
Nonlinear Filtering using Particles and Quadrature

A presentation in Professor B. Rozovskii’s Stochastic PDE class
Andreas Klöckner <kloeckner@dam.brown.edu>

Table of contents

Table of contents . 1

Sources and Program Code . 1

1 Nonlinear Filtering in Discrete Time . 1

2 Monte Carlo Filters . 3

2.1 The Example Process . 3
2.2 The Particle Filtering Framework . 4
2.3 Importance Sampling . 4
2.4 Sequential Importance Sampling . 5
2.5 Sequential Importance Resampling . 7

2.5.1 Binary-Tree-Based Resampling . 9
2.6 A Convergence Result . 9

3 Quadrature Filters . 9

3.1 The Idea behind the Filter . 9
3.2 Construction of the Filter . 10
3.3 Implementation and Evaluation . 11
3.4 Error Estimates . 12
3.5 Quadrature vs. Monte Carlo . 15

4 A Glance at Continuous-Time Filtering . 15

Bibliography . 16

Sources and Program Code

The material for Sections 1 through 2.5 originates from [1] and [2], for Section 2.6 from [4], for Section 8
from [5]. You may browse and download the code belonging to this presentation at
http://git.tiker.net/?p=spde-smc.git;a=tree.

1 Nonlinear Filtering in Discrete Time

The setup for the nonlinear filtering problem in discrete time consists of

• An unobserved Markov process xt for t = 0, 1, 2, � with initial distribution p(x0) and transition
density p(xt+1|xt). By the Markov property,

p(x0:T)= p(x0)
∏

t=1

T

p(xt|xt−1).

1

• Conditionally independent observations yt for t = 1, 2, 3� characterized by the density p(yt|xt).
Conditional independence manifests itself as

p(y1:T |x1:T)=
∏

t=1

T

p(yt|xt).

Our goal is to obtain (an estimate of) the posterior distribution p(xt|y1:t). A first step in this direction is
made by obtaining the joint distribution p(x0:t|y1:t), which is nothing but Bayes’ Theorem:

p(X |Y)=
p(X ∩ Y)

p(Y)
=

p(Y |X)p(X)

p(Y)
=

p(Y |X)p(X)
∫

P (Y ∩X)dX
=

p(Y |X)p(X)
∫

p(Y |X)p(X)dX
.

p(x0:t|y1:t)=
p(y1:t|x0:t)p(x0:t)

∫

p(y1:t|x0:t)p(x0:t)dx0:t

This is nice, but it has an important shortcoming: It is not very suitable for on-line processing, i.e. as the
process is happening, because we need to store and reprocess data for all time at each time step, which is
prohibitive for long-running processes. This has several important consequences:

• We need a recursive algorithm that can simply update the results obtained at time t − 1 for time t.
In particular, we assume that we cannot afford to store data for all time, much less process it.

• More precisely: Storage and effort required for the recursion should be roughly constant in time, it
should not grow with t.

Somewhat surprisingly, there is an update formula for the joint posterior that allows us to turn the joint
posterior at step t into the joint posterior for step t + 1. The two assumptions on our processes, namely
Markov and conditional independence, are crucial for its derivation:

p(x0:t|y1:t)

p(x0:t−1|y1:t−1)
=

p(y1:t|x0:t)p(x0:t)

p(y1:t)
· p(y1:t−1)

p(y1:t−1|x0:t−1)p(x0:t−1)

=
CI p(yt|x0:t)p(x0:t)

p(y1:t)
· p(y1:t−1)

p(x0:t−1)

=
(∗) p(yt|x0:t)p(x0:t)p(xt|xt−1)

p(y1:t)
· p(y1:t−1)

p(x0:t)

=
p(yt|x0:t)p(xt|xt−1)

p(y1:t)
· p(y1:t−1)

=
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
,

where we have used

p(x0:t)= p(x0:t−1)p(xt|x0:t−1) =
Markov

p(x0:t−1)p(xt|xt−1)

in step (∗). Altogether, we have derived

p(x0:t|y1:t)=
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
p(x0:t−1|y1:t−1). (1)

By realizing that

p(yt) =

∫

p(yt|xt)p(xt)dxt,

the denominator above can be expanded as

p(yt|y1:t−1) =

∫

p(yt|xt)p(xt|y1:t−1)dxt.

