

Γ0

{uh}JτhK =

∫

Ω

vh f +

∫

Γ
JvhK ·

(

{∇huh}−
η

he
JuhK

)

. (1)

Next, use the integration-by-parts formula on the first term, to avoid generating ∇h · ∇hvh, which would
be problematic:
∫

Ω

∇huh · τh −

∫

Γ
JuhK · {τ h}−

∫

Γ0

{uh}Jτ hK+

∫

Γ0

{uh}Jτ hK=

∫

Ω

vh f +

∫

Γ
JvhK ·

(

{∇huh}−
η

he
JuhK

)

.

Finally, we substitute τ h =∇huh as indictated earlier:
∫

Ω

∇huh · ∇hvh −

∫

Γ

[

JuhK · {∇hvh}+ JvhK · {∇huh}− JvhK · η
he

JuhK
]

=

∫

Ω

vh f.
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We call the left hand side the bilinear form Bh(uh, vh).

3.2 Basics for a Detailed Analysis

We will now proceed with the analysis of this method, with the goal of proving a first error bound. It
turns out that a good function space for this analysis is

V (h)4 Vh +H2(Ω)∩H0
1(Ω)⊂H2(Th).

A convenient norm with which to carry out this analysis is the following:

|‖v‖|4 ∑

K∈Th

|v |1,K

2 + hK
2 |v |2,K

2 +
∑

e∈Eh

he
−1‖JvK‖0,e

2
√

,

which is equivalent to the |‖ · ‖| used in [3] by Formula (4.5) in that same paper. It is obvious that, being

composed of seminorms, |‖ · ‖| is also a seminorm. But it is also a norm on V (h).

In order to see this, remember that the main ingredient in proving that | · |1 is a norm on H0
1(Ω) is the

Poincaré Inequality

‖v‖0 6C‖∇v‖0.

The Poincaré Inequality also entails that the conventional FEM bilinear form

B̃(u, v)4 ∫

Ω

∇u · ∇v

is coercive. Such an estimate is not readily available to us, since V (h) � H0
1(Ω), so we will have to prove

one for ourselves.

Lemma 4. ([ 3], Lemma 2.1) Let Th be a mesh on Ω whose interior angles and adjacent-edge ratios are
bounded below. Then there exists a constant C depending only on Ω and these lower bounds such that

‖ϕ‖0
2
6C

(

‖∇hϕ‖0
2 +

∑

e∈Eh

he
−1‖JvK‖0,e

2

)

for ϕ∈H1(Th).

Proof. Define ψ ∈ H2(Ω) ∩ H0
1(Ω) by − ∆ψ = ϕ. Then by Theorem 2 there exists a constant C1

depending only on Ω such that ‖ψ‖2 6 C1‖ϕ‖0. Using our integration-by-parts formula and the Cauchy-

Schwarz Inequality, we obtain

‖ϕ‖0
2

= (ϕ, −∆ψ) = (∇hϕ,∇ψ)−
∑

e∈Eh

∫

e

JϕK · {∇ψ}+
∑

e∈Eh,0

∫

e

{ϕ}J∇ψK�
=0

= (∇hϕ,∇ψ)−
∑

e∈Eh

∫

e

r
he
−1ϕ ·n

z
{he∂nψ}

6

(

‖∇hϕ‖0
2 +

∑

e∈Eh

he
−1‖Jϕ ·nK‖0,e

2

)1/2(

‖∇ψ‖0
2 +

∑

e∈Eh

he‖∂nψ‖0,e

)1/2

.

Now, we employ the trace inequality

‖∂nψ‖0,e

2
6C

(

he
−1|ψ |1,K

2 + he|ψ |2,K

2
)

for e ∈ Eh and an adjacent triangle K ∈ Th. If the inequality did not contain the he terms, it would be
implied by Theorem 3, above. This particular trace inequality can be found as Formula (2.5) in [2]. More
specifically, we obtain

he‖∂nψ‖0,e

2
6C

(

|ψ |1,K

2 +he
2|ψ |2,K

2
)

6C
(

|ψ |1,K

2 + |ψ |2,K

2
)

6C
(

‖ψ‖0,K

2 + |ψ |1,K

2 + |ψ |2,K

2
)

=C‖ψ‖2,K

2
,
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where we have used he 6 diam(Ω), which subsequently got swallowed up in the constant. Thus,

‖ϕ‖0
2

6

(

‖∇hϕ‖0
2 +

∑

e∈Eh

he
−1‖Jϕ ·nK‖0,e

2

)1/2

C‖ψ‖2.

