Maximally Localized Wannier Functions

Andreas Klöckner

Outline

Photonic Crystals
- Fabrication

Eigenproblems with Spatially Periodic Coefficients
- The Floquet Transform

Wannier Functions
- Minimizing the Spread

Outlook and Origins
Outline

1. Photonic Crystals
 - Fabrication

2. Eigenproblems with Spatially Periodic Coefficients
 - The Floquet Transform

3. Wannier Functions
 - Minimizing the Spread

4. Outlook and Origins
Photonic Crystals are

- Periodic Optical Nanomaterials
What are Photonic Crystals?

Photonic Crystals are

- Periodic Optical Nanomaterials
- That can be used to emulate the behavior of electrons in semiconductors—using light
What are Photonic Crystals?

Photonic Crystals are

- Periodic Optical Nanomaterials
- That can be used to emulate the behavior of electrons in semiconductors—using light
- Typical PCs have a *Band gap*
What is a Band Gap?

A *band gap* is a range of energies for which photons cannot propagate in a material.
A band gap is a range of energies for which photons cannot propagate in a material.

→ an insulator for light
What is a Band Gap?

A *band gap* is a range of energies for which photons cannot propagate in a material.
→ an *insulator* for light

Most materials *absorb*, they don’t insulate.
A band gap is a range of energies for which photons cannot propagate in a material.
→ an insulator for light
Most materials absorb, they don’t insulate. → energy loss
What is a Band Gap?

A *band gap* is a range of energies for which photons cannot propagate in a material.

→ an *insulator* for light

Most materials *absorb*, they don’t insulate. → energy loss

PBG materials insulate → no energy loss
What is a Band Gap?

A *band gap* is a range of energies for which photons cannot propagate in a material.

→ an *insulator* for light

Most materials *absorb*, they don’t insulate. → energy loss

PBG materials insulate → no energy loss

Roughly: A *perfect, nanoscale, omnidirectional mirror.*

Notes:

- Photonic Crystals
 - Fabrication

- Eigenproblems with Spatially Periodic Coefficients
 - The Floquet Transform

- Wannier Functions
 - Minimizing the Spread

- Outlook and Origins

What is a Band Gap?

A band gap is a range of energies for which photons cannot propagate in a material.
→ an insulator for light

Most materials absorb, they don’t insulate. → energy loss

PBG materials insulate → no energy loss

Roughly: A perfect, nanoscale, omnidirectional mirror. (Don’t take the “mirror” part too literally.)
Mother Nature: “Been there, done that.”

Photonic Crystals occur naturally.
Mother Nature: “Been there, done that.”

Photonic Crystals occur naturally. Ever seen an opal?
Mother Nature: “Been there, done that.”

Photonic Crystals occur naturally. Ever seen an opal?

(from http://geomuseum.tu-clausthal.de/)
If PCs are the soup, then defects are the salt

- Semiconductor devices (and thereby all of modern electronics) come from defects in regular crystals.
If PCs are the soup, then defects are the salt

- Semiconductor devices (and thereby all of modern electronics) come from *defects* in regular crystals.
- *Crystals* are only the substrate.
Semiconductor devices (and thereby all of modern electronics) come from *defects* in regular crystals.

Crystals are only the substrate.

Defects are what we really want.
Example Device: A waveguide

Want to transmit light around a bend with no loss?
Want to transmit light around a bend with no loss?

(from http://ab-initio.mit.edu/photons/bends/)
This research seeks to enable \textit{large-scale} simulation of such structures.
Main Goal of this Research

This research seeks to enable \textit{large-scale} simulation of such structures. This means finding the propagating modes.
Main Goal of this Research

This research seeks to enable \textit{large-scale} simulation of such structures. This means finding the propagating modes. Bases of Wannier functions promise to be much better suited to this than standard polynomial or plane-wave bases.
This research seeks to enable *large-scale* simulation of such structures.
This means finding the propagating modes.
Bases of Wannier functions promise to be much better suited to this than standard polynomial or plane-wave bases.
Simulation is especially necessary because fabrication is difficult.
Materials built from FCC lattices (in 3D) often have band gaps.
Materials built from FCC lattices (in 3D) often have band gaps. → Let’s build an FCC lattice!
Materials built from FCC lattices (in 3D) often have band gaps. → Let’s build an FCC lattice!

A few ways of making PCs

Maybe like this:
A few ways of making PCs

Maybe like this:

Stack some latex and silica spheres...
A few ways of making PCs

Maybe like this:

Stack some latex and silica spheres...

...dissolve half of them...

(from http://ab-initio.mit.edu/photons/tutorial/)
A few ways of making PCs

Maybe like this:

Stack some latex and silica spheres... ...dissolve half of them...

...bake that...
A few ways of making PCs

Maybe like this:

Stack some latex and silica spheres...

...dissolve half of them...

...bake that... make a Silicon inverse of it...
A few ways of making PCs

Maybe like this:

Stack some latex and silica spheres...
...dissolve half of them...

...bake that... make a Silicon inverse of it... Ta-daa!