As we see, this update formula is not recursive yet, because we require the marginal p(xt|y1:t−1). Further,
at time t, we really only care about the marginal distribution of xt and not of x0:t, so the above joint dis-

2 Section 1

tribution really has too much information.
Starting with the equality

p(xt+1)=

∫

p(xt+1|xt)p(xt)dxt,

we find

p(xt+1|y1:t)=

∫

p(xt+1|xt)p(xt|y1:t)dxt (2)

for a prediction formula.
Note that we are looking for a recursion formula for p(xt|y1:t), but (2) is not recursive yet. It is only

one half of our final recursion formula.
To complete the recursion and with the observation yt on board, we find

p(xt|y1:t) =

∫

p(x0:t|y1:t)dx0:t−1

=
(1)

∫

p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
p(x0:t−1|y1:t−1)dx0:t−1

=
p(yt|xt)

p(yt|y1:t−1)

∫

p(xt|xt−1)p(x0:t−1|y1:t−1)dx0:t−1

=
Markov p(yt|xt)

p(yt|y1:t−1)

∫

p(xt|x0:t−1)p(x0:t−1|y1:t−1)dx0:t−1

=
p(yt|xt)

p(yt|y1:t−1)
p(xt|y1:t−1)

=
p(yt|xt)p(xt|y1:t−1)

∫

p(yt|xt)p(xt|y1:t−1)dxt

,

yielding the update formula for the marginal distribution of xt

p(xt|y1:t)=
p(yt|xt)p(xt|y1:t−1)

∫

p(yt|xt)p(xt|y1:t−1)dxt

(3)

which completes our recursion.

2 Monte Carlo Filters

In order to be able to give a meaningful intuition of the behavior of the algorithms introduced, we begin
by fixing a stochastic process to which we will apply our methods.

2.1 The Example Process

Throughout this presentation, we will focus on one particular example process, given by

xt =
1

2
xt−1 + 25

xt−1

1 +xt−1
2 + 8 cos(1.2t)+ vt

yt =
xt

2

20
+ wt

with x0∼N (0, σ1
2), vt∼N (0, σv

2), wt∼N (0, σw
2). With the time dependency omitted, the dynamics of this

process can be guessed from Figure 1. In particular, there are stable fixed points at x = ± 7 and an
unstable fixed point at x = 0. Note in particular that we are observing the square of the process, so just
from the observations, we will never be sure about the sign of xt. The resulting probability distribution
will thus have two modes and is a somewhat canonical example of a nonlinear process that makes the
Kalman filter fail.

Monte Carlo Filters 3

-30 -20 -10 0 10 20 30
x

t-1

-20

-10

0

10

20

x t

x
t

Identity

Example process
w/omitted time dependency

Figure 1. Plot of the Transition function of the example process, omitting the time dependency.

2.2 The Particle Filtering Framework

We begin by assuming that we have a discrete approximation p̂(xt|y1:t) to the exact distribution
p(xt|y1:t), given by a number Nt of particles xt

(i)
, such that

p̂(dxt|y1:t) =
1

Nt

∑

i=1

Nt

δ
x

t

(i)(dxt). (4)

We might then apply both halves of our recursion, first rewriting the prediction formula as

p̂(dxt+1|y1:t)=
1

Nt

∑

i=1

Nt

p(dxt+1|xt
(i)

) (5)

and then sampling a new set of particles xt+1
(i) from the distribution

p̂(xt+1|y1:t+1)=
1

C̃t+1

· p(yt+1|xt+1)p(xt+1|y1:t),

which is to say

p̂(xt+1|y1:t+1)=
1

C̃t+1 ·Nt

∑

i=1

Nt

p(yt+1|xt+1)p(xt+1|xt
(i)

). (6)

Note that we named the normalization constant in (3):

Ct4 ∫

p(yt|xt)p(dxt|y1:t−1),

which, in the current framework, would be approximated by

C̃t≈
∫

p(yt|xt)
1

Nt

∑

i=1

Nt

p(dxt|xt−1
(i)

). (7)

However, integrating (7) and sampling from (6) is usually still nontrivial. These holes in the framework
are to be filled by the concrete filtering methods in the rest of this presentation.

2.3 Importance Sampling

Let us begin this section with a few words on importance sampling . Importance sampling solves the
problem of sampling from a probability density p(x) which is only known up to a proportionality con-
stant. The trick is to allow each particle a weight in addition to its position.

More precisely, suppose we know that p(x)∝ q(x) is a probability density from which we cannot easily
draw samples, but where q(x) is known. Next assume we have a different density π(x), the so-called
importance density, that is easy to sample from. Let x(i) be samples drawn from π(x). Next, compute the

4 Section 2

weights

w(i)∝ p(x(i))

π(x(i))
and the normalized weights

w̃(i)4 w(i)

∑

j
w(j)

.