6

(

‖∇hϕ‖0
2
+
∑

e∈Eh

he
−1‖Jϕ ·nK‖0,e

2

)1/2

C‖ϕ‖0

⇒‖ϕ‖0 6 C

(

‖∇hϕ‖0
2 +

∑

e∈Eh

he
−1‖Jϕ ·nK‖0,e

2

)1/2

.

�

Thus, we know that for v ∈ V (h)

‖v‖0
2
6C |‖v‖|

2
,

so that if v� 0 in L2-sense, then |‖v‖|� 0, making |‖ · ‖| a norm.

3.3 The Inner Workings of our First Estimate

In order to prove our first error estimate, we need a few ingredients:

• Consistency : This comes in in the form of Galerkin orthogonality , which means

Bh(uh− ue, v)= 0 ∀v ∈ V (h),

with uh the numerical and ue the exact solution, as defined later.

• Boundedness: |Bh(v, w)|6C |‖v‖| |‖w‖| for all v, w ∈V (h).

• Coercivity/Stability: C |‖v‖|
2
6Bh(v, v) for all v ∈ V (h).

The main part of this is showing it for vh∈Vh.

• Approximation: We assume a projection operator P :Hp+1→Vh,

|‖v−Pv‖|6Chp|v |
p+1 ∀v ∈Hp+1,

where p is some number that is a property of our approximation space.

To show how everything works together, we will prove the estimate now and go through all the compo-
nents later. Boundedness and coercivity together let us apply Lax-Milgram on Vh, yielding a numerical
solution uh∈ Vh given by

Bh(uh, vh)=

∫

Ω

f vh ∀vh∈ Vh. (2)

Let ue ∈H
2 be the exact solution of the original Dirichlet problem. We are going for a fairly standard H1-

type finite element estimate, using the following chain of inequalities.

∣

∣

∥

∥Pue − uh

∥

∥

∣

∣

2
6

stab.

CBh(Pue −uh, Pue − uh)

=
consis.

C ′Bh(Pue − ue, Pue − uh)

6
bound.

C ′′|‖Pue − ue‖||‖Pue −uh‖|

6
approx.

C ′′′hp|u|
p+1|‖Pue − uh‖|.

Once we get this far, we use the triangle inequality and finish off:

|‖ue − uh‖| 6 |‖ue −Pue‖|+ |‖Pue − uh‖|

6 Chp|u|
p+1 +C ′′′hp|u|

p+1

6
(p=1)

Ch‖f ‖0.
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Obviously, we will have to go through the ingredients of this estimate one by one and verify that they do
indeed hold.

3.4 Consistency

Just like we applied Lax-Milgram to the problem on the approximation space, we may ask ourselves what
happens if we do the same on V (h), i.e. seek a ũ ∈V (h) such that

Bh(ũ , v)=

∫

Ω

f v ∀v ∈V (h). (3)

Do ũ and ue match? Consider our bilinear form applied to ue, keeping in mind that ue is smooth, and use
the integration-by-parts formula:

Bh(ue, v) =

∫

Ω

∇hue · ∇hv−

∫

Γ

[

JueK · {∇v}+ JvK · {∇hue}− JvK · η
he

JueK
]

=

∫

Ω

∇hue · ∇hv−

∫

Γ
JvK · {∇hue}

=
IBP

−

∫

Ω

∇h · ∇huev+

∫

Γ
JvK · {∇hue}+

∫

Γ0

{v}J∇hueK−
∫

Γ
JvK · {∇hue}

=

∫

Ω

f v

For the last step, recall that − ∆ue = f . More generally, this goes back to a property of the fluxes that is
called consistency . Dan will say more about that. Now, do ũ and ue match? Well, ue and ũ both satisfy
Equation (3). By Lax-Milgram, the solution to (3) is unique, so the answer is yes, they do match.

Finally, subtracting Equation (3) from Equation (2) gives us Galerkin orthogonality

Bh(uh− ue, v)= 0 ∀v ∈ V (h),

which we used above.

3.5 Boundedness

Showing boundedness amounts to showing each term in the bilinear form above can be bounded by the
|‖ · ‖|-norm. Let v, w ∈V (h). For the first term, we use the Cauchy-Schwarz inequality and obtain

∣

∣

∣

∣

∫

Ω

∇hv · ∇hw

∣

∣

∣

∣

6 ‖∇hv‖‖∇hw‖6 |‖v‖| |‖w‖|.

