
Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

High-Productivity Supercomputing:

Metaprogramming GPUs

Andreas Klöckner

Applied Mathematics, Brown University

January 28, 2009

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Thanks

Jan Hesthaven (Brown)

Tim Warburton (Rice)

Nico Gödel (HSU Hamburg)

Lucas Wilcox (UT Austin)

Akil Narayan (Brown)

PyCuda contributors

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Outline

1 Scripting Languages

2 Scripting CUDA

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Outline

1 Scripting Languages
Scripting: what and why?

2 Scripting CUDA

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Interpreted, not Compiled

Program creation work�ow:

Edit

Compile

Link

Run

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Interpreted, not Compiled

Program creation work�ow:

Edit

Compile

Link

Run

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Interpreted, not Compiled

Program creation work�ow:

Edit

Compile

Link

Run

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Batteries Included

Scripting languages come with �batteries included�
(or easily available):

Data structures: Lists, Sets, Dictionaries

Linear algebra: Vectors, Matrices

OS Interface: Files, Networks, Databases

Persistence: Store, send and retrieve objects

De�ned, usable C interface

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Run-Time Typing

Typing Discipline

�If it walks like a duck and quacks like a duck, it is a duck.�

def print_all (iterable):
for i in iterable :

print i

print_all ([6, 7, 19])
print_all ({1: "a",2: "b",3: "c"})

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids? PyCuda!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids? PyCuda!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids? PyCuda!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids? PyCuda!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids?

PyCuda!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids? PyCuda!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Questions?

?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Whetting your Appetite

Outline

1 Scripting Languages

2 Scripting CUDA
Whetting your Appetite
Working with PyCuda
A peek under the hood

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Whetting your Appetite

Whetting your appetite

1 import pycuda.driver as cuda
2 import pycuda.autoinit
3 import numpy
4
5 a = numpy.random.randn(4,4).astype(numpy.�oat32)
6 a_gpu = cuda.mem_alloc(a.size ∗ a.dtype.itemsize)
7 cuda.memcpy_htod(a_gpu, a)

[This is examples/demo.py in the PyCuda distribution.]

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Whetting your Appetite

Whetting your appetite

9 mod = cuda.SourceModule("""
10 __global__ void doublify(�oat ∗a)
11 {
12 int idx = threadIdx.x + threadIdx.y∗4;
13 a[idx] ∗= 2;
14 }
15 """)
16
17 func = mod.get_function("doublify")
18 func(a_gpu, block=(4,4,1))
19
20 a_doubled = numpy.empty_like(a)
21 cuda.memcpy_dtoh(a_doubled, a_gpu)
22 print a_doubled
23 print a

Compute kernel

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Whetting your Appetite

Whetting your appetite

9 mod = cuda.SourceModule("""
10 __global__ void doublify(�oat ∗a)
11 {
12 int idx = threadIdx.x + threadIdx.y∗4;
13 a[idx] ∗= 2;
14 }
15 """)
16
17 func = mod.get_function("doublify")
18 func(a_gpu, block=(4,4,1))
19
20 a_doubled = numpy.empty_like(a)
21 cuda.memcpy_dtoh(a_doubled, a_gpu)
22 print a_doubled
23 print a

Compute kernel

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Whetting your Appetite

Whetting your appetite, Part II

Did somebody say �Abstraction is good�?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Whetting your Appetite

Whetting your appetite, Part II

1 import numpy
2 import pycuda.autoinit
3 import pycuda.gpuarray as gpuarray
4
5 a_gpu = gpuarray.to_gpu(
6 numpy.random.randn(4,4).astype(numpy.�oat32))
7 a_doubled = (2∗a_gpu).get()
8 print a_doubled
9 print a_gpu

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Outline

1 Scripting Languages

2 Scripting CUDA
Whetting your Appetite
Working with PyCuda
A peek under the hood

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Completeness

PyCuda exposes all of CUDA.

For example:

Arrays and Textures

Pagelocked host memory

Memory transfers (asynchronous, structured)

Streams and Events

Device queries

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Completeness

PyCuda exposes all of CUDA.