(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)
A few ways of making PCs

That’s too hard.
That’s too hard. Maybe we should think about different structures:
A few ways of making PCs

That’s too hard. Maybe we should think about different structures:

...called the “woodpile structure”.
A few ways of making PCs

But can we mass-produce those?
A few ways of making PCs

But can we mass-produce those? Using Lithography, maybe...
Maximally Localized Wannier Functions

Outlook and Origins

A few ways of making PCs

But can we mass-produce those? Using Lithography, maybe...
A few ways of making PCs

Oh wait, what about defects?
A few ways of making PCs

Oh wait, what about defects?
Obviously, there’s a lot to do for the experimentalists...
A few ways of making PCs

Oh wait, what about defects?
Obviously, there’s a lot to do for the experimentalists. . .
Let’s not disturb them and get on with our work.
Maximally Localized Wannier Functions

Andreas Klöckner

Outline

1. Photonic Crystals
 - Fabrication

2. Eigenproblems with Spatially Periodic Coefficients
 - The Floquet Transform

3. Wannier Functions
 - Minimizing the Spread

4. Outlook and Origins

Andreas Klöckner
Maximally Localized Wannier Functions
Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no charge carriers, $\mu_r \equiv 1$, linear, isotropic materials) reads:

\[
\begin{align*}
-\nabla \times E(r) &= \mu_0 i\omega H(r) \\
\nabla \times H(r) &= \varepsilon_0 \varepsilon(r) i\omega E(r) \\
\n\nabla \cdot E(r) &= 0 \\
\n\nabla \cdot H(r) &= 0
\end{align*}
\]

(note $\varepsilon_r = \varepsilon$ for simplicity)
Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no charge carriers, \(\mu_r \equiv 1 \), linear, isotropic materials) reads:

\[
\begin{align*}
-\nabla \times E(r) &= \mu_0 i\omega H(r) \\
\nabla \times H(r) &= \varepsilon_0 \varepsilon(r) i\omega E(r) \\
\nabla \cdot E(r) &= 0 \\
\nabla \cdot H(r) &= 0
\end{align*}
\]
Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no charge carriers, $\mu_r \equiv 1$, linear, isotropic materials) reads:

\[
-\nabla \times \mathbf{E}(\mathbf{r}) = \mu_0 i\omega \mathbf{H}(\mathbf{r}) \\
\nabla \times \mathbf{H}(\mathbf{r}) = \varepsilon_0 \varepsilon(\mathbf{r}) i\omega \mathbf{E}(\mathbf{r}) \\
\nabla \cdot \mathbf{E}(\mathbf{r}) = 0 \\
\nabla \cdot \mathbf{H}(\mathbf{r}) = 0
\]

(note $\varepsilon_r = \varepsilon$ for simplicity)
Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no charge carriers, $\mu_r \equiv 1$, linear, isotropic materials) reads:

$$\begin{align*}
-\nabla \times \mathbf{E}(r) &= \mu_0 i\omega \mathbf{H}(r) \\
\nabla \times \mathbf{H}(r) &= \varepsilon_0 \varepsilon(r) i\omega \mathbf{E}(r) \\
\nabla \cdot \mathbf{E}(r) &= 0 \\
\nabla \cdot \mathbf{H}(r) &= 0
\end{align*}$$

(note $\varepsilon_r = \varepsilon$ for simplicity) But actually...
...we will only treat the simpler 2D Transverse Magnetic form:
2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

\[-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)\]
...we will only treat the simpler 2D Transverse Magnetic form:

\[-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)\]

(Recall \(\mu_0 \varepsilon_0 = 1/c^2\).)
2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

\[- \nabla^2 \psi(r) = \frac{\omega^2}{c^2} \epsilon(r) \psi(r)\]

(Recall $\mu_0 \epsilon_0 = 1/c^2$.)
We put $\mathbf{E} = (0, 0, \psi)^T$
2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

$$-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)$$

(Recall $\mu_0\varepsilon_0 = 1/c^2$.)

We put $\mathbf{E} = (0, 0, \psi)^T$ and find \mathbf{H} by the first equation above.
2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

\[-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)\]

(Recall \(\mu_0 \varepsilon_0 = 1/c^2 \).)

We put \(\mathbf{E} = (0, 0, \psi)^T \) and find \(\mathbf{H} \) by the first equation above.

→ scalar problem
...we will only treat the simpler 2D Transverse Magnetic form:

\[-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)\]

(Recall \(\mu_0\varepsilon_0 = 1/c^2\).)

We put \(\mathbf{E} = (0, 0, \psi)^T\) and find \(\mathbf{H}\) by the first equation above. → scalar problem

(I believe this is not a principal limitation, i.e. the method should still work in 3D.)
...we will only treat the simpler 2D Transverse Magnetic form:

\[-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)\]

(Recall $\mu_0 \varepsilon_0 = 1/c^2$.)

We put $\mathbf{E} = (0, 0, \psi)^T$ and find \mathbf{H} by the first equation above. → scalar problem

(I believe this is not a principal limitation, i.e. the method should still work in 3D.)

So we’re actually solving the eigenvalue problem for $-\nabla^2/\varepsilon$.
...we will only treat the simpler 2D Transverse Magnetic form:

\[-\nabla^2 \psi(r) = \frac{\omega^2}{c^2} \varepsilon(r) \psi(r)\]

(Recall $\mu_0 \varepsilon_0 = 1/c^2$.)

