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Scripting: what and why?

Scripting: Goals

Scripting languages aim to reduce the load on the programmer:

Reduce required knowledge

Encourage experimentation

Eliminate sources of error

Encourage abstraction wherever possible

Value programmer time over computer time

Think about the tools you use.
Use the right tool for the job.

How are these goals achieved?
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Scripting: what and why?

Scripting: Means

A scripting language. . .

is discoverable and interactive.

is interpreted, not compiled.

has comprehensive built-in functionality.

manages resources automatically.

is dynamically typed.

works well for �gluing� lower-level blocks together.
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Scripting: what and why?

Scripting: Interpreted, not Compiled

Program creation work�ow:

Edit

Compile

Link

Run

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs



Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Interpreted, not Compiled

Program creation work�ow:

Edit

Compile

Link

Run

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs



Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Scripting: Interpreted, not Compiled

Program creation work�ow:

Edit

Compile

Link

Run

Andreas Klöckner Applied Math, Brown

High-Productivity Supercomputing: Metaprogramming GPUs



Scripting Languages Scripting CUDA Metaprogramming CUDA Discontinuous Galerkin on CUDA

Scripting: what and why?

Batteries Included

Scripting languages come with �batteries included�
(or easily available):

Data structures: Lists, Sets, Dictionaries

Linear algebra: Vectors, Matrices

OS Interface: Files, Networks, Databases

Persistence: Store, send and retrieve objects

De�ned, usable C interface
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Scripting: what and why?

Scripting: Run-Time Typing

Typing Discipline

�If it walks like a duck and quacks like a duck, it is a duck.�

def print_all ( iterable ):
for i in iterable :

print i

print_all ([6, 7, 19])
print_all ({1: "a",2: "b",3: "c"})
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Scripting: what and why?

Scripting: Python

For this talk, Python is the scripting language of choice.

Mature language

Has a large and active community

Emphasizes readability

Written in widely-portable C

A `multi-paradigm' language
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Scripting: what and why?

Scripting: Speed

Speed(C)� Speed(Python)

For most code, it does not
matter.

It does matter for inner loops.

One solution: hybrid (�glued�)
code.

Python + CUDA hybrids? PyCuda!
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Scripting: what and why?

Questions?

?
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Whetting your Appetite

Whetting your appetite

1 import pycuda.driver as cuda
2 import pycuda.autoinit
3 import numpy
4
5 a = numpy.random.randn(4,4).astype(numpy.�oat32)
6 a_gpu = cuda.mem_alloc(a.size ∗ a.dtype.itemsize)
7 cuda.memcpy_htod(a_gpu, a)

[This is examples/demo.py in the PyCuda distribution.]

Andreas Klöckner Applied Math, Brown
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Whetting your Appetite

Whetting your appetite

9 mod = cuda.SourceModule("""
10 __global__ void doublify(�oat ∗a)
11 {
12 int idx = threadIdx.x + threadIdx.y∗4;
13 a[ idx ] ∗= 2;
14 }
15 """)
16
17 func = mod.get_function("doublify")
18 func(a_gpu, block=(4,4,1))
19
20 a_doubled = numpy.empty_like(a)
21 cuda.memcpy_dtoh(a_doubled, a_gpu)
22 print a_doubled
23 print a

Compute kernel
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Whetting your Appetite

Whetting your appetite, Part II

Did somebody say �Abstraction is good�?
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Whetting your appetite, Part II

1 import numpy
2 import pycuda.autoinit
3 import pycuda.gpuarray as gpuarray
4
5 a_gpu = gpuarray.to_gpu(
6 numpy.random.randn(4,4).astype(numpy.�oat32))
7 a_doubled = (2∗a_gpu).get()
8 print a_doubled
9 print a_gpu
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Working with PyCuda

PyCuda Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy
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Working with PyCuda

PyCuda: Completeness

PyCuda exposes all of CUDA.

For example:

Arrays and Textures

Pagelocked host memory

Memory transfers (asynchronous, structured)

Streams and Events

Device queries
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Working with PyCuda

PyCuda: Completeness

PyCuda supports every OS that CUDA supports.

Linux

Windows

OS X
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Working with PyCuda

PyCuda: Documentation
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Working with PyCuda

PyCuda: Work�ow

Edit

PyCuda

Run

SourceModule("...")

Cache

nvcc .cubin

Upload to GPU

Run on GPU
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Working with PyCuda

Kernel Invocation

mod = pycuda.driver.SourceModule(
"__global__ my_func(int x, �oat ∗y){...}")

func = mod.get_function("my_func")
mem = pycuda.driver.mem_alloc(20000)

Two ways:

Immediate:

func(numpy.int32(17), mem, block=(tx,ty,tz ), grid=(bx,by))

Prepared:

func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)
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func. prepare("iP", block=(tx, ty , tz)) # see: pydoc struct

func. prepared_call ((bx,by), 17, mem)

Fast, Safe

Convenient :-)

Andreas Klöckner Applied Math, Brown
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Working with PyCuda

Kernel Invocation: Automatic Copies

mod = pycuda.driver.SourceModule(
"__global__ my_func(�oat ∗out, �oat ∗in){...}")

func = mod.get_function("my_func")

src = numpy.random.randn(400).astype(numpy.�oat32)
dest = numpy.empty_like(src)

my_func(
cuda.Out(dest),
cuda.In( src ),
block=(400,1,1))

�InOut� exists, too.