For example:

Arrays and Textures

Pagelocked host memory

Memory transfers (asynchronous, structured)

Streams and Events

Device queries

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Completeness

PyCuda supports every OS that CUDA supports.

Linux

Windows

OS X

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Completeness

PyCuda supports every OS that CUDA supports.

Linux

Windows

OS X

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Documentation

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache?

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache?

nvcc

.cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache?

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache!

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache!

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache!

nvcc .cubin

Upload to GPU

Run on GPU

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation: Automatic Copies

mod = pycuda.driver.SourceModule(
"__global__ my_func(�oat ∗out, �oat ∗in){...}")

func = mod.get_function("my_func")

src = numpy.random.randn(400).astype(numpy.�oat32)
dest = numpy.empty_like(src)

my_func(
cuda.Out(dest),
cuda.In(src),
block=(400,1,1))

�InOut� exists, too.

Only for immediate invocation style.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation: Automatic Copies

mod = pycuda.driver.SourceModule(
"__global__ my_func(�oat ∗out, �oat ∗in){...}")

func = mod.get_function("my_func")

src = numpy.random.randn(400).astype(numpy.�oat32)
dest = numpy.empty_like(src)

my_func(
cuda.Out(dest),
cuda.In(src),
block=(400,1,1))

�InOut� exists, too.

Only for immediate invocation style.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation: Automatic Copies

mod = pycuda.driver.SourceModule(
"__global__ my_func(�oat ∗out, �oat ∗in){...}")

func = mod.get_function("my_func")

src = numpy.random.randn(400).astype(numpy.�oat32)
dest = numpy.empty_like(src)

my_func(
cuda.Out(dest),
cuda.In(src),
block=(400,1,1))

�InOut� exists, too.

Only for immediate invocation style.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Kernel Invocation: Automatic Copies

mod = pycuda.driver.SourceModule(
"__global__ my_func(�oat ∗out, �oat ∗in){...}")

func = mod.get_function("my_func")

src = numpy.random.randn(400).astype(numpy.�oat32)
dest = numpy.empty_like(src)

my_func(
cuda.Out(dest),
cuda.In(src),
block=(400,1,1))

�InOut� exists, too.

Only for immediate invocation style.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Automatic Cleanup

Reachable objects (memory,
streams, . . .) are never destroyed.

Once unreachable, released at an
unspeci�ed future time.

Scarce resources (memory) can be
explicitly freed. (obj.free())
(partially true now, in VC and next
release)

Correctly deals with multiple
contexts and dependencies.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Automatic Cleanup

Reachable objects (memory,
streams, . . .) are never destroyed.

Once unreachable, released at an
unspeci�ed future time.

Scarce resources (memory) can be
explicitly freed. (obj.free())
(partially true now, in VC and next
release)

Correctly deals with multiple
contexts and dependencies.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Automatic Cleanup

Reachable objects (memory,
streams, . . .) are never destroyed.

Once unreachable, released at an
unspeci�ed future time.

Scarce resources (memory) can be
explicitly freed. (obj.free())
(partially true now, in VC and next
release)

Correctly deals with multiple
contexts and dependencies.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Automatic Cleanup

Reachable objects (memory,
streams, . . .) are never destroyed.

Once unreachable, released at an
unspeci�ed future time.

Scarce resources (memory) can be
explicitly freed. (obj.free())
(partially true now, in VC and next
release)

Correctly deals with multiple
contexts and dependencies.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)

mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)

mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)

mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")

tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")

tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")

tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")

tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")

tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")

tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")

tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)

tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)

tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")

f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")

f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()

Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)
mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .

print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Working with PyCuda

PyCuda: Vital Information

http://mathema.tician.de/software/

pycuda

X Consortium License
(no warranty, free for all use)

Requires: numpy, Boost C++,
Python 2.4+.