We put $E = (0, 0, \psi)^T$ and find H by the first equation above.

\rightarrow scalar problem

(I believe this is not a principal limitation, i.e. the method should still work in 3D.)

So we’re actually solving the eigenvalue problem for $-\nabla^2 / \varepsilon$.

But on what domain?
We approximate our domain as infinite,
We approximate our domain as infinite, and given a lattice
$L := \{\sum_i n_i R_i\}$,
We approximate our domain as infinite, and given a lattice $L := \{ \sum_i n_i \mathbf{R}_i \}$, the permittivity ε is assumed L-periodic.
We approximate our domain as infinite, and given a lattice $L := \{\sum_i n_i \mathbf{R}_i\}$, the permittivity ε is assumed L-periodic. (We’ll deal with defects later.)
We approximate our domain as infinite, and given a lattice \(L := \{ \sum_i n_i R_i \} \), the permittivity \(\varepsilon \) is assumed \(L \)-periodic. (We’ll deal with defects later.) We would like to compute only on one *primitive unit cell*.
We approximate our domain as infinite, and given a lattice $L := \{\sum_i n_i \mathbf{R}_i\}$, the permittivity ε is assumed L-periodic. (We’ll deal with defects later.) We would like to compute only on one primitive unit cell. Right BCs on the unit cell P?
We approximate our domain as infinite, and given a lattice
$L := \{\sum_i n_i R_i\}$, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one *primitive unit cell.*
Right BCs on the unit cell P? Periodic BCs maybe?
We approximate our domain as infinite, and given a lattice $L := \left\{ \sum_i n_i R_i \right\}$, the permittivity ε is assumed L-periodic. (We’ll deal with defects later.)

We would like to compute only on one primitive unit cell. Right BCs on the unit cell P? Periodic BCs maybe?

$$\psi(r + R) = \psi(r)$$
Why Periodic BCs are not right

Suppose $\varepsilon \equiv 1$. Then plane waves $e^{ik \cdot r}$ are eigenmodes of the Laplacian.
Suppose $\varepsilon \equiv 1$. Then plane waves $e^{ik \cdot r}$ are eigenmodes of the Laplacian.

But periodic BCs forbid them.
Why Periodic BCs are not right

Suppose $\varepsilon \equiv 1$. Then plane waves $e^{i\mathbf{k}\cdot\mathbf{r}}$ are eigenmodes of the Laplacian.
But periodic BCs forbid them. Not good.
Which BCs are right?

Need to admit at least plane waves.
Which BCs are right?

Need to admit at least plane waves. To admit a plane wave with wave vector \mathbf{k},

$$\psi(r + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}} \psi(r)$$

would be suitable.
Here comes a (seemingly) unmotivated definition:
Here comes a (seemingly) unmotivated definition:
The reciprocal lattice $\hat{L} := \{ \sum_i n_i K_i \}$, where

$$K_i \cdot R_j = 2\pi \delta_{ij}.$$
Here comes a (seemingly) unmotivated definition:
The reciprocal lattice \(\hat{L} := \{ \sum_i n_i K_i \} \), where

\[K_i \cdot R_j = 2\pi \delta_{ij}. \]

Existence, uniqueness?
The Reciprocal Lattice

Here comes a (seemingly) unmotivated definition:
The reciprocal lattice $\hat{L} := \{\sum_i n_i K_i\}$, where

$$K_i \cdot R_j = 2\pi \delta_{ij}.$$

Existence, uniqueness? \rightarrow d^2 equations, d^2 unknowns, R_j are a basis.
Meaning of the Reciprocal Lattice

Let $\mathbf{K} \in \hat{L}$. Then

$$\psi(\mathbf{r} + \mathbf{R}) = e^{i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{R}} \psi(\mathbf{r})$$
Meaning of the Reciprocal Lattice

Let $K \in \hat{L}$. Then

$$\psi(r + R) = e^{i(k+K) \cdot R} \psi(r)$$

$$= e^{ik \cdot R} e^{iK \cdot R} \psi(r)$$
Meaning of the Reciprocal Lattice

Let $K \in \hat{L}$. Then

$$
\psi(r + R) = e^{i(k+K) \cdot R} \psi(r)
= e^{i k \cdot R} e^{i K \cdot R} \psi(r)
= e^{i k \cdot R} e^{i \sum_j n_j K_j \cdot \sum_l m_l R_l} \psi(r)
$$
Maximally Localized Wannier Functions

Andreas Klöckner

Outline
Photonic Crystals Fabrication
Eigenproblems with Spatially Periodic Coefficients
The Floquet Transform
Wannier Functions
Minimizing the Spread
Outlook and Origins

Meaning of the Reciprocal Lattice

Let \(\mathbf{K} \in \hat{\mathcal{L}} \). Then

\[
\psi(\mathbf{r} + \mathbf{R}) = e^{i(k + \mathbf{K} \cdot \mathbf{R})} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j n_j \mathbf{K}_j \cdot (\sum_l m_l \mathbf{R}_l))} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j \sum_l n_j m_l \mathbf{K}_j \cdot \mathbf{R}_l)} \psi(\mathbf{r})
\]
Meaning of the Reciprocal Lattice