Then

p̂(x)4 ∑

i=1

N

w̃(i)δ(x− x(i))

is an approximate density of p. To see this, consider

Ep̂[f(x)] =

∫

f(x)p̂(x)π(x)dx

=

∫

f(x)
∑

i=1

N

w̃(i)δ(x−x(i))π(x)dx

=
∑

i=1

N

f(x(i))w̃(i)π(x(i))

=
∑

i=1

N

f(x(i))
w(i)

∑

j
w(j)

π(x(i))

=
∑

i=1

N

f(x(i))

C p(x(i))

π(x(i))

∑

j

C p(x(i))

π(x(i))

π(x(i))

=
1

∑

j

p(x(i))

π(x(i))

∑

i=1

N

f(x(i))π(x(i)).

In addition to solving the problem of sampling from a distribution known up to a multiplicative constant,
importance sampling gives us the possibility of choosing an importance density that allows us to “herd”
particles into interesting areas of the state space. This freedom, however, can quickly become a liability if
an unsuitable density is chosen.

2.4 Sequential Importance Sampling

We now return to the framework from Section 2.2 and apply the importance sampling technique. To
maintain the beneficial property of recursive updates, we demand that the importance density decompose
according to

π(x0:t|y1:t) =π(x0:t−1|y1:t−1)π(xt|x0:t−1, y1:t).

Iteration of this equality yields

π(x0:T |y1:T) =π(x0)
∏

t=1

T

π(xt|x0:t−1, y1:t).

Recall the update formula (1) for the joint posterior density

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
∝ p(x0:t−1|y1:t−1)p(yt|xt)p(xt|xt−1).

Thereby we obtain the weight update equation

wt
(i)∝ p(x0:t

(i) |y1:t)

π(x0:t
(i) |y1:t)

=
p(x0:t−1

(i) |y1:t−1)

π(x0:t−1
(i) |y1:t−1)

· p(yt|xt
(i)

)p(xt
(i)|xt−1

(i)
)

π(xt
(i)|x0:t−1

(i)
, y1:t)

= wt−1
(i) p(yt|xt

(i)
)p(xt

(i)|xt−1
(i)

)

π(xt
(i)|x0:t−1

(i)
, y1:t)

. (8)

We will additionally assume that

π(xt|x0:t−1, y1:t)= π(xt|xt−1, yt),

Monte Carlo Filters 5

allowing our method to get by without storing a complete history of all particle paths and observations.
This simplifies (8) to

w(i)∝wt−1
(i) p(yt|xt

(i)
)p(xt

(i)|xt−1
(i)

)

π(xt
(i)|xt−1

(i)
, yt)

. (9)

Remember that it suffices to specify the weights up to a proportionality constant.
The final question separating us from an actually implementable method is now the actual choice of

the importance density π. The goal in choosing this density has to be to keep all particles “meaningful”,
i.e. keep the weights as uniform as possible. Without proof, and without even further formalizing the
aforementioned requirement, we state that the optimal choice is

πopt(xt|xt−1
(i)

, yt)= p(xt|xt−1
(i)

, yt).

However, sampling from this density is not usually easy. A more convenient (and also more popular
choice) is the prior

πprior(xt|xt−1
(i)

, yt)4 p(xt|xt−1
(i)), (10)

which is readily available and often Gaussian, thus easy to sample from. The weight update equation (9)
takes a particularly simple form in this case:

wt
(i)∝wt−1

(i) p(yt|xt
(i)

)p(xt
(i)|xt−1

(i)
)

π(xt
(i)|xt−1

(i)
, yt)

=wt−1
(i)

p(yt|xt
(i)).

In all that follows, we will use this choice of importance density. For a more detailed treatment of the
choice of importance density, we refer the reader to [2].

We now have an acutally implementable algorithm that is summarized as source code in Figure 2.
Instead of showing pseudocode, I opted for showing an actual implementation in the Python1 program-
ming language, which I deem just as readable, with the added benefit of being an actual, executable and
verifiable program.

def sis(model, n=1000, max_time=20):

particles = [model.sample_initial() for i in range(n)]

particle_history = [particles]

weights = [1/n for i in range(n)]

weight_history = [weights]

x = model.sample_initial()

x_history = [x]

for t in range(1, max_time):

x = model.sample_transition(t, x)

y = model.sample_observation(t, x)

x_history.append(x)

evolved_particles = [model.sample_transition(t, xp) for xp in particles]

weights = [weight*model.observation_density(t, y, xtp)

for weight, xtp in zip(weights, evolved_particles)]

weight_sum = sum(weights)

weights = [weight/weight_sum for weight in weights]

particle_history.append(particles)

weight_history.append(weights)

return x_history, particle_history, weight_history

Figure 2. A Python implementation of Sequential Importance Sampling.