Support via mailing list.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Outline

1 Scripting Languages

2 Scripting CUDA
Whetting your Appetite
Working with PyCuda
A peek under the hood

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

CUDA APIs

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python

CUDA has two Programming
Interfaces:

�Runtime�

high-level
(libcudart.so, in the
�toolkit�)

�Driver�

low-level
(libcuda.so, comes with
GPU driver)

(mutually exclusive)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

CUDA APIs

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python CUDA has two Programming
Interfaces:

�Runtime�

high-level
(libcudart.so, in the
�toolkit�)

�Driver�

low-level
(libcuda.so, comes with
GPU driver)

(mutually exclusive)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

CUDA APIs

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python CUDA has two Programming
Interfaces:

�Runtime� high-level

(libcudart.so, in the
�toolkit�)

�Driver� low-level

(libcuda.so, comes with
GPU driver)

(mutually exclusive)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

CUDA APIs

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python CUDA has two Programming
Interfaces:

�Runtime� high-level
(libcudart.so, in the
�toolkit�)

�Driver� low-level

(libcuda.so, comes with
GPU driver)

(mutually exclusive)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

CUDA APIs

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python CUDA has two Programming
Interfaces:

�Runtime� high-level
(libcudart.so, in the
�toolkit�)

�Driver� low-level
(libcuda.so, comes with
GPU driver)

(mutually exclusive)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

CUDA APIs

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python CUDA has two Programming
Interfaces:

�Runtime� high-level
(libcudart.so, in the
�toolkit�)

�Driver� low-level
(libcuda.so, comes with
GPU driver)

(mutually exclusive)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Runtime vs. Driver API

Runtime ↔ Driver di�erences:

Explicit initialization.

Code objects (�Modules�) become programming language
objects.

Texture handling requires slightly more work.

Only needs nvcc for compiling GPU code.

Driver API:

Conceptually cleaner

Less sugar-coating (provide in Python)

Not very di�erent otherwise

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Runtime vs. Driver API

Runtime ↔ Driver di�erences:

Explicit initialization.

Code objects (�Modules�) become programming language
objects.

Texture handling requires slightly more work.

Only needs nvcc for compiling GPU code.

Driver API:

Conceptually cleaner

Less sugar-coating (provide in Python)

Not very di�erent otherwise

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Runtime vs. Driver API

Runtime ↔ Driver di�erences:

Explicit initialization.

Code objects (�Modules�) become programming language
objects.

Texture handling requires slightly more work.

Only needs nvcc for compiling GPU code.

Driver API:

Conceptually cleaner

Less sugar-coating (provide in Python)

Not very di�erent otherwise

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Runtime vs. Driver API

Runtime ↔ Driver di�erences:

Explicit initialization.

Code objects (�Modules�) become programming language
objects.

Texture handling requires slightly more work.

Only needs nvcc for compiling GPU code.

Driver API:

Conceptually cleaner

Less sugar-coating (provide in Python)

Not very di�erent otherwise

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Runtime vs. Driver API

Runtime ↔ Driver di�erences:

Explicit initialization.

Code objects (�Modules�) become programming language
objects.

Texture handling requires slightly more work.

Only needs nvcc for compiling GPU code.

Driver API:

Conceptually cleaner

Less sugar-coating (provide in Python)

Not very di�erent otherwise

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

PyCuda: API Tracing

With ./configure --cuda-trace=1:

import pycuda. driver as cuda
import pycuda. autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.�oat32)
a_gpu = cuda.mem_alloc(a.size ∗ a.dtype.itemsize)
cuda.memcpy_htod(a_gpu, a)

mod = cuda.SourceModule("""
__global__ void doublify(�oat ∗a)
{
int idx = threadIdx.x + threadIdx.y∗4;
a[idx] ∗= 2;