For the second term, we reuse the trace inequality from above together with Cauchy-Schwarz to obtain
for any w∈H2(K) and v ∈L2(e) for an edge e adjacent to K ∈Th:

∫

e

|∂nwv |6C
(

|w |1,K

2 + he
2|w |2,K

2
)1/2

he
−1/2

‖v‖0,e
,

which means that for v, w ∈V (h)
∫

Γ
JvK · {∇hw} =

∑

e∈Eh

∫

e

{∂nw}Jv ·nK

6 C

[

∑

K

(

|w |1,K

2
+ he

2|w |2,K

2
)

]1/2[
∑

e∈Eh

he
−1‖JvK‖0,e

2

]1/2

6 C |‖w‖| |‖v‖|.

The same argument goes through for the third term. Lastly,
∣

∣

∣

∣

∣

η

∫

Γ

[

JvK
he

1/2
·
JwK
he

1/2

]∣

∣

∣

∣

∣

6C |‖v‖| |‖w‖|
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is immediate, completing the boundedness proof.

3.6 Coercivity

For notational convenience, let

|v |∗4 he
−1
∑

e∈Eh

‖JvK‖0,e

2
√

and |v |Th
4 ∑

K∈Th

|vh|1,K

2
√

.

for v ∈ V (h) and remember that we proved
∫

Γ
JvK · {∇hv}6C |‖w‖| |v |∗

in the preceding section. Also note that for functions vh ∈ Vh (which we assumed finite-dimensional), we
may use an inverse equality (for example, Thm. (4.5.11) in [5]) to estimate

h|vh|2,K
6C |vh|1,K

,

so that

|‖vh‖|6C2

[

|vh|Th
+ |vh|∗

]

.

We begin by showing coercivity for vh∈ Vh:

Bh(vh, vh) =

∫

Ω

∇hvh · ∇hvh −

∫

Γ

[

2JvhK · {∇hvh}− JvhK · η
he

JvhK
]

=
∑

K∈Th

|vh|1,K

2
+ η |vh|∗

2
+ 2

∫

Γ
JvhK · {∇hvh}

> |vh|Th

2 + η |vh|∗
2 −C |‖vh‖| |vh|∗

> |vh|Th

2 + η |vh|∗
2 −

C

2

(

ε|‖vh‖|
2 +

|vh|∗
2

ε

)

> |vh|Th

2 +

(

−
Cε

2
|‖vh‖|

2 + |vh|∗
2

(

η−
C

2ε

))

(

ε<
! 1

C ·C2
, η−

C

2ε
>
!

1

)

> |‖vh‖|

(

1

C2
−
Cε

2

)

>
1

2
|‖vh‖|.

This coercivity estimate on Vh extends naturally to V (h) since any element v ∈ V (h) can be decomposed
into v = vh + ṽ , with vh ∈ Vh and ṽ ∈ H2 ∩ H0

1. It thus only remains to show that coercivity holds for ṽ .
Remebering that ṽ is smooth and already satisfies a Poincaré inequality, we get

Bh(ṽ , ṽ) =

∫

Ω

∇hṽ · ∇hṽ −

∫

Γ

[

JṽK · {∇hṽ }+ JṽK · {∇hṽ }− JṽK · η
he

JṽK
]

=

∫

Ω

∇hṽ · ∇hṽ >C‖ṽ ‖0 >C |‖ṽ ‖|.

3.7 Approximation

To show approximation, we would very much like to reuse the approximation theory for continuous ele-
ments. Thus we assume the projection operator P : Hp+1 → Vh projects its argument onto a continuous
function. Then, for v ∈Hp+1 with e4 v−Pv

|‖v−Pv‖|
2 =

∑

K∈Th

[

|e|1,K

2 + hK
2 |e|2,K

2
]

6C
∑

K∈Th

|e|1,K

2
6Ch2p|v |

p+1
2 ∀v ∈Hp+1,
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where we have used the definition of |‖ · ‖|, an inverse inequality like above, and a standard approximation
result like Thm. 6.4 in [4].

4 Closing Remarks

For those interested in further study, I would recommend the survey paper [3], to whose notation I have
tried to stay as close as possible. There remain many areas which were not even touched upon by this
brief overview, such as:

• Special properties of fluxes (Consistency, Conservativity) and consequently L2 error estimates,

• Other methods (especially non-primal methods–these will require slight additions to the proof of
boundedness),

• Neumann boundaries,

• More general elliptic operators,

• Convergence proofs, esp. superconvergence.

Some of this will be covered in Dan’s presentation.
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