1. http://www.python.org

6 Section 2

The next issue is to evaluate the performance of the Sequential Importance Sampling Algorithm. To
that end, consider the plot in Figure 3. It’s easy to see that after a few timesteps, the distribution degen-
erates, so that all the weight is concentrated on a single spot, and in fact concentrated on a single particle
(which is not visible from the plot). This is obviously not very useful, so the next section will bring about
a method that addresses this problem.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

-40-30-20-10 0 10 20 30 40

 0

 0.2

 0.4

 0.6

 0.8

 1

Density

SIS Method

trajectory
posterior

Time

x

Density

Figure 3. A typical density evolution for SIS on the process from Section 2.1 using N = 1000 particles. The “true”

particle trajectory is shown in red, while the inferred posterior distribution is shown in green. Note how the distribu-

tion degenerates as time goes by.

2.5 Sequential Importance Resampling

The key idea behind SIR is to add an additional resampling step that kills off particles having low impor-
tance weights while multiplying the ones with high weights. The simplest and most popular way of doing
so is to sample N times from the discrete distribution

p̂(x)4 ∑

i=1

N

w̃(i)δ(x−x(i)).

This is often called “multinomial branching” because the number of particles ξ = (ξ(1), ξ(2), � , ξ(N))

descending from the particles x(1),� , x(N) can be viewed as a realization of a multinomial distribution

ξ∼Multinomial(n, w̃(1),� , w̃(N)).

Adding this step, we obtain the algorithm shown in Figure 4. Note that the procedure is even simpler
now because we do not need to propagate a set of weights between steps. Instead, at the end of each step,
all particles are equally weighted, and the weights only exist briefly within each step to obtain this equal
weighting.

Monte Carlo Filters 7

def sir(model, n=1000, max_time=20):

particles = [model.sample_initial() for i in range(n)]

particle_history = [particles]

x = model.sample_initial()

x_history = [x]

for t in range(1, max_time):

x = model.sample_transition(t, x)

y = model.sample_observation(t, x)

x_history.append(x)

evolved_particles = [model.sample_transition(t, xp) for xp in particles]

iweights = [model.observation_density(t, y, xtp) for xtp in evolved_particles]

particles = sample_discrete(evolved_particles, iweights, n)

particle_history.append(particles)

return x_history, particle_history, None

Figure 4. A Python implementation of Sequential Importance Resampling.

The added resampling step helps the SIR algorithm overcome the degeneracy problems encountered by
the SIS method. As evidenced by Figure 5, it is a useful method for tracking our example process from
Section 2.1. Observe that the seemingly unexplained peaks in the posterior distribution are caused by the
fact that we are only observing the square of our process, thus we cannot know what sign xt has at any
given moment, causing two modes to appear on either side of zero.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

-50-40-30-20-10 0 10 20 30 40

 0

 0.2

 0.4

 0.6

 0.8

 1

Density

SIR Method

trajectory
posterior

Time

x

Density

Figure 5. A typical density evolution for SIR on the process from Section 2.1 using N = 1000 particles. The “true”

particle trajectory is shown in red, while the inferred posterior distribution is shown in green.

The resampling step introduces other problems, though.

• First, in the case of low process noise, the distribution will once again collapse to a single point
within very few iterations. This issue is known as sample impoverishment , and counteracted by
methods such as Resample-Move [3] or regularisation [2].

• Second, it reduces the embarassingly parallel SIS method to one that is not entirely trivial to paral-
lelize.

• Third, with our particular choice (10) of importance density, the state space is explored without
any knowledge of the observations. This can make this filter inefficient and sensitive to outliers.

8 Section 2

2.5.1 Binary-Tree-Based Resampling

For completeness, we will briefly treat a different way of doing the resampling. The process is based on a

binary tree as in Figure 6, whose leaves correspond to the particles x(i) with weights w̃(i). Let each node
receive a number m, and let m1 and m2 denote the two children of node m. By some technique (see [4]) it
is then possible to construct a random variable ξm for each node such that

ξm = ξm1 + ξm2 (11)

and further

ξm =

{

⌊wm⌋ with probability 1−wm −⌊wm⌋,
⌊wm⌋+ 1 with probability wm −⌊wm⌋,

where we define the leaf weights as wm(i) 4 Nw̃(i) with N the desired number of particles after resam-
pling. We then propagate the weights towards the root by defining

wm4 wm1 +wm2.

Clearly, wr = N . Direct computation verifies E[ξm] = wm, and obviously ξm is integer. For leaf nodes, the
value of ξm is then taken as the number of descendants of the particle corresponding to that node,
whereas the remaining ξm are discarded–they were just scaffolding to obtain the correctly-distributed ξm

with the sum property (11).
Intuitively, this method introduces less randomness than the multinomial resampling. For example,

consider a particle that has a weight of, say, 3.72. In the tree-based approach, it is resampled into either 3
or 4 particles, while for the multinomial case, any number from 0 to N is possible.

ξr��
x(1) �

� �� ξm

ξm1 ξm2� x(N)

Figure 6. Binary-tree based Resampling.