Let $\mathbf{K} \in \hat{L}$. Then

$$\psi(\mathbf{r} + \mathbf{R}) = e^{i(k+\mathbf{K}) \cdot \mathbf{R}} \psi(\mathbf{r})$$

$$= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \psi(\mathbf{r})$$

$$= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j n_j \mathbf{K}_j) \cdot (\sum_l m_l \mathbf{R}_l)} \psi(\mathbf{r})$$

$$= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i \left(\sum_j \sum_l n_j m_l \mathbf{K}_j \cdot \mathbf{R}_l \right)} \psi(\mathbf{r})$$

$$= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i \left(\sum_j \sum_l n_j m_l 2\pi \delta_{jl} \right)} \psi(\mathbf{r})$$
Meaning of the Reciprocal Lattice

Let \(\mathbf{K} \in \hat{\mathbf{L}} \). Then

\[
\psi(\mathbf{r} + \mathbf{R}) = e^{i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{R}} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j n_j \mathbf{K}_j) \cdot (\sum_l m_l \mathbf{R}_l)} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j \sum_l n_j m_l \mathbf{K}_j \cdot \mathbf{R}_l)} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j \sum_l n_j m_l 2\pi \delta_{jl})} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j n_j m_j 2\pi)} \psi(\mathbf{r})
\]
Meaning of the Reciprocal Lattice

Let \(\mathbf{K} \in \hat{L} \). Then

\[
\psi(\mathbf{r} + \mathbf{R}) = e^{i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{R}} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j n_j \mathbf{K}_j) \cdot (\sum_l m_l \mathbf{R}_l)} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j \sum_l n_j m_l \mathbf{K}_j \cdot \mathbf{R}_l)} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j \sum_l n_j m_l 2\pi \delta_{jl})} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} e^{i(\sum_j n_j m_j 2\pi \delta_{jl})} \psi(\mathbf{r})
\]

\[
= e^{i\mathbf{k} \cdot \mathbf{R}} \psi(\mathbf{r})
\]
The Brillouin Zone

Our proposed BCs

$$\psi(r + R) = e^{ik \cdot R} \psi(r),$$

are invariant under addition of a reciprocal lattice vector K to the wave vector k.
Our proposed BCs

$$\psi(r + R) = e^{i k \cdot R} \psi(r),$$

are invariant under addition of a reciprocal lattice vector K to the wave vector k. So k can remain restricted to a primitive unit cell of the reciprocal lattice.
Our proposed BCs

\[\psi(r + R) = e^{i k \cdot R} \psi(r), \]

are invariant under addition of a reciprocal lattice vector \(K \) to the wave vector \(k \).

So \(k \) can remain restricted to a primitive unit cell of the reciprocal lattice.

Give this unit cell a special name: The Brillouin Zone \(B \).
But are these BCs right?
Right Track?

But are these BCs right?
There is an answer in the fourth volume of Reed and Simon, but it’s a bit intimidating at first.
Maximally Localized Wannier Functions

Andreas Klöckner

Outline
Photonic Crystals
Fabrication
Eigenproblems with Spatially Periodic Coefficients
The Floquet Transform
Wannier Functions
Minimizing the Spread
Outlook and Origins

The Floquet Transform

Theorem (Plancherel’s Theorem for the Floquet Transform)

Define a transform \mathcal{U} on $S(\mathbb{R}^d)$ by

$$(\mathcal{U}f)_k(r) := \sum_{R \in L} e^{i k \cdot R} f(r - R).$$

Then \mathcal{U}’s domain may be extended to all of $L^2_\varepsilon(\mathbb{R}^d)$, and it becomes a unitary operator

$$\mathcal{U} : L^2_\varepsilon(\mathbb{R}^d) \to L^2(B \times L^2_\varepsilon(P)),$$

where $L^2(B \times L^2_\varepsilon(P))$ has the inner product

$$\langle \varphi, \psi \rangle_{L^2(B \times L^2_\varepsilon(P))} = \frac{1}{\lambda(B)} \int_B \langle \varphi_k, \psi_k \rangle_P dk.$$
Our BCs follow from the Floquet Transform:

\[(\mathcal{U}f)_k(r + R') = \sum_{R \in L} e^{ik \cdot R} f(r + R' - R)\]
Floquet and the BCs

Our BCs follow from the Floquet Transform:

\[(Uf)_k(r + R') = \sum_{R \in L} e^{i k \cdot R} f(r + R' - R)\]

(let \(R'' := R - R'\))

\[= \sum_{R'' \in L} e^{i k \cdot (R'' + R')} f(r - R'')\]
Our BCs follow from the Floquet Transform:

\[
(\mathcal{U}f)_k(r + R') = \sum_{R \in L} e^{ik \cdot R} f(r + R' - R)
\]

(let \(R'' := R - R' \))

\[
= \sum_{R'' \in L} e^{ik \cdot (R'' + R')} f(r - R'')
\]

\[
= e^{ik \cdot R'} (\mathcal{U}f)_k(r)
\]
Inverse of the Floquet Transform

Theorem (Inverse of \mathcal{U})

$$(\mathcal{U}^{-1}f)(r) = \frac{1}{\lambda(B)} \int_B f_k(r) \, dk.$$
Inverse of the Floquet Transform