Only for immediate invocation style.
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Working with PyCuda

Automatic Cleanup

Reachable objects (memory,
streams, . . . ) are never destroyed.

Once unreachable, released at an
unspeci�ed future time.

Scarce resources (memory) can be
explicitly freed. (obj.free())
(partially true now, in VC and next
release)

Correctly deals with multiple
contexts and dependencies.

Andreas Klöckner Applied Math, Brown
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Working with PyCuda

Working with Textures

mem = cuda.mem_alloc(size)

mod = cuda.SourceModule("...")
tr = mod.get_texref("my_tex")
tr.set_address(mem, size)
tr.set_format(...�oat, 2)
tr.set_�ags(...)

f = mod.get_function("f")
f.prepare(arg_types"",
block=(bx,by,bz), texrefs=[tr])

f()

GPU Memory

SourceModule

texture<float2> my_tex

__global__ void f()
Go!
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Working with PyCuda

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to_gpu(numpy_array)

numpy_array = gpuarray.get()

No: indexing, slicing, etc. (yet)

Yes: +, -, ∗, /, �ll, sin, exp, log, rand, . . .
print gpuarray for debugging.

Memory behind gpuarray available as
.gpudata attribute.

Use as kernel arguments, textures, etc.

Control concurrency through streams.
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Working with PyCuda

PyCuda: Vital Information

http://mathema.tician.de/software/

pycuda

X Consortium License
(no warranty, free for all use)

Requires: numpy, Boost C++,
Python 2.4+.

Support via mailing list.
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Runtime API PyCuda

C/C++ Python

CUDA has two Programming
Interfaces:

�Runtime�
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(libcudart.so, in the
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�Driver�
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(libcuda.so, comes with
GPU driver)
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Runtime vs. Driver API

Runtime ↔ Driver di�erences:

Explicit initialization.

Code objects (�Modules�) become programming language
objects.

Texture handling requires slightly more work.

Only needs nvcc for compiling GPU code.

Driver API:

Conceptually cleaner

Less sugar-coating (provide in Python)

Not very di�erent otherwise
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A peek under the hood

PyCuda: API Tracing

With ./configure --cuda-trace=1:

import pycuda. driver as cuda
import pycuda. autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.�oat32)
a_gpu = cuda.mem_alloc(a.size ∗ a.dtype.itemsize)
cuda.memcpy_htod(a_gpu, a)

mod = cuda.SourceModule("""
__global__ void doublify(�oat ∗a)
{
int idx = threadIdx.x + threadIdx.y∗4;
a[ idx ] ∗= 2;

}
""")

func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a

cuInit

cuDeviceGetCount

cuDeviceGet

cuCtxCreate

cuMemAlloc

cuMemcpyHtoD

cuCtxGetDevice

cuDeviceComputeCapability

cuModuleLoadData

cuModuleGetFunction

cuFuncSetBlockShape

cuParamSetv

cuParamSetSize

cuLaunchGrid

cuMemcpyDtoH

cuCtxPopCurrent

cuCtxPushCurrent

cuMemFree

cuCtxPopCurrent

cuCtxPushCurrent

cuModuleUnload

cuCtxPopCurrent

cuCtxDestroy
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Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling
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PyCuda: Support for Metaprogramming

Access properties of compiled code:
func.{registers,lmem,smem}

Exact GPU timing via events

Can calculate hardware-dependent MP occupancy

codepy:

Build C syntax trees from Python
Generates readable, indented C
Also: CPU metaprogramming (so far Linux only)
Unreleased (but in public VC�ask me)
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Introduction

Discontinuous Galerkin Method

Let Ω :=
⋃

i
Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell's Equations: EM �eld: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.
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Introduction

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F )∗ϕ dSx ,

Integrate by parts again, subsitute in basis functions, introduce
elementwise di�erentiation and �lifting� matrices D, L:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F )∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.
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Decomposition of a DG operator into Subtasks

DG's execution decomposes into two (mostly) separate branches:

uk

Flux Gather Flux Lifting

F (uk) Local Di�erentiation

∂tu
k

Green: Element-local parts of the DG operator.

Note: Explicit timestepping.
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DG: Properties

Flexible:

Variable order of accuracy

Unstructured discretizations

Usable for many types of equations

Implementation-friendly:

Good stability properties

Parallelizes well

Simple (compared to other
high-order unstructured methods)
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Why do DG on Graphics Cards?

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor local workloads.

DG has very limited communication.

�A match made in heaven?�
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GTX280 vs. single core of Intel Core 2 Duo E8400
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Memory Bandwidth on a GTX 280
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Results

�Real-World� Scattering Calculation

Order N = 4,
78745 elements,
2.7M · 6 DOFs,
single Tesla C1060.
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Fun time to be in computational science

Use Python and PyCuda to have even more fun :-)

With no compromise in performance

CUDA tuning too tedious? Need more speed?

Automate it: Metaprogramming

Further work in CUDA-DG:

Multi-GPU
Other equations (Euler, Poisson, possibly Navier-Stokes?)
Double Precision
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Where to from here?

PyCuda Homepage

(also these slides, tonight)
→ http://mathema.tician.de/software/pycuda

CUDA-DG Preprint

AK, T. Warburton, J. Bridge, J.S. Hesthaven, �Nodal Discontinuous
Galerkin Methods on Graphics Processors�, submitted.
→ http://arxiv.org/abs/0901.1024
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Questions?

?
Thank you for your attention!

http://mathema.tician.de/software/pycuda

http://arxiv.org/abs/0901.1024
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