2.6 A Convergence Result

Without proof, we state the following convergence result.

Theorem 1. ([4], Corollary 2.4.4) Let the transition kernel p(xt|xt−1) have the Feller property, that
is for any bounded and continuous f :Rn→R, the map

xt−1� ∫

f(x)p(dxt|xt−1)

must be bounded and continuous. Then as the number of particles N → ∞, the approximated posterior

densities of the SIR method with multinomial resampling converge

p̂N(xt|y0:t)→ p(xt|y0:t)

p-almost surely.

3 Quadrature Filters

3.1 The Idea behind the Filter

The key idea in the construction of the quadrature filter is a clever probabilistic reinterpretation of Gauß

Quadrature Filters 9

quadrature. Recall that Gauß-Legendre quadrature obtains an approximation to an integral

∫

−1

1

f(x)dx≈
∑

i=1

N

f(ξ(i))γ(i)

for some quadrature weights γ (i) and quadrature points ξ(i), the latter of which are found as the roots of
Legendre polynomials.

Using the substitution rule, this formula is easily transformed to a general interval (A, B):

∫

A

B

f(x)dx≈
∑

i=1

N

f(x(i))w(i),

with

x(i) =
A+ B

2
+ ξ(i)B −A

2
, w(i) =

B −A

2
γ(i).

If we now consider a probability density function p supported on (A, B), then

E[f(x)] =

∫

A

B

f(x)p(x)dx≈
∑

i=1

N

f(x(i))p(x(i))w(i).

In particular,

1= E[1] =

∫

A

B

p(x)dx≈
∑

i=1

N

p(x(i))w(i).

This gives rise to the interpretation of

p̂(dx)=
∑

i=1

N

δ(dx− x(i))p(x(i))w(i)

as a discrete approximation of p̂(x). In analogy to what we did above, we may regard the quadrature
points x(i) as our particles and

p̃(x(i))4 p(x(i))w(i)

as our weights.

3.2 Construction of the Filter

Now recall from Section 1 the recursion for the posterior, consisting of the prediction formula (2)

p(xt+1|y1:t)=

∫

p(xt+1|xt)p(xt|y1:t)dxt

and the update formula (3)

p(xt|y1:t) =
1

Ct
· p(yt|xt)p(xt|y1:t−1)

with

Ct =

∫

p(yt|xt)p(xt|y1:t−1)dxt.

Recall that in the quadrature approach, the particle locations xt
(i) are fixed, so that the update equation

takes the role of simply updating the particle posterior probabilities (a.k.a. weights). Given the approxi-

mate prediction p̂(xt
(i)|y1:t−1) for each particle, we set

p̃(xt
(i)|y1:t)=

1

Ĉt

· p(yt|xt
(i))wt

(i)
p̂(xt

(i)|y1:t−1)�
prediction

, (12)

which in fact is most easily computed by first finding

q(i) = p(yt|xt)wt
(i)

p̂(xt
(i)|y1:t−1) (i =1,� , N)

and then computing

Ĉt =
∑

i=1

N

q(i)

10 Section 3

and applying the normalization

p̃(xt
(i)|y1:t) =

q(i)

Ĉt

.

Note our use of the tilde in p̃(xt
(i)|y1:t) to denote that this term is not just a particle approximation

(denoted p̂(xt
(i)|y1:t)), but in addition carries the weighting introduced in Section 3.1.

Prediction, in principle the first step of the algorithm, now makes use of Gaussian quadrature using
the weights we built into (12):

p̂(xt+1
(i) |y1:t−1)=

∑

j=1

N

p(xt+1
(i) |xt

(j)
)p̃(xt

(j)|y1:t) (i =1,� , N). (13)

Notice that, computationally, this is the most expensive step of the algorithm, of N2 complexity. Conse-
quently, this is the very point where the algorithm gets untractable for dimensions greater than roughly
three–realize that Gaussian quadrature requires N = md quadrature points, where m is the order of the
quadrature and d is the dimension of the state space.

In a high-dimensional setting, knowledge about some strong correlation between state variables in
principle opens up the possibility of employing a skewed grid that does a better job of covering the sup-
port of the probability density, allowing the use of fewer points. This however requires high-order interpo-
lation between these grids, introducing additional error and tedious computations. The authors of [5] indi-
cate that, in their experiments, this cost outweighed any potential speed gain.