Theorem (Inverse of \mathcal{U})

$$(\mathcal{U}^{-1}f)(\mathbf{r}) = \frac{1}{\lambda(B)} \int_B f_k(\mathbf{r}) d\mathbf{k}.$$

In plain words: To invert the Floquet transform, just average over all \mathbf{k} in the Brillouin zone.
The transformed Differential Operator

Theorem (Floquet Transform of the Differential Operator)

\[\mathcal{U} \left(-\frac{\nabla^2}{\varepsilon} \right) \mathcal{U}^{-1} = \frac{1}{\lambda(B)} \int_B^{+} H(k) dk, \]

with \(H(k) := -\nabla^2/\varepsilon \) on \(L_\varepsilon^2(P) \) under the boundary conditions

\[\varphi(r + R) = e^{ik \cdot R} \varphi(r) \]

\[\nabla \varphi(r + R) \cdot n = e^{ik \cdot R} \nabla \varphi(r) \cdot n \]
Consequences

- The BCs allow an intuitive “tiling” of all space with the solution on a unit cell.
The BCs allow an intuitive “tiling” of all space with the solution on a unit cell.

Each $H(k)$ has a complete set of eigenfunctions ("Bloch modes") $\psi_{m,k}$.
Consequences

- The BCs allow an intuitive “tiling” of all space with the solution on a unit cell.
- Each $H(k)$ has a complete set of eigenfunctions (“Bloch modes”) $\psi_{m,k}$.
- The Bloch modes are k- and m-orthogonal:

$$\langle \psi_{n,k}, \psi_{m,k'} \rangle_P = \lambda(B)\delta(k - k')\delta_{n,m}.$$
Consequences

- The BCs allow an intuitive “tiling” of all space with the solution on a unit cell.
- Each $H(k)$ has a complete set of eigenfunctions (“Bloch modes”) $\psi_{m,k}$.
- The Bloch modes are k- and m-orthogonal:
 \[
 \langle \psi_{n,k}, \psi_{m,k'} \rangle_P = \lambda(B) \delta(k - k') \delta_{n,m}.
 \]
- One can prove that—away from degeneracies—the eigenvalues and eigenmodes have a C^1 dependency on k, so the eigenvalues form “sheets” called bands.
Consequences

- The BCs allow an intuitive “tiling” of all space with the solution on a unit cell.
- Each $H(k)$ has a complete set of eigenfunctions (“Bloch modes”) $\psi_{m,k}$.
- The Bloch modes are k- and m-orthogonal:
 \[
 \langle \psi_n,k, \psi_{m,k'} \rangle_P = \lambda(B) \delta(k - k') \delta_{n,m}.
 \]
- One can prove that–away from degeneracies–the eigenvalues and eigenmodes have a C^1 dependency on k, so the eigenvalues form “sheets” called bands.
- Plotting the eigenvalues ω over the Brillouin Zone gives the Dispersion Relation.
Maximally Localized Wannier Functions

Outline
Photonic Crystals Fabrication
Eigenproblems with Spatially Periodic Coefficients
The Floquet Transform
Wannier Functions
Minimizing the Spread
Outlook and Origins

An Example Dispersion Relation
More Consequences

- \mathcal{U} unitary \implies a Parseval-like equality
More Consequences

- \mathcal{U} unitary \implies a Parseval-like equality
- \mathcal{U} transforms $-\nabla^2/\varepsilon$ into a direct integral of identical differential operators with varying BCs.
More Consequences

- \mathcal{U} unitary \Rightarrow a Parseval-like equality
- \mathcal{U} transforms $-\nabla^2/\varepsilon$ into a direct integral of \textit{identical} differential operators with \textit{varying} BCs.
- One can also achieve a transform into \textit{varying} operators with \textit{identical} (periodic) BCs by considering

$$u_{n,k}(r) := (\mathcal{P}\psi_{n,k})(r) := e^{-ik \cdot r}\psi_k(r).$$

and $\mathcal{P} H(k) \mathcal{P}^{-1}$.

More Consequences

- \mathcal{U} unitary \implies a Parseval-like equality
- \mathcal{U} transforms $-\nabla^2/\varepsilon$ into a direct integral of identical differential operators with varying BCs.
- One can also achieve a transform into varying operators with identical (periodic) BCs by considering

$$u_{n,k}(r) := (\mathcal{P}\psi_{n,k})(r) := e^{-ik \cdot r}\psi_k(r).$$

and $\mathcal{P}H(k)\mathcal{P}^{-1}$.
- The construction is really analogous to the Fourier transform.
Determining the Bloch modes computationally is (relatively) easy now:

- Sample the Brillouin Zone on a regular grid of k-points.
Determining the Bloch modes computationally is (relatively) easy now:

- Sample the Brillouin Zone on a regular grid of k-points.
- For each k, solve the eigenvalue problem $H(k)\psi_k = \omega^2/c^2 \psi_k$ using second-order FEM. (BCs require care.)
Computing the Bloch Modes

Determining the Bloch modes computationally is (relatively) easy now:

- Sample the Brillouin Zone on a regular grid of k-points.
- For each k, solve the eigenvalue problem $H(k)\psi_k = \omega^2/c^2 \psi_k$ using second-order FEM. (BCs require care.)
- Obtain the N Bloch modes with the smallest eigenvalues, where $N \approx 10 \ldots 20$. (The spectrum of $H(k)$ is discrete and unbounded above.)
Maximally Localized Wannier Functions

Andreas Klöckner

Outline

1. Photonic Crystals
 • Fabrication

2. Eigenproblems with Spatially Periodic Coefficients
 • The Floquet Transform

3. Wannier Functions
 • Minimizing the Spread

4. Outlook and Origins
So, what happens if we apply the inverse Floquet transform to the Bloch modes?
So, what happens if we apply the inverse Floquet transform to the Bloch modes? Well, we get *Wannier functions*.
Wannier Functions

Definition (Wannier Function)

\[w_{n,0}(r) := U^{-1}(\psi_n) \in L^2_\varepsilon(\mathbb{R}^d). \]

More generally, the \(n \)th Wannier function \(w_{n,R} \) centered at \(R \) is defined as

\[w_{n,R}(r) := w_{n,0}(r - R). \]
Wannier Functions

Definition (Wannier Function)

\[w_{n,0}(r) := \mathcal{U}^{-1}(\psi_n) \in L^2(\mathbb{R}^d). \]

More generally, the \(n \)th Wannier function \(w_{n,R} \) centered at \(R \) is defined as

\[w_{n,R}(r) := w_{n,0}(r - R). \]

i.e.

\[w_{n,R}(r) = \frac{1}{\lambda(B)} \int_B e^{-i k \cdot R} \psi_{n,k}(r) dk. \]
So, what do they look like?
Maximally Localized Wannier Functions

Andreas Klöckner

Outline
Photonic Crystals Fabrication
Eigenproblems with Spatially Periodic Coefficients
The Floquet Transform
Wannier Functions
Minimizing the Spread
Outlook and Origins

Pretty Picture

So, what do they look like?
Maximally Localized Wannier Functions

Andreas Klöckner

Outline
Photonic Crystals
Fabrication
Eigenproblems with Spatially Periodic Coefficients
The Floquet Transform
Wannier Functions
Minimizing the Spread
Outlook and Origins

Pretty Picture

So, what do they look like?

Yikes!
Pretty Ambiguous

The problem is that Bloch modes are not unique.
The problem is that Bloch modes are not unique. For each $\psi_{m,k}$, $e^{i\alpha} \psi_{m,k}$ for $\alpha \in \mathbb{R}$ is just as good a Bloch mode.
The problem is that Bloch modes are not unique. For each $\psi_{m,k}$,

$$e^{i\alpha}\psi_{m,k}$$

for $\alpha \in \mathbb{R}$ is just as good a Bloch mode. Unfortunately, the choice of that constant matters when computing Wannier Functions.
The problem is that Bloch modes are not unique. For each $\psi_{m,k}$,

$$e^{i\alpha}\psi_{m,k}$$

for $\alpha \in \mathbb{R}$ is just as good a Bloch mode. Unfortunately, the choice of that constant matters when computing Wannier Functions. To resolve the ambiguity, we demand that our Wannier functions be *maximally localized*
The problem is that Bloch modes are not unique. For each \(\psi_{m,k} \),

\[e^{i\alpha} \psi_{m,k} \]

for \(\alpha \in \mathbb{R} \) is just as good a Bloch mode. Unfortunately, the choice of that constant matters when computing Wannier Functions.

To resolve the ambiguity, we demand that our Wannier functions be \textit{maximally localized}, i.e. have minimal second moment

\[\Omega_n := \langle r^2 w_n, 0, w_n, 0 \rangle_{\mathbb{R}^d} - | \langle rw_n, 0, w_n, 0 \rangle_{\mathbb{R}^d} |^2. \]
To find a localized Wannier function, we need to choose a complex constant
To find a localized Wannier function, we need to choose a complex constant

- for each sample point k in the Brillouin zone
To find a localized Wannier function, we need to choose a complex constant

- for each sample point k in the Brillouin zone
- for each band number n
To find a localized Wannier function, we need to choose a complex constant

- for each sample point \mathbf{k} in the Brillouin zone
- for each band number n

So the problem gets more difficult as we refine the Brillouin Zone Discretization.
Minimizing the Spread: Isolated Bands

Experimentation shows:
Experimentation shows:
To localize the WF for an isolated band,
Minimizing the Spread: Isolated Bands

Experimentation shows:
To localize the WF for an isolated band, fixing

$$\arg \psi_{n,k}(r) = \text{constant over } k!$$

for a given r is enough.
Experimentation shows:
To localize the WF for an isolated band, fixing

$$\text{arg } \psi_{n,k}(\mathbf{r}) = \text{constant over } \mathbf{k}!$$

for a given \mathbf{r} is enough.(Proof?)
Experimentation shows:
To localize the WF for an isolated band, fixing

\[\arg \psi_{n,k}(\mathbf{r}) = \text{constant over } \mathbf{k}! \]

for a given \(\mathbf{r} \) is enough. (Proof?)