}
""")

func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a

cuInit

cuDeviceGetCount

cuDeviceGet

cuCtxCreate

cuMemAlloc

cuMemcpyHtoD

cuCtxGetDevice

cuDeviceComputeCapability

cuModuleLoadData

cuModuleGetFunction

cuFuncSetBlockShape

cuParamSetv

cuParamSetSize

cuLaunchGrid

cuMemcpyDtoH

cuCtxPopCurrent

cuCtxPushCurrent

cuMemFree

cuCtxPopCurrent

cuCtxPushCurrent

cuModuleUnload

cuCtxPopCurrent

cuCtxDestroy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

PyCuda: API Tracing

With ./configure --cuda-trace=1:

import pycuda. driver as cuda
import pycuda. autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.�oat32)
a_gpu = cuda.mem_alloc(a.size ∗ a.dtype.itemsize)
cuda.memcpy_htod(a_gpu, a)

mod = cuda.SourceModule("""
__global__ void doublify(�oat ∗a)
{
int idx = threadIdx.x + threadIdx.y∗4;
a[idx] ∗= 2;

}
""")

func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a

cuInit

cuDeviceGetCount

cuDeviceGet

cuCtxCreate

cuMemAlloc

cuMemcpyHtoD

cuCtxGetDevice

cuDeviceComputeCapability

cuModuleLoadData

cuModuleGetFunction

cuFuncSetBlockShape

cuParamSetv

cuParamSetSize

cuLaunchGrid

cuMemcpyDtoH

cuCtxPopCurrent

cuCtxPushCurrent

cuMemFree

cuCtxPopCurrent

cuCtxPushCurrent

cuModuleUnload

cuCtxPopCurrent

cuCtxDestroy

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

A peek under the hood

Questions?

?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Outline

1 Scripting Languages

2 Scripting CUDA

3 Metaprogramming CUDA
Programs that write Programs

4 Discontinuous Galerkin on CUDA

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human
Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human

Easy to write

In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Metaprogramming

Idea

Python Code

CUDA C Code

nvcc

.cubin

GPU

Result

Machine

Human

Easy to write
In PyCuda,

CUDA C code
does not need to
be a compile-time

constant.

(unlike the CUDA Runtime API)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python

Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C

Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)

Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Programs that write Programs

Questions?

?

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Outline

1 Scripting Languages

2 Scripting CUDA

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA
Introduction
Results
Conclusions

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Let Ω :=
⋃

i
Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell's Equations: EM �eld: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Let Ω :=
⋃

i
Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell's Equations: EM �eld: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Let Ω :=
⋃

i
Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell's Equations: EM �eld: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F)∗ϕ dSx ,

Integrate by parts again, subsitute in basis functions, introduce
elementwise di�erentiation and �lifting� matrices D, L:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F)∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F)∗ϕ dSx ,

Integrate by parts again, subsitute in basis functions, introduce
elementwise di�erentiation and �lifting� matrices D, L:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F)∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F)∗ϕ dSx ,

Integrate by parts again, subsitute in basis functions, introduce
elementwise di�erentiation and �lifting� matrices D, L:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F)∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F)∗ϕ dSx ,

Integrate by parts again, subsitute in basis functions, introduce
elementwise di�erentiation and �lifting� matrices D, L:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F)∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F)∗ϕ dSx ,

Integrate by parts again, subsitute in basis functions, introduce
elementwise di�erentiation and �lifting� matrices D, L:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F)∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Decomposition of a DG operator into Subtasks

DG's execution decomposes into two (mostly) separate branches:

uk

Flux Gather Flux Lifting

F (uk) Local Di�erentiation

∂tu
k

Green: Element-local parts of the DG operator.

Note: Explicit timestepping.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Why do DG on Graphics Cards?

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor local workloads.

DG has very limited communication.

�A match made in heaven?�

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Why do DG on Graphics Cards?

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor local workloads.

DG has very limited communication.

�A match made in heaven?�

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Why do DG on Graphics Cards?

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor local workloads.

DG has very limited communication.

�A match made in heaven?�

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Why do DG on Graphics Cards?

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor local workloads.

DG has very limited communication.

�A match made in heaven?�

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Introduction

Why do DG on Graphics Cards?

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor local workloads.

DG has very limited communication.