3.3 Implementation and Evaluation

Figure 7 shows a reasonably straightforward Python implementation of quadrature filtering.

def quadrature(model, n=100, max_time=20, interval=(-40,40)):

particles, gauss_weights = quad_data(n, interval)

prob = [model.initial_density(x) for x in particles]

assert abs(sum(p*w for p, w in zip(prob, gauss_weights))-1) < 1e-3

prob_history = [prob]

x = model.sample_initial()

x_history = [x]

for t in range(1, max_time):

x = model.sample_transition(t, x)

y = model.sample_observation(t, x)

x_history.append(x)

prediction_prob = [

sum(model.transition_density(t, xj, xi) * prob[j]

for j, xj in enumerate(particles))

for xi in particles]

prob = [model.observation_density(t, y, xi) *

gauss_weights[i] *

prediction_prob[i]

for i, xi in enumerate(particles)]

normalizer = sum(prob)

prob = [p/normalizer for p in prob]

prob_history.append(prob)

return x_history, particles, prob_history

Figure 7. A Python implementation of Quadrature Filtering.

Quadrature Filters 11

In contrast to the methods discussed in Section 2, observe that the quadrature scheme is entirely
deterministic. There is no sampling involved–given the same observations, the quadrature filter will give
the same posterior distribution every time. This makes the scheme attractive for applications where such
predictability is desirable, for example when comparing the likelihood

p(y1:T)=
∏

t=1

T

p(yt|y1:t−1)=
∏

t=1

T

Ct

of a given observation with respect to different models, in particular similar models with different parame-
ters.

Figure 8 shows a sample run of the algorithm on the process from Section 2.1 with N = 100. First,
observe the clustering of particles near the domain endpoints typical of Gaussian quadrature. Next, note
that despite the fact an order of magnitude fewer particles than we used in the Monte Carlo methods, the
quadrature method is the only scheme to produce the symmetric posterior that is to be expected for a
process of which we only observe the square. In general, the posteriors produced by quadrature are also
less erratic than the Monte Carlo ones.

Another favorable aspect of quadrature methods is the fact that explicit estimates of the error are
available, as we will show next.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

-40-30-20-10 0 10 20 30 40

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

Density

Quadrature Method

trajectory
posterior

Time

x

Density

Figure 8. A typical density evolution for the quadrature filter on the process from Section 2.1 using N = 100 parti-

cles. The “true” particle trajectory is shown in red, while the inferred posterior distribution is shown in green.

Observe the difference in particle spacing between the domain boundary and its center.

3.4 Error Estimates

To begin, define the error in the log-likelihood of the observation

δt4 log{p̂(y1:t)}− log{p(y1:t)}=
∑

s=1

t

logĈs −
∑

s=1

t

logCs.

We will derive an error propagation result for

ε(xt+1|y1:t)4 exp(δt)p̂(xt+1|y1:t)− p(xt+1|y1:t).

which we take as indicator for the error in the prediction p̂(xt+1|y1:t). It is only an indicator and not the
true error because we ignored the error in the normalization constant, necessitating the term

exp(δt)=
p̂(y1:t)

p(y1:t)
=

∏

s=1

t
Ĉs

Cs
.

12 Section 3

We will also simply state an error propagation result for δt. In notation and argument, we follow [5]. First
up is a recursion formula for the prediction error indicator that is valid for any particle filter:

ε(xt+1|y1:t)

= exp(δt)p̂(xt+1|y1:t)− p(xt+1|y1:t)

=
(2),(13)

exp(δt)
∑

i

p(xt+1|xt
(i)

)p̂(xt
(i)|y1:t)−

∫

p(xt+1|xt)p(xt|y1:t)dxt

= exp(δt)
∑

i

p(xt+1|xt
(i)

)p̂(xt
(i)|y1:t)

−
∫

p(xt+1|xt)exp(δt)p̂(xt|y1:t)dxt +

∫

p(xt+1|xt)exp(δt)p̂(xt|y1:t)dxt�
0

−
∫

p(xt+1|xt)p(xt|y1:t)dxt

= exp(δt)

[

∑

i

p(xt+1|xt
(i)

)p̂(xt
(i)|y1:t)−

∫

p(xt+1|xt)p̂(xt|y1:t)dxt

]�
η(xt+1)4

+

∫

p(xt+1|xt)
(

exp(δt)p̂(xt|y1:t)− p(xt|y1:t)
)

dxt

=

∫

p(xt+1|xt)
(

exp(δt)p̂(xt|y1:t)− p(xt|y1:t)
)

dxt + η(xt+1)

=
(3)

∫

p(xt+1|xt)p(yt|xt)
(

exp(δt)
1

Ĉt

· p̂(xt|y1:t−1)− 1

Ct
· p(xt|y1:t−1)

)

dxt + η(xt+1)

=
(∗)

∫

p(xt+1|xt)p(yt|xt)
(

exp(δt)
1

Ĉt

· ε(xt|y1:t−1)+ p(xt|y1:t−1)

exp(δt−1)
− 1

Ct
· p(xt|y1:t−1)

)

dxt + η(xt+1)

=

∫

p(xt+1|xt)p(yt|xt)
(1

Ĉt

· Ĉt

Ct
[ε(xt|y1:t−1)+ p(xt|y1:t−1)]− 1

Ct
· p(xt|y1:t−1)

)

dxt + η(xt+1)

=
1

Ct

∫

p(xt+1|xt)p(yt|xt)ε(xt|y1:t−1)dxt + η(xt+1),

where we’ve used

(∗)
ε(xt|y1:t−1)+ p(xt|y1:t−1)

exp(δt−1)
= p̂(xt|y1:t−1).