Unfortunately, this does not work for entangled bands.
Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem more complicated:

\[\psi_{\text{gen}} = \sum_{m=1}^{J} U(k) \psi_m(k) \]

This introduces "generalized" Bloch modes with "mixing matrix" \(U(k) \).

To maintain orthogonality, we demand that \(U(k) \) be unitary.
To deal with degeneracies, we make our problem more complicated: We introduce “generalized” Bloch modes.
To deal with degeneracies, we make our problem more complicated: We introduce “generalized” Bloch modes

$$\psi_{n,k,\text{gen}} := \sum_{m=1}^{J} U_{n,m}^{(k)} \psi_{m,k}.$$
To deal with degeneracies, we make our problem more complicated:
We introduce “generalized” Bloch modes

$$\psi_{n,k,\text{gen}} := \sum_{m=1}^{J} U_{n,m}^{(k)} \psi_{m,k}.$$

→ mixtures of existing Bloch modes
Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem more complicated:
We introduce “generalized” Bloch modes

\[\psi_{n,k,\text{gen}} := \sum_{m=1}^{J} U_{n,m}^{(k)} \psi_{m,k}. \]

→ mixtures of existing Bloch modes with “mixing matrix” \(U \).
To deal with degeneracies, we make our problem more complicated:
We introduce “generalized” Bloch modes

$$\psi_{n,k,\text{gen}} := \sum_{m=1}^{J} U_{n,m}^{(k)} \psi_{m,k}.$$

→ mixtures of existing Bloch modes with “mixing matrix” U.

To maintain orthogonality, we demand that $U^{(k)}$ be unitary.
So, our problem becomes to find a set of $U^{(k)}$ such that

$$\Omega := \sum_n \Omega_n \rightarrow \min!$$
Summary

So, our problem becomes to find a set of $U^{(k)}$ such that

$$\Omega := \sum_n \Omega_n \rightarrow \min!$$

Recall

$$\Omega_n := \langle r^2 w_n, 0, w_n, 0 \rangle_{\mathbb{R}^d} - | \langle rw_n, 0, w_n, 0 \rangle_{\mathbb{R}^d} |^2.$$
Summary

So, our problem becomes to find a set of $U^{(k)}$ such that

$$\Omega := \sum_n \Omega_n \rightarrow \text{min!}$$

Recall

$$\Omega_n := \langle r^2 w_n, 0, w_n, 0 \rangle_{\mathbb{R}^d} - | \langle rw_n, 0, w_n, 0 \rangle_{\mathbb{R}^d} |^2.$$

But how do we even compute the spread? We can’t evaluate an integration over all of \mathbb{R}^d!
The Spread in k-space

Theorem

Let $\psi_{n,k}$ be continuously differentiable in k. Then

$$\langle rw_{n,0}, w_{m,R} \rangle_{\mathbb{R}^d} = \frac{1}{\lambda(B)} \int_{B} e^{i k \cdot R} \langle i \nabla_k u_{n,k}, u_{m,k} \rangle_P \, dk$$

and

$$\langle r^2 w_{n,0}, w_{n,0} \rangle_{\mathbb{R}^d} = \frac{1}{\lambda(B)} \int_{B} \langle i \nabla_k u_{n,k}, i \nabla_k u_{n,k} \rangle_P \, dk.$$
The Spread in k-space

Theorem

Let $\psi_{n,k}$ be continuously differentiable in k. Then

$$\langle rw_{n,0}, w_{m,R} \rangle_{\mathbb{R}^d} = \frac{1}{\lambda(B)} \int_B e^{i\mathbf{k} \cdot \mathbf{R}} \langle i\nabla_k u_{n,k}, u_{m,k} \rangle_P \, dk$$

and

$$\langle r^2 w_{n,0}, w_{n,0} \rangle_{\mathbb{R}^d} = \frac{1}{\lambda(B)} \int_B \langle i\nabla_k u_{n,k}, i\nabla_k u_{n,k} \rangle_P \, dk.$$

So if we approximate the k-gradients (say by FD), we can obtain a computable expression for the spread.
• Compute the spread Ω.

The Plan

• Compute the spread Ω.

Outlook and Origins
The Plan

- Compute the spread Ω.
- Find the gradient $\frac{d\Omega}{dU}$.
The Plan

- Compute the spread Ω.
- Find the gradient $\frac{d\Omega}{dU}$.
- Use an iterative minimization technique (steepest descent, CG) to “slide down” and minimize Ω, finding the optimal mixing matrix U.

Maximally Localized Wannier Functions

Andreas Klöckner
The Plan

- Compute the spread Ω.
- Find the gradient $\frac{d\Omega}{dU}$.
- Use an iterative minimization technique (steepest descent, CG) to “slide down” and minimize Ω, finding the optimal mixing matrix U.
- Compute the maximally localized Wannier Functions, using the optimal U.

Compute a grid of MLWFs (centered in each unit cell) as a Galerkin basis to attack large-scale simulation problems, with defects.
Compute the spread Ω.

Find the gradient $\frac{d\Omega}{dU}$.

Use an iterative minimization technique (steepest descent, CG) to “slide down” and minimize Ω, finding the optimal mixing matrix U.