�A match made in heaven?�

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Results

Outline

1 Scripting Languages

2 Scripting CUDA

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA
Introduction
Results
Conclusions

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Results

GTX280 vs. single core of Intel Core 2 Duo E8400

2 4 6 8
Polynomial Order N

0

50

100

150

200

250

300

G
Fl

o
p
s/

s

GPU
CPU

2 4 6 8
20

25

30

35

40

45

50

55

60

S
p
e
e
d
u
p
 F

a
ct

o
r

Speedup

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Results

Memory Bandwidth on a GTX 280

1 2 3 4 5 6 7 8 9
Polynomial Order N

20

40

60

80

100

120

140

160

180

200

G
lo

b
a
l
M

e
m

o
ry

 B
a
n
d
w

id
th

 [
G

B
/s

]

Gather
Lift
Diff
Assy.
Peak

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Results

�Real-World� Scattering Calculation

Order N = 4,
78745 elements,
2.7M · 6 DOFs,
single Tesla C1060.

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Outline

1 Scripting Languages

2 Scripting CUDA

3 Metaprogramming CUDA

4 Discontinuous Galerkin on CUDA
Introduction
Results
Conclusions

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Conclusions

Fun time to be in computational science

Use Python and PyCuda to have even more fun :-)

With no compromise in performance

CUDA tuning too tedious? Need more speed?

Automate it: Metaprogramming

Further work in CUDA-DG:

Multi-GPU
Other equations (Euler, Poisson, possibly Navier-Stokes?)
Double Precision

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Conclusions

Fun time to be in computational science

Use Python and PyCuda to have even more fun :-)

With no compromise in performance

CUDA tuning too tedious? Need more speed?

Automate it: Metaprogramming

Further work in CUDA-DG:

Multi-GPU
Other equations (Euler, Poisson, possibly Navier-Stokes?)
Double Precision

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Conclusions

Fun time to be in computational science

Use Python and PyCuda to have even more fun :-)

With no compromise in performance

CUDA tuning too tedious? Need more speed?

Automate it: Metaprogramming

Further work in CUDA-DG:

Multi-GPU
Other equations (Euler, Poisson, possibly Navier-Stokes?)
Double Precision

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Conclusions

Fun time to be in computational science

Use Python and PyCuda to have even more fun :-)

With no compromise in performance

CUDA tuning too tedious? Need more speed?

Automate it: Metaprogramming

Further work in CUDA-DG:

Multi-GPU
Other equations (Euler, Poisson, possibly Navier-Stokes?)
Double Precision

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Conclusions

Fun time to be in computational science

Use Python and PyCuda to have even more fun :-)

With no compromise in performance

CUDA tuning too tedious? Need more speed?

Automate it: Metaprogramming

Further work in CUDA-DG:

Multi-GPU
Other equations (Euler, Poisson, possibly Navier-Stokes?)
Double Precision

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Where to from here?

PyCuda Homepage

(also these slides, tonight)
→ http://mathema.tician.de/software/pycuda

CUDA-DG Preprint

AK, T. Warburton, J. Bridge, J.S. Hesthaven, �Nodal Discontinuous
Galerkin Methods on Graphics Processors�, submitted.
→ http://arxiv.org/abs/0901.1024

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

http://mathema.tician.de/software/pycuda
http://arxiv.org/abs/0901.1024

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Questions?

?
Thank you for your attention!

http://mathema.tician.de/software/pycuda

http://arxiv.org/abs/0901.1024

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

http://mathema.tician.de/software/pycuda
http://arxiv.org/abs/0901.1024

Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Conclusions

Image Credits I

Batteries: �ickr.com/thebmag

Python logo: python.org

Snail: �ickr.com/hadi_fooladi

Old Books: �ickr.com/ppdigital

Adding Machine: �ickr.com/thomashawk

Floppy disk: �ickr.com/ethanhein

Machine: �ickr.com/13521837@N00

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs

	Scripting Languages
	Scripting: what and why?

	Scripting CUDA
	Whetting your Appetite
	Working with PyCuda
	A peek under the hood

	Metaprogramming CUDA
	Programs that write Programs

	Discontinuous Galerkin on CUDA
	Introduction
	Results
	Conclusions