Note that the term η(xt+1) defined above is exactly the error contribution of the time step t +1.
A similar error recursion can be derived specifically for quadrature methods. Consider

ε(xt+1|y1:t)

= exp(δt)p̂(xt+1|y1:t)− p(xt+1|y1:t)

= exp(δt)
∑

i

p(xt+1|xt
(i)

)p̂(xt
(i)|y1:t)− p(xt+1|y1:t)

=
∑

i

p(xt+1|xt
(i))

[

exp(δt)p̂(xt
(i)|y1:t)−wt

(i)
p(xt

(i)|y1:t)
]

+
∑

i

p(xt+1|xt
(i)

)wt
(i)

p(xt
(i)|y1:t)− p(xt+1|y1:t)

=
∑

i

p(xt+1|xt
(i))

[

Ĉt
−1

exp(δt)p(yt|xt
(i))wt

(i)
p̂(xt

(i)|y1:t−1)−wt
(i)

Ct
−1p(yt|xt

(i))p(xt
(i)|y1:t−1)

]

+
∑

i

p(xt+1|xt
(i)

)wt
(i)

p(xt
(i)|y1:t)− p(xt+1|y1:t)

= Ct
−1

∑

i

p(xt+1|xt
(i))p(yt|xt

(i))wt
(i)

[

exp(δt−1)p̂(xt
(i)|y1:t−1)− p(xt|y1:t−1)

]

+
∑

i

p(xt+1|xt
(i)

)wt
(i)

p(xt
(i)|y1:t)− p(xt+1|y1:t)

Quadrature Filters 13

= Ct
−1

∑

i

p(xt+1|xt
(i)

)p(yt|xt
(i)

)wt
(i)

ε(xt|y1:t−1)+
∑

i

p(xt+1|xt
(i)

)wt
(i)

p(xt
(i)|y1:t)− p(xt+1|y1:t)

Next, assume that we have enough particles so that

|
∑

j

w(j)p(xt+1
(i) |xt

(j)
)p(xt

(j)|y1:t)− p(xt+1
(i) |y1:t)|6 εp(xt+1

(i) |y1:t). (14)

Note that this is an approximation assumption based on the exact probabilities, not the approximations.
Our goal is to prove a recursive estimate of the form

rt+1 6 rt(1+ ε)+ ε, (15)

where rt is a measure of the relative error in p̂(xt+1|y1:t), namely, the smallest nonnegative real such that

|ε(xt+1|y1:t)|6 rtp(xt+1|y1:t).

We will try to prove (15) by induction. (14) is the first step in the recursion, namely r1 6 ε. For the step
from t to t + 1, consider

ε(xt+1|y1:t)

6 |Ct
−1

∑

i

p(xt+1|xt
(i))p(yt|xt

(i))wt
(i)

ε(xt|y1:t−1)|

+ |
∑

i

p(xt+1|xt
(i)

)wt
(i)

p(xt
(i)|y1:t)− p(xt+1|y1:t)|

6
(14)

|Ct
−1

∑

i

p(xt+1|xt
(i)

)p(yt|xt
(i)

)wt
(i)

ε(xt|y1:t−1)|+ εp(xt+1
(i) |y1:t)

6
(15) for t

|Ct
−1

∑

i

p(xt+1|xt
(i)

)p(yt|xt
(i)

)wt
(i)

rt−1p(xt|y1:t−1)|+ εp(xt+1
(i) |y1:t)

= |rt−1

∑

i

p(xt+1|xt
(i))wt

(i)
p(xt

(i)|y1:t)|+ εp(xt+1
(i) |y1:t)

6
(14)

rt−1|p(xt+1
(i) |y1:t)(1+ ε)|+ εp(xt+1

(i) |y1:t).

Therefore,

rt 6 rt−1(1 + ε)+ ε,

as claimed. Iterating this estimate for r2 yields

r2 = r1(1 + ε)+ ε

= ε(1 + ε)+ ε

= ε2 +2ε

= (1 + ε)2− 1.

We hypothesize that

rt 6 (1 + ε)t − 1, (16)

which we can again easily prove by induction: Suppose it holds for t, then

rt+1 6 rt(1 + ε)+ ε

6
[

(1+ ε)t − 1
]

(1+ ε)+ ε

= (1 + ε)t+1− (1+ ε)+ ε

= (1 + ε)t+1− 1.