Compute the maximally localized Wannier Functions, using the optimal U.

Use a grid of MLWFs (centered in each unit cell) as a Galerkin basis to attack large-scale simulation problems, with defects.
So, does it work?
So, does it work?
Yes.
So, does it work?
Yes. But...
So, does it work?
Yes. But... There are cases where it does not work as beautifully.
Getting stuck in a local minimum
Issues with The Plan

- Getting stuck in a local minimum
- What is a good starting guess?
Issues with The Plan

- Getting stuck in a local minimum
- What is a good starting guess?
- There are several (at least two) valid ways of finding $d\Omega/dU$. More specifically: What inner product do we use on the gradient space of U?
The Promise of MLWFs

Several things make WFs ideally suited as a computational basis:

- Wannier functions are n- and R-orthogonal, i.e.

$$\langle W_{n,R}, W_{m,R'} \rangle_{\mathbb{R}^d} = \delta_{m,n} \delta_{R,R'}.$$
The Promise of MLWFs

Several things make WFs ideally suited as a computational basis:

- Wannier functions are n- and R-orthogonal, i.e.
 \[
 \left\langle W_{n, R}, W_{m, R'} \right\rangle_{\mathbb{R}^d} = \delta_{m, n} \delta_{R, R'}.
 \]

- They are complete in L^2_{ε}.
Several things make WFs ideally suited as a computational basis:

- Wannier functions are n- and \mathbf{R}-orthogonal, i.e.
 \[
 \left\langle w_{n, \mathbf{R}}, w_{m, \mathbf{R}'} \right\rangle_{\mathbb{R}^d} = \delta_{m, n} \delta_{\mathbf{R}, \mathbf{R}'}.
 \]

- They are complete in L^2_ε.
- (Conjecture) MLWFs are real-valued.
Several things make WFs ideally suited as a computational basis:

- Wannier functions are n- and R-orthogonal, i.e.
 \[
 \langle w_{n,R}, w_{m,R'} \rangle_{\mathbb{R}^d} = \delta_{m,n} \delta_{R,R'}.\]

- They are complete in L^2_{ε}.
- (Conjecture) MLWFs are real-valued.
- (Experimental evidence) Expansions of propagation modes in MLWFs converge very very fast.
This is the method of Marzari and Vanderbilt (1997), which they invented and used for computational chemistry.
This is the method of Marzari and Vanderbilt (1997), which they invented and used for computational chemistry. Busch et al. re-used M-V’s method for photonic crystals.
Outline

1. Photonic Crystals
 • Fabrication

2. Eigenproblems with Spatially Periodic Coefficients
 • The Floquet Transform

3. Wannier Functions
 • Minimizing the Spread

4. Outlook and Origins

Maximally Localized Wannier Functions

Andreas Klöckner
Hopes and unanswered questions

- What can theory tell us about MLWFs? Are they really real-valued? Existence? Uniqueness?
Hopes and unanswered questions

- What can theory tell us about MLWFs? Are they really real-valued? Existence? Uniqueness?
- Is minimization of the second moment even the correct way to resolve the ambiguity?
Hopes and unanswered questions

- What can theory tell us about MLWFs? Are they really real-valued? Existence? Uniqueness?
- Is minimization of the second moment even the correct way to resolve the ambiguity?
- The FD \(k \)-space grid should be replaced by some sort of FEM discretization (unsure how to treat boundary with FD)
Hopes and unanswered questions

- What can theory tell us about MLWFs? Are they really real-valued? Existence? Uniqueness?
- Is minimization of the second moment even the correct way to resolve the ambiguity?
- The FD k-space grid should be replaced by some sort of FEM discretization (unsure how to treat boundary with FD)
- Can the minimization be made reliable? In particular, how can we detect that we have converged?
Hopes and unanswered questions

- What can theory tell us about MLWFs? Are they really real-valued? Existence? Uniqueness?
- Is minimization of the second moment even the correct way to resolve the ambiguity?
- The FD k-space grid should be replaced by some sort of FEM discretization (unsure how to treat boundary with FD)
- Can the minimization be made reliable? In particular, how can we detect that we have converged?
- What exactly goes on in 3D?
Hopes and unanswered questions

- What can theory tell us about MLWFs? Are they really real-valued? Existence? Uniqueness?
- Is minimization of the second moment even the correct way to resolve the ambiguity?
- The FD k-space grid should be replaced by some sort of FEM discretization (unsure how to treat boundary with FD)
- Can the minimization be made reliable? In particular, how can we detect that we have converged?
- What exactly goes on in 3D?
- DG could help greatly with the discretization of the Floquet BCs.
How I ended up doing this research

- Prof. Dr. Willy Dörfler (Karlsruhe)
How I ended up doing this research

- Prof. Dr. Willy Dörfler (Karlsruhe)
- Prof. Dr. Kurt Busch (Karlsruhe/UCF)
How I ended up doing this research

- Prof. Dr. Willy Dörfler (Karlsruhe)
- Prof. Dr. Kurt Busch (Karlsruhe/UCF)
- Dipl.-Phys. Matthias Schillinger (Karlsruhe/UCF)
Maximally Localized Wannier Functions

Questions?