The estimate (16) gives a good idea about how the error in the prediction estimate (13) grows. By a sim-
ilar argument, the likelihood error is estimated as

δt 6 (t + 1)log(1+ ε′),

yielding only linear growth of the error in this case (but keep in mind that δt is a logarithmic quantity).

14 Section 3

3.5 Quadrature vs. Monte Carlo

Altogether, quadrature and particle filters form a mostly complementary set of algorithms–one shines
where the other one has weaknesses. Quadrature filters are rather time-consuming and suffer badly from
the curse of dimensionality, but deliver exact and deterministic answers. Monte Carlo filters, on the other
hand, are rather quick and deal with high-dimensional state spaces more easily. Their results are random
and sometimes inaccurate, and they may require a lot of particles to give an adequate answer. Figure 9
shows a summary of the relative merits of each method.

Feature SMC Filters Quadrature Filters

Runtime cost/step O(N) (SIS) O(N logN) (SIR) O(N2)
Randomness Randomized algorithm Deterministic
Suitable for parameter finding − +
Curse of dimensionality + −−
Error estimates − +
Particles required for given accuracy many relatively few

Figure 9. Comparison of performance criteria for quadrature vs. sequential Monte Carlo filters.

4 A Glance at Continuous-Time Filtering

The setup for the nonlinear filtering problem in continuous time consists of

• a Markov diffusion process

dxi(t) = bi(x(t))dt + σij(x(t))dW j(t)

where x = (x1,� , xd) and x(0)= x0.

• An observation

y(t)=

∫

0

t

h(x(s))ds+ V (t).

All coefficients are assumed smooth, and the initial vector and the two Wiener processes W and V are
assumed to be independent. (Setup and notation here originate from [7].) If we are interested in observing
a function f(x(t)), then the optimal filter (the best mean-square estimate) for this random variable is
given by

f̂ (x(t))=

∫

Rd
f(x)u(t, x)dx

∫

Rd
u(t, x)dx

,

where u is the unnormalized filtering density , somewhat in analogy to the update formula (3) above

without the normalization constant Ct
−1 at each time step. The function u can be found as a solution to

the Zakai SPDE

du(t, x) =L∗u(t, x)dt + h(x)u(t, x)dy(t), (17)

where

L∗u4 1

2

∂2

∂xixj
((σσ∗)iju)− ∂

∂xi
(biu).

(An accessible derivation of the Zakai equation may be found in Chapter 13 of [6].) One very interesting
approach of solving (17) is Sergey Lototsky’s spectral separating scheme that expresses the unnormalized
filtering density as an expansion into Wick polynomials ξα:

u(t, x)=
∑

α

1

α!
√ ϕα(t, x)ξα(y).

A Glance at Continuous-Time Filtering 15

The coefficients ϕα then satisfy a deterministic system of PDEs. The secheme is called separating because
it separates the dependency on process parameters (ϕα) and observation (ξα), allowing the former to be
obtained beforehand, making the scheme computationally attractive. We refer to [7] for the details.

Bibliography

[1] Arnaud Doucet, Nando de Freitas, and Neil Gordon. An Introduction to Sequential Monte Carlo Methods. In

Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors, Sequential Monte Carlo Methods in Practice, Statistics

for Engineering and Information Science, chapter 1. Springer, 2001.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/non-gaus-

sian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February 2002.

[3] Carlo Berzuini and Walter Gilks. RESAMPLE-MOVE Filtering with Cross-Model Jumps. In Arnaud Doucet, Nando

de Freitas, and Neil Gordon, editors, Sequential Monte Carlo Methods in Practice, Statistics for Engineering and

Information Science, chapter 6. Springer, 2001.

[4] Dan Crisan. Particle Filters - A Theoretical Perspective. In Arnaud Doucet, Nando de Freitas, and Neil Gordon, edi-

tors, Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, chapter 2.

Springer, 2001.

[5] Erik Bolviken and Geir Storvik. Deterministic and Stochastic Particle Filters in State-Space Models. In Arnaud

Doucet, Nando de Freitas, and Neil Gordon, editors, Sequential Monte Carlo Methods in Practice, Statistics for Engi-

neering and Information Science, chapter 5. Springer, 2001.

[6] Nasir Uddin Ahmed. Linear and Nonlinear Filtering for Scientists and Engineers. World Scientific, 1998.

[7] Sergey Lototsky, Remigijus Mikulevicius, and Boris L. Rozovskii. Nonlinear Filtering Revisited: A Spectral

Approach. Siam J. Control Optim., 35(2):435–461, March 1997.

16 Section

